Need HELP! Performance problem [message #120085] |
Tue, 02 March 2004 12:35  |
Eclipse User |
|
|
|
Originally posted by: smankovski-NO-SPAM-.cybermation.com
------------8Ge1JS4RElBpCwP00SOhRi
Content-Type: text/plain; format=flowed; charset=iso-8859-15
Content-Transfer-Encoding: Quoted-Printable
Hi
Creation of a hierarchical graph spends 78% of its time in =
org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters =
method. When I build large graphs it amounts to most of the time counted=
=
in tens of seconds.
I wander, if anybody knows how to speed this up? Is there way around?
At this point we are pressed to make a decision not to use GEF any more =
for performance reasons. I would hate to see it go... If there is a way =
to =
make this stuff to run faster, it would save the day for us and we will =
stay with GEF.
Thank you
Serge
------------8Ge1JS4RElBpCwP00SOhRi
Content-Disposition: attachment; filename="trace screen.gif"
Content-Type: image/gif; name="trace screen.gif"
Content-Transfer-Encoding: Base64
R0lGODlhQAawBPcAAAQCBASCBAQChASChFPK+G1PBYWEhZsCBCxIhxIJRxtb zKyI
05TalJxCHDAlVsXExXzGBOjq0nxanASezARinIep1oSEBDOp7kRCRKRIUI22 j3wC
VKHG7YQiBA0Ddw0nbTpKqmxmzaCm+JxyVCwoEDtYlLSeRBw4eefo6U+b0Tx6 RB4U
SOyknN/J+0mMS6Ft/LGH+/gDBITWBMT25PwC/BxipHyizAQC/K4qLvKNiwR+ BEY4
aNTSzayqqJi75DkjhTBKcCcZZ6hscGElBAS+vFlJiKTOZLy+BCMTWFimVE1r pO/+
l4ZiE+syLryw3HN61HmI8S8beJqbqj46Rs9LSaDa9CwcWlMCBASC/ISmTPTv 9WZp
BCg5reNnZVl4rmiHuVhSl6WX8QkIM6wWHLfRsdzZ8kQ8erq8uuyYyHhhsAS+ /LHM
6G2bbuoYGCY+hVtJl6KbnPzGxJG03CQkKXN85fDsC0yq7PN3eCILVbKb08TO 2Dkm
bM+4+DZVcZ960mWmBCp51UzORPz+fAT+/AT+BPqEBPyERGVjZe7OBfRCHHix hpp9
M3DqZDqJOfm9TaymJFNJN3Qi7C+GubicO2QkLChmNNyePOfGNwQCvGxoLugr BJyK
eBh6/JRefOfJRnR0lFy+vPz+PPuec/urrNLPmvVxUvfHtORiBDx+nFtcWwR6 fPDu
sGGRCXLIcvdRKfScm3h3eFNaqvqzKm+rbJs8O/BZWjk4Nz1ePHymLPjIaOys cnye
nDEXkpRaLMRujByd9RUTFDyanETW9J5XXnB4Bl48OtzevHxKXMeZ+6CdePe4 ldGb
BEVknPr+zKZq0E06lFwNfPu+G3txszw6BHx6PGA6BOHfCEuZSPz+/Kx6/Nxa BCl3
LOSOrAh5rSwarCyX37m7m/z+BGyWJPvXxfwmJGa037x6BJwiJGS+XKRHN987 PM++
yfnelIR6BFK8+Mip9VRHcZTWLHaXx/zeXLt+fNSWUDACBTG8+El30TyevPze PHHZ
9j09XHi6BOS7t8TevCH5BAAAAAAALAAAAABABrAEBwj/AD9Y+UCwoECCAw0q RKLw
YMEgDSNK/HBCYkWDFy9OLKiRoMaMHkNWBElRZMmRFFGeUMkypcuVI1WmhEmT 5syY
N2vq3MmTppuVP2ECAXriJ4KVR38GLXpiqNKmJ45KjUp1qlGqbtwAcWM169Gt XMNu
RRAWgVSpWs2SNcs1qlqua9WuhQtXbl25ePOqLbEXL1++ef8iACx4sNnChgsj Fsx4
MOPHjhP/LfF4MuXLmDNjdqy5s2fNzCiHBl1itOnLoU+rFl26derSqWPDjgWb me3S
sWzrZpY7tu/du5XYVtK7t3BmxHULT458OPLcx5c3V7JcOnXr16tn3879E/fv Srxc
/xcffrz58uLToy+/HpX69+njxw/vRX599PXzp3d/n7/+/wAGWN8XARJo4IBe EJif
ggcmiKCDDh4oYYQJGjihhBZWSKGFHH7hoYcafijiiCSWaKKH8piY4hcrfphi iyiy
GOOMMa744ow35shijjrK86KPO/4oJJA+8ljkkUEOeeSSTDZZpA0+QuljHvJI GaWP
KVCZZZVccgmlDVJCmceWX+ZhQwpgfnkmmFWyaUMYaYIZRptxgllBChXUmeeb Nuzp
Z5+A5lnBn3vaGWiggiLap6CDMupoo5BGKqmkcgxaaQWXZmoppo1W6mkFInwq h6ci
VFCOHKFWGiqmo3ra6qiYlv+Taqqj0vrqrXL4MKquuPLKa67A+hpsrroWG2yx PiCb
bLLELuvss9D6wAG001brwxrLTpusttxK66214H7rLbbWksvBueKeq6601arb rrvw
crAGvPPKa++89dqrbr3zVnGuv+oCfG6//+5bsL4cCAywwAkPzMENBD0j8cQU V/wM
RAolxFBECSW00UYdlWSRSSKTjJLIJMmk8kksr7zSSS/HjBNMObkcU08r/YAz zksx
5TNRTAUlNExLOZUVU0kFrXTSTFflNFpkjSVWVVlpFRVcboVVFldjnRXX13qF LfbY
YQPWF2JymU3YYYmx3djbbUNmmWSRUcaZ3ZfRjffcn/X/7bdno7WGWeCvoUZZ boLf
9trisinuOG67uVZbbb0Bp1vlvFkuXCzHIRddc9OFjp3onmuXXengpf4dedSp x951
qJhHHuu0ryde7O+hhzt9ts933+//8S7g8MQDqCCExw/fIITIb4jghc5jmCGI 1Hco
YoTTl1ihhfic6P333t/ooowtlk++jOf3mH76PfJIvpA7vq8kkfMnmeT8TnbZ pJVX
fvlkkWhqk5fkMSYq+e+AWRJTmdIkjwo0kEsOLBSYzFQnCtbpghJMVKE0uChG LaqD
HWxUCEM4qRJuClM2+BSnKNWpFaoQVqLiVAxdJUMYuuqGrMKVDnfYKhH8yli1 Mhay
/441LGYZcVnNala0lkgtJmprid3SFrm2la50teta33qXFd3Frni9y4sGCyMY HeYw
fCFMX2ZMo8HUSEaAmfFeaCxYxD4QhChE4QfQuGMUghAEJCDBCmYoCEMggjGD eOxj
iExkR0KmkJOFBCOPTFkkW0ZJlbVkZpi8Gcx2ljNO3syTP6tJz4ZCFFJeBSs+ S9pV
jjaVpzntKklp2lS8JpavuQUtQIgaW97CllzqMi104SXYyLa2wLAtbWU7pmGW ucy1
OTNu0MRb3OQ2mbpJxjJ/00zd9pZNwQFucIljjeTCyRvWLA42rqGNbdTZOHRa rjaO
u5zlgPM5zRlHOfi0juiwQ/+d0k1nO6gDT+y2M1DqfIJ14HFd7ZSwO2nY7qG5 +53w
wuMe4cWHP/Sxj38ClNHiNc+jC/ro80bKIJKaFHooxV6IUHqilYLvC9176Yls VCP0
iQhGNz3fF1KAI/TRVH1A/VH82vc++xUpSPfLn1KXulT+HfB/B6TSkZ7qJqoa 0H93
UpOX6lSlCNLpgnyKU6LC+qdDHYpQE+SgBzUoQkiR0IRw3dQLIaXCFcrwrqKa oV5z
eEMbvoqvPLxVsmj1q2G1Cog+JNawEussJSr2iEyMLBapWEXKeuuy4cpsFa+I rniZ
q4udHaNoPeswfxHMXqYNGAewwdrWuva1GHitbF2LAXn/zfa2tV0DQcxQRw94 gBcS
+0EQoIEEPOABCc+YCMYKWchEToSRjCwZRx4JSZKhbJKUvK4lX8Jdmb0kkzlp 2Sdv
8l1Q7mxoS0kv0YDG3qQYDSpMccorXbmWp3GtLbO0L32vFhf80rK/ZAuwgJmp F7NB
sy/NPKZi3JZguL3twdHcZt42w7cKY7ObfVtN4LwZznGeU8PudGfjRhxPEc9T N/DE
3DzryWLStbif1dlnQAOquhozlKCyu/F5Ztc66gyUx/CBaJDlk1GL5qfIwQOp 8ZQX
0uYlT6QPOl5Jp+xklWJopViuHom6tyESuVSmOQ2zTb9H05qKT6fqW5+Z2bc+ +CHp
/81GQupR3Yy/Ois1TPrL8//2jGc3DbB/AtSqVi1oQToVekx7ghNYAaVoPcnJ UIrO
E5zUCkIR5qGtkXprXE2oqUux8K6ghiFeWUVqHPqVhq0qtah1aKvA9mpXhy3i Yx+r
LCJK9taYtayznkhZa+X61+XabLA7u8XQwgu0oPVivkZLRtXWCxs8MAUPpk2G aT9g
2tM2gC2gbYpqX5sH38a2AWq7Wmxfu9vgnra0YUHuiAXBA2/IwwLCIA2JmWEP QcCD
FZK7Medu7JDODXgjpZtdR55MkgevpMJnBrPvdte7MuNJeCVuXlH2BL1Ae8op j5Lx
oqzSK0FbJVZY6cqqaW2WW/+bS15SrvKugS3ld7HLgAuMYAMb+GzIbDDOde7g CO9t
m3ezJoWHjuGiGy6bqykBGE6j9MKlZumSK2dq1Bl118SGnb/ZDTsRd2J6dn3F Xten
2PlpuhnbeHU9zs5CtxPRHrf9ob2LO5F9N3cjHznJSs578Uoa5SpXOaWAt3L2 rIw9
E8V0y2AuEU5JZD4ajW+mYv6pT+PX5jYL9fJDHSqcNQ9nJiWVqUztM5ekSsAu ib5K
ZKKTlwwYaAb6uaquX3ScGg3WSQPq9oNKE6UrYPvcYxpRa8X0oybl6U2H+oRz leuo
UVXqHDb/r6hytfRfHWsgCkuIshYiErevrMbi+vvduqz/uHKt2WlhS9hdzKIX scjF
LzKbtGuMIxzzNS9o84AM0o42tvPPbvtj+//Vdn/jZlv6938GyAMDqFsf8Awn 4AEL
gA1aEAtgMIFFcG9WgFwGoQWy9RDKpRCt9QGsRRAh2BAfgV0k2BAjWBIjKEmU FIIu
I14L13ARNxKstRKz9TI1OIM6UTPnxV498zM9g3FPgUpJcTSsdTRPYRVg0RZZ MRRo
cTVX44RXszW3lV8IMBZHiACstUsANjbBFDazpRZbGGBm01oExmAJhoaN0TY+ V009
54acEYcWNmEXJodGlxkbBk5H52HjRE5V92EkJmIm5jgqdmKFuE7rVE/55BzS wTnS
//FPkMhPqGN2Z5dQ3MFjaYd2O1YePwZRQtY7wGN3GVVReleKD/IfDfJkzCNl IZWK
rRg9hEc90dMh2/MhgleLtZh4ibd4j3c+PAVUNZV5kic+wFiM7kM/mKdUn9d5 oNeM
oac/eDZ6fxYmB1SNW/VVqjcncfJAFWBBi1ZWuKd74qhWHKQovudWwjd8xmdX LtRC
7uhpc7VqeLVXqAZ9tgJYrDZ9wkJ9qQJE2VdE2gdZSvR9kRV+2aJrBrlZ6Icu U7Qu
mXVsopVsYLRsZ0Ra/IJG/neAAYiA24ZtAPCRIAkA+sdu9TdtH2ltPHCS1cZu 5xIx
bvAGzoANn8AMaSCBYFCBVv8ASAQBESPIECnoXD9ZEEEpcCwzXRWxgiKIDde1 lC/Y
lDAoMzXocDHhgjlIETmYgzQDcRX3gzoxhB03NFg5hOpVFEcYXx4ncvKlhPtV X2Ah
FVkIcyrHFVsYTCz3hV8YYGNoFmOYl2ojhtjgl37BhmnIhsW0hm8YTXJzTW44 dNNE
dJ9xN3dYOHuYh0zndOKkYVS3OOxkYpQDOVZHYsBxiGDXOc4RdqEjY2V3HTRW ieeh
OgiVienhHa6zO+zRdraJH0Ymd0eGUXjXUcBDPO7Biqh4igWyik22PFQWeLJ4 Idkz
PSFSeCaCi9XzZbqoIj0lUzxlUzhVZpNXjJpXVMlIP/f/Y3niiYxLtYxLEo3+ A415
Ro1XMkD+U0DTWI1mIkAOlCbe+GgMlFUXRHsYlCaNVo5nZSdsNaDpSEKaVkIp VELF
pynKB2rIp3x6tSo9VEN59SqlMn065AOEBWvYpyuhYkQAaWsiukS0xkTnZ1kJ aZCa
pZAP6aLgsn7uxy4S+X5jpEbLxjD+4n/fVm35B27jBm3XFpIgKW7kZn9FmpIf mX/j
Ni8RgwfQgAzS4AZpkAYTeJNmsAP7ZhBBOZQb4aVeSl3VFTKM5IIegZRMWTIg 4ZTb
FTNVqYMgiA02KKc0U4NRWXF4yl4+oTR86gZlCUtAgYRDcYRKUTVEYXIfVzVW aF9a
/xEWhOqEcOmof6lyKzdzXCgXeamXf5mpgTmGJbCFaFNzahhhPleq0kSHP7eY iqlN
3DSHd7iHeihOfOiHH/aHVhdivcGZwAFP8ySaYMc5muNijDisMOY5kRhjp2M6 qvkd
3pFjl7gerwObafd2QGY7B9U6vkMfB0V3vvmb+tGtpkic+uGKyYOcfUdlH5Wc s9hl
txidV1aduzgivMh4lXdmZZZm3pmvx+hm32ln6Kkk/+ok/HNnU2V6T/JU8Jmw sScm
aMImiNZ628gme2ImcNJAddJojUZBfpJohnJpZ2Um6HhpmXag60hXJlt8J9SO Ebp8
LEuPFgpYzncrraahwFIrr/9ifTULotk3RNAykAS5awUJtOJHflTkay+qRcZG o+63
tPaCbBRJL3HEMPCSWvLCLxl5gNSmbf4nkv8nktfGkmtgf2RApFybbbbgpAsI BVAQ
Bmrbtm77BPiQXAkRgoUUgq6lBUn5gXE6gnyrlHmbgq81MpOEplG5t2b6WicQ lRt4
lK5Fg4GbuB/IuJELuVaplFMpp1iJuDChuZDbWpvbuJ7LFJwrW2TpuaRENIjr p3Sq
uq3VqKz7l1fTuEWIFo16FrH7l3D5Wpoql5MqW3HhWr8LvHrBqVuYl7qrhWYo vMjb
WoChu87rqaTqYNKLmHYImdMEmUaHvaTxTR3GYUl3TrT/aqvtRIiCaDmFyKvB +qv9
BDqd82KoaawwlqzcEVDN2poClYnPemOYmDu1iR7XKlG/Q4r4MXf2EVF3F65K popM
Nq5993ewyFLPOZ22KMHM6WUT/FK5CK+NN2Zkdp332lP6Wq/CKGfmSZ6X53lL ErDN
GI3v2cKsZ3pUBZ8Me1Vl0nqqB3v7+VViZbFmJaDhmHt8UqBr9UG/Z0IjZLJw 5aAr
246d1rLLV4+mho/QR7OxVsU566G0NqIfeiw8C1k/O7RCS7TiF0VKq5DnR2yc xZBZ
9FnG9n5P6y4Ec1piVH/fFgf3J23fJm1BqqREmpJGWpLpFpLYtpIY4C+79QwL IAIg
/xALNZkGEgAGElAECGAGybWTP6mBeSuUfhunSanJnczJn6y31kVdF3Fblnu4 crq3
Kmi5J0GVrKy4sFy5KXGnsDynNFHLkPu5tly5uWzLnfvLVymnP1GWrZvLqpuE Hven
R3iEQECox3zMkDvM2JAVWciorstfs2U1b7nMuJuFZqi6mkoWezmpyDu85FzO 6Gy8
vUvOoIrOn/qX7wzPyxvPyPtMh+lM0lsZQHdhnRF0qPqqscphAQ2+5hS+lhmI kfM4
8wQ5sqFimPPQ7RscvBHRFH2aYxeJ/7SsrLnRSiCb0BqtCjUe2VqttjnSuHl3 4Aog
Ke1RClycwlmuxkkhI+XAyv8ZweyqZbkoeDi9nPAqZuHzeN45eTolwvkqjOV5 1OCp
jE2iws7Ywno2jVDVJVJlJTHsegoraDZAQVXin1ktVrOnJhLk1bMHxILSQOTY JyJL
xJUmKcBXskj8aUwcoU2cV6r2fHSNK5wys1R8s9V3xfs4RLPWfc/isz4btGB8 xkL7
ROUHbC5axkmLLfOCbMxWo248kQgjMGE7yBo5bf3Hx4JctiRZbh6ZpA8wDg8w gBwA
Ec9AB3QgAlDwBKwd20/gBdIQAoGEMbPlybi9yX3ryaAMuH6Lppqstx1xp6Gc yr+d
yowLEqjsuLzMy7k8y5rryo9LuXPauL18y3Tay8E8p9L/rMu9DM01iHHjjRXj /brj
7cxVU81kQTW6y1/UDLuUuoVRWM7gjLxw4c3nHM78jRez1bzsfLzq7JcAHs4F Xs7v
rGAMNr3UBDcSZr2paoeeob0AjYeXKdB9WNB/OL4lsJnju066+nUijogSjU/P QazC
iqzwC1CpydGwM63225qusx7XqnaeCMAWNcC/2a0nXcChWIowzTziOtPpOtPQ 4zwP
3K6DxyHQeT093dMwMq8y9cGSh2ZETdRBZVREYsLmyYxN3VROjbAGO0D1WdUP VI2C
dp837Hr32ScN62gAOkFubigZRKC7Z6Br7XuadsTEl7Ip26B+HkNOPEN2HbMY io+Y
/0IrrKLX0vcrIWqz14fFPLuzX4xrvHaQKnqQZMxZ42JFkq3GX/Tp6WejFQm1 cORG
pbVaPoqSeWy20Fa2JrmkQHqkoy3IRiovEbMH8PAO0pAARXCTRdAH8IABDrCl um1I
oPzJnBwEwH3cgZvsBBcRzh0SrrzKy73KrczK1h2ny33tVZm5qdzdOyHu3L3d nzvd
dCruNwjNxlyWZgnNSEjM0xzfSuFaR9PMrXvN9WWFW8HeWjOXczHO4jyp9/26 axGG
ecGpgOnOoNrOnvrw8Ay9Db/OhMlz15uYrZqqp5rxjznhFX7hFg5OB/2HUMc4 t6o4
HR5PWZfyCT3iI06aWqeIjP84diq+rDQ2ifG7mjrmmjZeOwu1vxN14z1+0kPv rQKy
0gjc0gy8PKfId8LpwEkuwYUXwU4+wdSpZRYM5fIaeTQCjNop1MQI9vWajP0a nirM
eXP25c8osOx5eqKH1QQEJW8eexCLw2GFJ1mdQLRHw4YCKB47jn1voGcdfAh6 jm4d
KYD+5xLaQoTe+DX0fHWdarBSWFTcjzYLa/+4xYPtxd7XxZz/s2Q8xkWL6Zvu 6cPG
fkrbxkxL6qZe6spWRudytVjLA53ttdYG62QwgFUgpEmapLTfbgtYAlYQBO8A BjsA
D0VQBPAwBfyQk5Xsk5v8Af32k82e7L0N7b49piahEcb/ndylHNybvO3GHd3W jcrP
Tf7BfP4qQe7kDt41oe7pLsyHWt7yfqhAUd71Pu/KjA1bURT9LqcAgcDNQDfY sBF0
g+CEQoYDBTo0KFAhkIQIDCbEaBGbwIsaJUZEEDIkSJAiTYoseZLkxpEsSxos 0TKm
R48zI5aAqTHmTgQ8ffYE+lPozqE9iZZAajTp0qBHnSKFGlXqVKjMqFq1WrVE Vq1b
tWL1ClZsWLFlt8YqixUMM7ZsY21ltrYtWmZ027JVcretkrx78TLLG/ivYMKB DfM1
DBjxYsaNHSvxwjcyY1SNJ0PGnHly5MucMXvmDPqzZ1ReTEMOjfo06NOlQ5uG HVv2
/2zasb+Yvn17dm7Yur3oBv5bOG/ew40TH56buPIvy5M3h978ufLf0a1fvy4P +/Yv
2q173+5dO/juzcWXH49efXr23ce/f+/efXx57eHXp49/Pv76+/n/x88G/gSU h0AB
CSxwwAQTPJDBBfNwEEIIG4SwAnnysCHDBDHMsMMCbcDwww47rMCGEk0cMcMT TQxD
RRMxLDFGFCuAccYYK7jRRBx11BFHH3f8MUghg5RjyAqKPJLIJJEssskln2wy yiWj
lIPKI6vE8sorseSyyyp9wBJMOcAkc0wzyzTzTDXHLJPMNn2AM0435aSTTg7g vNOH
POvcs0889fzzzjwFDRRQDv8IPRTQNfREVNBDH20UUkknpbTSKh5dg4NML830 0DWw
4YEHAEYlFQAeHgjVAAxANTXUUFtFlQdVDwVVVFNNeRWAWGdd44MPzBADADPy 8EMC
M+Dhhx8HrMDDgWd89dUgaKf9QFpotcAGWmutrTbbbqP19ltxT6C23GnJ5RZd bNT9
gN0TDCJXXXnbpRfedu219911uz1B3nnh1bdfgQXGd91+AQY44IQRNpjhEwoy OGCJ
IX74oocvdkPfjCHmWOOBLuIYYoVAvgiIhU5maKGBKBr5IIkSWiiihCLqaCWX XF6p
JZRYqkjnk3x+6eaQcGKJ6KFvAimmnI0GKiinhXraJ6L/jFKqaqagUooqrbfm Gqms
uOoqKrDE9qrssb4OK+221MZqbbbgcvsuuPWiu+67YumrL7z/AmyvvPsuDHDF CBuc
L8AfQzzxzBDzTLLFRVvtM8khn5w11EZD7ZPXauO8c89t6zw40EX3jXThjkMd Oeek
o44515OrjjvZY5edO/LKgy4989bDnTzd2+udd/uEJ16//owHkD/0kk/ev/qk YD76
6Bt0sEHrI6z+ww01vL7CEQucMEXxM8wjBRRBNFEeGWV0scYXY8yDfSB5BLL+ IXs0
Mn8ckfTRSf79T9L+oDTAKj1pSlOikpW8tEAsiaBLYkpTBMOUJjG16UtnchOb 4KRB
/w3WyYN8+uCfQEgoQBmqhIhilKEaZcJEOYpSPliUpl7Ywkp5SoaY4gCnagip S3Gg
VqUiVajIwANYrMpWQOTBEENVRE3VylWxctUQmcgBXz1DDCf4hBh+kAYz7GFZ SEiA
GFbwLG1pwVdI8JUVomXGaRnEjdoK17bi6MY5Uotc9MJjvOCoR3F1643uAte9 6Jgt
df2RX4KMl7QONsh1FYxeepSYvgYpSDcmko4Ea1gmMVnJih1kkZjMmMU6WUmK fYyR
pgQYKteVMomobCIOmRkjNxJLN3LkZrR0IxA+UsuKDPJnPvtZ0HxJk5QMsyY6 I5rS
sAG1pkFtalJ7GtWulrWjNP9Fmkt5SjW7pjWweW0qY/Mm2sKpNnLCBS5veVvb zkmW
dOplbnaDZ9360jfBDcaehxEcYxRTuMMozjKL6cziGAdQxlzGcZRTQmkmd7nI rcah
qmkoQxkKm4l+jjal6w1uLno6jppOo6kDqepUFzuSvq52yzHpSVUandu1tHbn AQ9M
eRe84R0vP/I5Hk6Xp1ObKs+nyJNeUAFkoPogqKj/oZ6Brmc97i3oQOPD3ogs JD4O
daiqJYof+qw6o/OtSH5c9RH9bDS/G+lvSEwSEv+UpCQnQamtTEqgArWkwALW dUsM
xKsEJ3jBC77JghmcUwfZxMEQFlaELAThCRWLQsYi9lH/jGqhoiBLw8nusIad mlSm
NmXDGzbRVZ8VoqsMYItaKTGJoJUVBjLlxCiilldV3AECxJAAJCABD3gA4woS sAIr
mOGM5gIuGoE7XOJC647FNddxH+krPvYLj8uFJHPzCN1HOte67YpXdK9r3YF1 N7vY
ra53xTte8WbMu+a9WL82hjH1nsBkCjHveuXr3pOt12QEEQjKMpZf/qLMlf5l JUZg
xhCWsaxnIsuISVhmkp5J5JcP/tlMJDw0CkeTmU1rZoWdaeGoDe2Z2Lwm1rS5 TapQ
k8Tb7KY4xynOsbWYnO00Z9vUKWMax/Od8eQb3QSTTx4npp/79GeQEWfQfyLm E4+j
/1xAN7PQ1FjuoU+GqEWlPGXPISejH7VyllO3uuO0DnbM+XJ1xOw669BupbbD jktZ
Srzd7W54xdspfWiK05v+Zz77obOdhbpnpB51egtyUKCdyqCnEhqq2htfij7E IRip
L9HjWxH5uno+rtrI0mW13/3MKsC0rjWAA+yfAdFKVwTeNa5cMnVeVQ1BNO2V gmp6
EwblNNg5GbawezIsCXVdqEEhNoWO+rUKJQVZYT/WssdGdg97KENsGAAWzoa2 AaQd
7VVNW9rPjvazp9hsbU+729DGwKF8ZYZnlJvc5HZDuZ9xbjJCS41p/MC7441c eiP3
jvee7nLptQM7GrffzaUuvv+1C11Iftfg2OVuwcNLXu8inOEMRy9608te9sZ3 YAOh
r333e7H7EuRhG/O4x1OWEQBnxOQrc3BIElyRhdBE5S8/SYMhPHOa15zmPMHw hDPM
4aI805oWvpqIhX5Napr4xF3jiovDRjazvdjpM4ZbjN3pNqm3E8d2+xs9s05P Hvf4
cD4ujJCDbNAlN06gi6nMQdVeOc1M1O0UjQ2T4b45KnMOoxr1jWzunncsZ7Q4 HA3p
mFvHZeiYmXXYMXx0En/mNmfnOyc9D+4kHzw22wc+cO7p8i7fvJ52ns98Jiqg A6Sg
oy41e6bnXuqfStVHb1WqJKI0+1x0oh1deqxizVFYM73/abOq1fedHnUAASgl /9l1
+AjMa6q5BMHlT9CvFGw1rWFN6w/K2tZ2itOi4oRr7heK17xeIQ2NbcIYzvDY mLWs
ZjvL2Uf1cA1TwED85T9/+tff/vK/lP3hb/9LTUve8C6X/wNAd6u3AjTA5PI3 fxu4
6KoufSO4BlzA7cquCSw4CuwuCBQYhHO4h+PA9uqu9RIYi1MvkMO49ZqIikMI N7gv
BKCI9/o4ikjBAHsI/oIlhzCwFDQ5B4ulBNNBmLO5H5w5nZuwIawwDeM5aSI6 n4Mm
ocOmoZOabNIaozu6Kfwmbyqnp8PCszGLdHqnG7u6L/zCHSucfDIcsDNDsVOc IzMy
/7QbsoSSDM2RqCRLss+Awyd7jYrinCiruz3cjb47neAojsMzji4bPC8bPNox s5J6
jpIqM8ZzxMnLnTarqTlbD8urKcujqZ+yKc3DM+PRvOhxns8Txew5vUH7HtQr NNUT
EVRsqteDtBRZH7ByERVZH7ICKyPBH97TxVALteMDNeLbEreaqyxJPmI0xmPM K+Z7
oGVEEzqhvlnboOuTxlzbPjlBoWq8kxgKtsYCNhcaNmN7LPRrofJLv/WTFMzq FHHU
oUNZRxxyxxsSx3R0R3mclHmjliAgQHx8NzXiR/8rFwegFgEMwAOkFoAkSOBS LuVK
QD3it3yLroYMOAh0OPBSuP/x2sAOxMiJ60CJcwMzgLgP9MB+MRmNfBiPvC/6 6riM
gUGVcS8EMEmTxMEWVMGZFAgDq0kVfDmcFAmdPDAGizkg/BldorkiEAmiFAkh PEoE
IEogmAkMK0oKY8qeiEqdQ8IS6IOhkAqr4bmoMLqu5JpuokKmq0KpcDGomzEa Yye2
ibq4sTowhCcx9Ju4zDHEGMPA6afH+ISvu0s0LDLHWQw1lJyF8ssmi0PMcai5 W406
9BzN4cPGBLw+/Du++8OQGikwuw5GVLxH1MzNfLxIvB1IlMRIlDw5iyn22LxK vA/k
yTPpWc1R9LM+g01BU5BUNEUEScXWgyrc1E3Z6yqvmkX/2qO02SsrHhmrIMnF GFGr
4zyr5fyRthI+Tnur4zu16VS16my1CgoTZcTO7Iy+DoqTZ5zGOpEDXPMgErLG xNJG
xkoUEVqhGEpPTNETeqQUcoQU9FM/+6zP9UvH++ws9ZMh/1wD/gTQ/1wDV8GV U0Gt
BAWtAw0VBkVQMniAcTDQ04qD00pQJWJQB+WBCjUt1DItDUXQKOLQEP0sDT1Q BoUi
HsjQUEnRBUWtWMGVIYqVFg0tFW1QV5FQGD0tKAJRG7XQA51RGx2iE7VQHx1S Fk1Q
B61QBX0iJqXREkUtFGXSKS1SH4XSK/0sJcJQ0OrQIgXScdDS1kJQUxiiJbVQ VAnT
/wlV0SNF0iYl0SlN0S5V0wjV0dCKUSGlUjWdU9BCUy4dUwzd0iwV1DdF0kAV Uxx9
0yCt0TE9LVyBIjkNrXF4UkJ10UX1UBtV1APt0A4lUtPi0VBZUtNSoied1A0l VEh1
UDq90SpVUAaF1DmV1DZd0DTV0AhNUjZl00qtUQgF0wmV0TzF0gRFFSAFViu1 0if9
0Cbt0RqtVWG10zx91DVNUkqtU1wh1jud0Ajt0klN0RG9VTyl1M+KViYVVSga Vz6d
Ugft0D5FUjKt1GE9VGkN0RYlAzO9UlVtLQ0dol6V1VS9UXz9VTHdVF2d1nO9 VGxt
U1GNg3W90S5dVk7NVT3V0/96ZVJsNVc31VNiXVV09dRFrdMQTdZXbVQS3dZV 5VE5
PdFA5VRZPRUiRdcf/dNpddYsXViMjVZ+ddEWbVEHBVFH3diGNVZjFdmCfdkk 0lQh
0tiOtdRQkVBKFdV8LdpCNdlnPdZWJVd1lVUy4NlLxVgTZdWKhVk/BVkFjZV6 ZdhB
JQMJHdqtFVg1PdKVNdSRHdt/jVdsLVmq/VlMLVJ8ndqurVR7DVpUdRXAlVuv jVex
ldNknVdx3ViN/dqPfde+ddxD1VqJDdoUnVE2hde9pdJY8VanDa0lrVkFTVa+ ZVlw
lVvI7VSMXdpVrdygxdIuVdrPRdgmfdqMRVquVdo7rd3/snXcMh1UVn3dYDXW IEVZ
vyVRlwXWt11Vx93cZVXRna3SUf0sSWVTn21dY9XX0RXXla3RFD1a2KXTDv0H 7H1V
hg1f0Bpd6rXRHP3evOVaUxUi7iVSNKXfjQ1TKfVTtn1ThOXe2OXSlBVbZo1f 2WVZ
zUXSplXUdGVcRj0VSY3VFw3e3N3QgN1c1l1RYMXezO3b/eXToQ1Rw13aHPVU A27T
BxgiY+DbkGVd+LXXiL3XApbgcLXSNIXdJ1Jh4q1UdSXWpoXhXe1gS23a/01e MX1U
tW3gYqXbFpZTg4Vfy2Xc3w1h3D1hqE1i+N1XQF1UJeJQM4Uiwp3hgHVXHlDg hPXV
/xLF1QZmV/Bt09rN1jf20SAd4yZu41l10jo+XR3+2QV2VRGt4geNUq4dV22N Y0vV
YsulUUIuVjZe3CnGXzN92l59WA+e4Lgl3cMtWzBG4wR13+zFWe3d5AkeYxZV Xu/N
28Qt3iT61Dt+VYRlZMxV49DyXaC90FBG3SWOX9t14M59YhxNY9XN1Ytt5Aom Y8UF
5KhlX3RdUUtO39bd0oCNWuwNXxodWNcV5mEGVbm9YXUd3fR9UneN00KG2Bne 0Svt
XYJ15Go9Uz0m50DGYx/VWIPtVuLNVGCt07I91K215FI9YFq24a89XGgu3Oyl 0gxV
2ig+LVS2YzLO47l1X5X11/88XlI+jubjVd9ebtC7LeeXHWWqVeddrtKOblxb 9lQf
NmPdJV1qVlPlxdI7Bd+IZV9NdV4+jeBhFeP+zeKaxVpaRVJF/VgeVWkobuRJ 7dlB
5dZ+vdJX1QNTVlVj/mBLdVxwvmN3JuggrmoGPpUcFqKmjaKI7ucJDtWZVVzT 6mRG
bltcbi3Pddg8lemGvuDo9VgWjWACvuIBfqKIzWB6LWJtxmNhxufw7VHeTeJr 3ljp
zWhZxWcWZd9VFtplbeZrntykddajRdhYPeigddW5Rtwbzll4lth6XmuzLWy2 Xmeh
lVcSXeC4ntKhvezTDWcsZezDtVkMvmorBuFbDuwm5er/3D1fcmXd4QUtzSZo yLVq
mSVoyzZQUXXjCc7eUf1ngcXama1lUwXuxL5ihW5jVNlticXecP3UI8Xn9R1c qmbb
og5bvu5rL91bEE5mxQVsJ9XoQL3nSy7SNHbmkVZfpa3c293coIbdPm5gdd1u +u5u
2J5gxgZuzzZdyeZfnxXZ101tgk7wYhVt2b5qnRVujLbrfx7lnr1t5s1aXaXe ZS3V
yFZtHc7t047aABdU8wZxUv0sb6VeBE7U3Y5tNg5UAA/rB+bbO/Xi5KbUUc5x q01X
hxVoGlZW7L7hD7Vviz1sAeblmW3WB8ZYSLVVgF7whq5lwF3gI0/k3eZfo27h LZ7Y
/0XtUetm6YJe2StXbiBeaOid6LqubaomW3cGUQTH6lv27O8t4z0fWeAV8YON Ir0W
oke9WCGvZY2tUJt+crEt8COPc2X1UBi16O4e4w4H6FiWXCRXYnd17KFG5ECG ULlG
Xv3N4JhN5Z9N04DNVRNm8l1dUieH3r+eYfftc+YO1tVF7a+mWY1W9UXOdVXe YfRu
4LB2bObtURM27Mtt3B/mXHRecbsGcE8P0R2f2ZN932x+2SOXUeE+8wz39Sd+ 0k5O
5qW9dB4nclXWbGrn7nf+UToedkEFolEhg1bRlRjX09dO0Xk3lVy1d6qdcPn9 VSTq
6tM95IRFYlYVZk0+oiBy0f8OHZUaZlmvTdsYr/j9bl6JbZXPapXXTdN9L1bK bt1J
fVWC1+FyR1ODFhU5P+MmnXc//eF+F+oxB2FUeXkU9uDQlm4bvXeer1FTAYDl ftN+
b+u4LXe+VqKNP62OB9GOL/gDt97JpWgLZeHVNlIo/XDopdsE11HJ5moT7t4H PfVC
nVx/zl2cp+TKJeyd11UUTni8HVSpHu89XVYO5V/tTuKafWuqh9aapmQcTWxW f6IM
r9S1bmcgH9/oDugI5uFTEfwCP+Zk321I9XuxfW3Grfgozfy6bnwftVevRuqq fWJ9
Td9W123ELt0OBntHB1uxd1O8N1oz5/GDBvDmhvxrT6L/tz97DY5pXb19ic9e RfVW
3ZfrCIfkPZfj1Y7VPkZ72dbnp4ffZBfUUk1m/Y37TP9U2H/lgl7cH+Znkp3s Yl/9
wYfRVnFZXOn4z4V3J9945Y0VU4FXpc9aIl75MYaVBB5SZmbcC2bXavbplQcI MjwG
AhhoSuADgzzIFBw4MCEPUwsfUmzoMCGZOAJ5QHTI0SPIjQAaknkwzuLHiCAX aoy4
UWLHkhQJOpSYcqNAiTIVpix4kGZKiBsV5px4EWRBoTOPDoyD1CiPhhBtfswo cFxC
nTU3JoSYlCfVlTSpNvyp0qNWtFvXAhVZM2pKlSXHXd2JsqNLgy/Xhj3L0aLN uywF
/wKO67ev2MRhw3ZkbBNvyp+NP04dSpHxUpB4h+Jkihhm3nGJuSYeWNQoYrWG FTsk
3bT1zJgeIc9mK7Yux9RnQd/2KBqv6LCiTZcOGrL3Y71K/daGmpwj1t5MIWct PpGq
Weaw87Ke+FssZDLPMac+3dcmVctxd2Ye+H0l7evqaw/XzZOpZpC8PRtdbrt7 UNG1
19lZEMUHX2L+yaWXWlNVhRhnTn2UHX4mAZfRShLONhxa8w3lH2T2bVfggqWZ tRdU
pcmWokca3reUgXSVph6BZqF33UUCFrWiQzI+F9lC1bGYGYZQhUecdcS5tpRl 6SG4
XVrcIekRAAauhNJ0Tc3n1/9XceGFpVT6hUQWUogduJ52q914FoEOleVmcRbR JiCV
S6q4klVvwQUAmasB+SRxuoU5Ymo2WQZmoX7mVxuWaRnaGlZucQkofouKhWVz OvU5
FJYdUddcnFTC5VWloMK12plDLhWYcYM+FR9tCIkZkYMEWjnlQrpFaelAxuBF m5B3
8sChavdNdiBELjqZloPtGYfna4s2uZCOZ7WUYqIWejRfiKtxNuNRfWH07Id7 BZua
U+K1+KKJrBG77WigPSqWmXTquRJVFp5WampH5pvmh0iOy657D1gWo8Fsphno TI8m
NNyt+Dqk0XeWuVbulMDOOtrG285bLLT3+tWmqVFG7Cz/vYm9eyy8qtl3q7rL xdrS
r87pyfJluaI208GR8qBHUZZJ+Gt0+6p348ADs6mRk/DR6SBGayY5oro9Thxk bFPf
3PK+92pKrrHRSZ1W1WGVDeBbtDXd6alfjTSSYlsCdSncDRX0tp52VpRlVHj/ tfee
dvvdN9wt63ljlwm5jfcDeBM2OOF3Fx75Q5K3NvSijZ8699t293e3m3WHDnfj k3dO
Yrt/Z0356G73TZDfkmPaLF4SJb7n66yPyrrieA++Ire3ez6R536feFnAu4MO VPGk
w748664rzpzSh17ZeuU0DS6rdt/iap/Ux1H4Y8smpTzlvk1D3THJKa54a1gu Jmiv
/2lOHRnsi5sZHj6DVblcKfmmpS2ZoEhtHHOW2nBCtg0ljzRbqsy1rPQTqbGH XkYT
GLy0xSu5tYdCRwJYc8xnM5Cki2e146B1PIUkoVUqeUdx4XiGIr/d7IxqItPO vyok
Ntc8R0PialjHBkMwgmHHS0+KD7feJT7ooBBJNkpSfY4zIq1l5z1oMxuu7qSV +HzG
OkU8WnEidiv8mYlJw8oiioaiE38RjEYrIdbHmnjDkzFMPWfi4vNiN71T7XFX CvtI
55zHJ9gpjjD9EdboYIOS4TFvkFFJGO4AaRgNtgxMcJIkXGxHpT1qjwdOWSTs QGaq
RyqPk5GEEyMLB8qoSMqUPP+52HC2x0dSrhJutruW5WhSHTc+RVS521zbgLJH AOCS
ldcSiA95BkzlvUZwmLyadSxyN68MU5qcY+QprUkR9UhIJIFUJeCcOZYpmmtW BhyS
larWnGlVzUVCUlreWkNB8MiTJwnjXxylozN1qVMtiVpUDvmTJL0ZLjNYPJx1 rmU4
2UgkfPZx4Q2V+SLyqUqOqRpQEbHVMp3QiXywqqfOosXQLEbUNH6k4sRklRxD SQRi
IoWKGvM3FHuhcFf/VCdmTOrE7XQNXIZroIjS87UnLfA5qcqTRkUmVDShiig/ Kk8H
V9cstTRQUQYFIj0lNpN0iehAWOzWFFeIMlEejFeQUiH/egr4wu6caT85NGCy cKVB
JJ7xWUCyGG9+GBSfKJJ5vlRIzSY1QdOQJA7D4yu20oc80+XFcz/xHKkmBSeu yAgt
eqDSNy/p19YVhCFA6ixcrDK8Dy6LJobcXCB1GUzNkap3scueZokTV1AdhLGa TS0w
36TaZWqmPt483R6n91jV1fI+hZGrnr6pzdOCcqTIayxqo3sq5kI3tBop3ik3 FlPd
BvOSjj3tRNsDGZeOUFVjfUhltxnWrU3yNhrMSROVeCD5YUSFYSTpRq5VwrD2 FL1Z
4YqvoqXULGZnqqZC0RJLtDAz9hCBQSxSRM1jqQAW678LXhWRRumhkbVERDcJ Yl4C
/+phqnRTJelUCrFwY9Y2xdVih5kW6nSjvzPZiXvGYc9i9mJjBduofV2jo4aH aJQa
2Tg9+lMvxw460Ertsn9ohFcX6wcykxAUNhGT2gen1Jf+TiZjmdHWmsqpK6Ks pbKD
1Zpzs0rPg3yQtNIBs/dki7r1lpRFJCOJQuxmu0BCMj8uxpKkmKfJBvm0TLk1 ZZVY
qdnfGk+rh0Ss4lz72rl1l1OxTfQgyeAzHPZSk9hM5Wap613OJqWf20kalfZ8 utwS
RCsWcUugwVKhqNDsr7llLp83F2t7lgZTn0Y0fnsdXWkKd7MEATbuQFc7nTIF tICU
9EgizWojns9WMA4QJKMM5v9SDUtICjxvCM+nUzEy+JAIrmu/lDmvhOwXfTGG snm7
XT4AFnQiLoYkZXmEvw0+5IHUIumW/ccuklF02Skqm4vZqjUTW/mlzDH1kigp F6MO
KEv9nOtEZninst4nv/8bTvIeGmyOLMnjpxalh0FmR/fQO3UTIqeaGVabKK0p qPDW
GFbRekiBPoxd9tq3vFenML0eNS5Ng6kU/fJOc0r0aApKuSdvMzQ52rXfZF44 wxco
RJcjCXOKqilPUoxQKUUNq0Y37qX8qjF/G+QrDurSYe/rkqkkDrKmhTulu/S3 O+Kn
T77kq6ykNxbE7n133bUaj24CyqTgfXpScazadclXV7n/7NyzXO2rJN8TL72p sxFM
OqWv4xNDRpbxq9E7a+38GtJ8hVWpD2ZO3jRAr3dE2ZHUnOFNX/rNaw50r1ao nn7T
JdGM9u+AU71Wz2PjLT0qnwUFX8jg20YhH3DlxJrh+mR+TmhqX8gQfQv3TvhK DP6p
pBk9KEyUqGOBhtg3Z29Ns3LccOUXtL8UZVBAY4TgWjnLRVTXbshIB3lFXftY 2JOl
GRh9imHsmGl0mZrtm4EBoKw1YMPsn4CkG3R8ytEF1tTsygNoBV1IiF6B2FUZ BvTJ
XLzFU+J9GMoczbU1XPQRR7pY2FdNYAxdnVjQhQHC25yJzEuUHE8FoGQoB/1w W/at
/4lQlNj//AeMUFXIfOAQKSD8xJsIFZqw3QqmLQQoLYZCIAamXNMwCZwnoZAl TZs0
6dml3VpyiEb7hJar5R3nGB8qpeHl6dx8JJo3wWEnGRs4jZoW1olZqQWYgBct ySEc
LpLGmdzmqcYqtZqiFdccaomYIBhKiFruDJIrdeB0mZaxHV4fxuGxhZS3zIRg fFoj
ucnZSFgbelEKBRESIpl9iVLZnc2sqZuAOQySlUibNM1JwRPoMUeiMCCdLSG1 IIxW
0Zj3pR9etJuwKMgFUQr1oExGwWDmWEcBDlmHTCKzqZcppNN+kEh/4YjVbRT1 OVWC
TSBIVAsJLhnJRZSCOCE0Pf/dQB3d6qgf8LGLQtUas5RgIFIEG/IN9+jNLvpX SbkT
r0FLRrlQTHkMU7iY2TzV+KUOCn3fKFmVqW0LyDnacUicvlhVkvDPgh1ZmhSh xmjd
wjgKPamTOqZg1d3EvIygTDTEP4ZWWZzOucEYtJGOMfiOMOnW+sEHbpXEqqla d2XF
qunOzqWVXjSKZ5UOYwUGT+rOGRYO7g1jXnySIBIWTw5abbkET0pad5nCUIph Bbbd
UbLO44gOmLyWVzTJD95LWViPUBzlVIYJXerHVYCKZ10P4Rye4bnR0RVG5/0h YSVS
XZ4FAOwa0xlFJZ6KYQ1O83yhhjhguEiMUlCYs2yJQCz/JF72IDsy0WGIz01m Yzmy
hmZK3FtpGSuCRVn93/yxnXjBX/XtxmjuFLh9BIecCXmZhUhqSDhmzZlxmwgy HwdB
Xb2BCtARhcbNEdqw4HON0Fu238v1z9i4T+X1nQ1JFHNKzEbM5E5oJtZEVbu4 IHXW
n9mVFxY9UZCRpjgOiYQB1KzwJjQmU46I2zpa3hAmiA/aj36yF0SGHz+KzEx+ o5Rk
GGq0ia28CAxxi9WMHX5wpnnVl49cp4KB36LwZ8eFZvktjP+ZkepRhYBkGUV+ EVUV
UVeRVBG2iGtaZAbKzUVlFPAN1fhIEcUtTBNxEgdyW4OeFEjlTFy4SG6amNiQ lEdy
/5x94RGc5CMYpRTfGFDM8MeTJt149Og24okyxuPEfZ0yqhFFes1ahSaOGujO sdvB
RCl8aJooNs2OTET8bcs9KtyH8R/WpWNH0BdyVuaSmGggdgZj7Ni/MN9iMhz7 YRia
XhxsjOCF7ZzIjMs0cpREkemXSkfTyE/Q0CPIfI3c1EvEINMIUaZDNaefBYUw BlZf
LCe7ECjXjKLcCdmbrt59wNHJwSqgFBEl7Zv0wRxYFR1M0CJDJioG8sh+xWJI pYXX
9WOBHqqf7OOT8FMGcSf1bJqYRCCjmgYbMg1u1kbCfV1dAUwZsUkUaWNSRSs6 EgqR
Ksx7xArNEQmJup+lZOqpiv/pOlKhhSLLBbanigjIDJ3r6vBoZ4rnydToQT6L wUXg
ghzZGEljCtYXhpWrxEmVL53b/cXEFLoGZdqQlaTX+QSnw/LrFFFcYaiVky3n acwJ
es2HvuLKALpjkKQoDr5RS/LKFrGXwQEkb7Unwbbs99zp/1wUt+VnZRQHYtCe nP2I
0sSsy51HzD2hgFXkmqoGxb4Zsk5kS05jb3jK09hiQB2R0AXjQdJOhvGsdjQG Bx3p
WJ3GT8KgAqKtEQ4UM86FQvqowDbjq2Kb0P3kuAxsCR7s2QHo+5WmbtgpYC2c 3oZR
gGWVggDZyIqSjlbozgSNosRIoDYrhdDWWpzMeC0g17T/amZOJ3tpxivCa0Bq rV3l
322S1BTaVbGuHDyayrIprJ+I0MlUWX9upH9iLp3WmX7ebA0dyI2upD8OY7bi SvD+
4sJxJoISb45+ZA3Nx8dgDwixyEPOqe3ekEBaJQFqotkpWWhZ4wElaqhWI4jB E9k2
aPfOm0dS5vZh5MGNDFL0U9bq03ii2WqCW6wI4foG4cBFWDo67ZNRSkzxqm1q ZNJJ
3P/i4Jjh7nE6YBGuaDzRGXhaIdCe43YyrI1mlXF6H9L55v5Ar2oKcAAPL9cl iNSW
Zr3F2S+OcFWVcLUdhRINHbK2YssssJSmiKwGIA/N6QWHJOjprnG0cAwjiyvC qdYU
/2e8DaR4wiuokh/jyosVxlkBV+QY0ke5dkz9StETe6APmudwOlmPUedbYix3 qCef
lmf3wQaGUqAL09DPIo1y4p95RCebhfF7vqdSepv/KQuZHQ//Nl8acYdMZId6 jkzZ
aRXCPdz6dPFnKJaiwhgvfvFbDsyZgcaTFrIXP0hVdJjA3Z/0sRQZa69cLMdP 7BAZ
B8p7BnB7bibGoepbulWcGVn7ld22TYhKrXJ2yvGwvHGaVKeUnB+KAHJtAiPW WMVU
xTHD5UkIcmq8iTENRqflxSeE0uhO+Ad5pFFLHDMXq5SsrYgeK6Ut27Ik51WG dvNg
TSsBEYc1P8aQ8uCNMOuBEv8kDfKFDcpcJM9yGFdyPU9nLyOYVuTJEPJzskLJ P3Cz
N2toIdtPvdJQXliYCPbPI7MJN/eznWZHOZktg+wXF+4gp77zuwXztSBy+cHx rU6Q
rIA0OGLykHU0RR/rD3VxGw0nlV0zQR6rLgo0Q4/ykmyxCWoZSbP0GCO0bVbN kp7f
KJMIhHDxtjRLPnczLWt0wQoqheCVasip9ModUhluRPIgtTbuC9dQ+R7nVCOS EhNv
hqXHMaUM3zkL0kJjmo1JFrHRnFZ1yYAUUKNg0pYUA4NtCDtuDqMPJ3Pw4qIJ VFXp
KWexBZUjWNE197IkjU7nR/nJ2Srqqs4ulKyORYm17cL/zJvidYlIdPPiUTPb K44w
KBQXB8lc5F6PNricNlqfF4GktKqIXAA68FfP9l2b8pKl5+IKq5fpkxMntn2i dpL5
9QOSYzES8QgjNtaFI16LiBydtkQzrgj/0SiB7VwvmGn3p6HMpLMq3Wx7ck8h kUIt
34w079aJnF6R92+D9Wx7ZC1SW3tRBBB3xXrDN3snNgODcBNSxlcz8Hznd9Li tWb3
N2zSk3z/NQzr92gHuINNzYDXtXwrOIIkb2TXdXKvd9pC41QHeIFbNs+OL3DX d38f
eCtelJVAuKXgXO4SuIiDOIU/OIWz9uzqtvSaeJIAGZNJtgofuIfLLX2vuI9L eI33
/zfPuuh9ybiKG/hXb7ix6jiIA7F7L7lXo4yCuziNFylq67aL+3d+VHmQK3mH v/eM
WziCh7mUt3hs8wAsGIABpDmbr7mauzmcpzmcz7mc07mat/mdv7mey3md63mc /3mb
B/qc+zmf57mhCzqgH7qbF/qfJ7qiE/qjM3qjFzqjIzqeJ/ql13mfP/qi7zmn b7qk
U3qnW3qea7qi93ml+/mbp/qkf7qq27mkd3qr2zmtp7qoD7qp1/qrj3qpH/om XPqq
ezqr5zqe57qsF/usizqpJ3uw43qkPzuq9zqnN/uwC7ur63qvG7uyP7ujM3uj G/qs
Q/q3vzqy33qoZ7unj/u0U/87uCN7sv96u8s6pGf6tJv7tWM7sR+7tbf6siN6 use6
qZ87qVc7vYN7sJe7qm/6qTu7t497tMe7uvf7wrM7v8v7uad7uCs8q+O7xRs8 xUv7
xRs7uwv8vfM6ule8vH+7xHv8vns7qOv7yxd8yjf7oKu7owv6tuP8rue7zQf8 wY/8
z1e7tIv7res7tP87zfN8oWMD0ze90z891Ee91E891Ve91V891me91m8913e9 1389
2Ie92I892Ze92Z892qe92q8927e927893Me93M893de93d893ue93u893/e9 3/89
4Ae+4Du9T1sxBKvTTI1In4VtlKc3x8FtW92HAWBDeC3/oVTzW/SyNXd/q2pM PuVy
N7j2LfGSNZNQ3AlS6Z+UEZclMEV4Ppgr/tZRiuebWnIY94DNz6bC4zt2K4ui /oJJ
hOvHRIhi7/3dS1kf0Dt9W0jFBBPLWVOZ7wtWXVFLEaX6GYeM2H0s9D4dcIlo EBvW
YGinJnsftpJU7QRHowx2nPp1bd3qZVZ3zzy9a/ecF6ZG1PEXay5X5pnqCeCm TFBv
DECY4jFQ4ECCBskYHPhAYcGDCQUmRNhQYcWEcQ4+uGixIg+GCh+M0wjyYEeP PMZ1
/GgQY0WGEgt+/OjQZEmZAyVStLkQp8mIE3eSNFhQ4koeDo0GPelQYsKPOWny yAlU
/2FLqSan8jw6VKtCqBOjMiQq8GnXrT1PEkyaNmvUtCbXas1KMmdRnW45Ri2Y 0mBc
pzxjyq3ItKPbuEYhmj3Z1O3Pwlg5LkUY+KvOmloLMh3bcGrnmYWbDoUJk6fd s1xL
mpobOfDbirCwXQ4Z93FdhLT7nnaZO61b2F4Vcz761fTKymmThoYMt2NWxMvn vvT6
Ga3C36hxxiF9tabVxDyui/Y5ECMZo4aBRwy5uqTZnDfZovTId7FDvI2lrh8Y nvdU
1QQZu2wxqrDrjT3LBDSIPt0go26u44ADSSSu9BsOswJdS8oxoQ7Mjajqmntr Jbwi
XM0UPZaaSrqSvOONqv96gv8PJ+OEei7BjlpEUMPVPiqvPd7IsshH2kjcjjuh bgzR
xez80+o82cyy8UjvtGNuNx7Km626p2haLbTMXNuQq/cAFMu0Dy28KsiqQKyJ xiOb
fMs0EFubsqQHLXoyRqqMxBDMu7KyKkOgNMSuSwGpkxFJAXNcEqsW/3Rwz77G +S4v
8XSLyi7bInzsyi+TbE7QOJFrL7S1kotQr+rWjE9NodAUcEOkFMIGGwPIiDVU 15RC
UKVd3eJxvFwBg9NNkQyIjQdbYTnyyDdr2oy8yeTsKlVnuWMo2YFsNSDEKq0k 8DtF
VZQvo54IMyUpLevs09P7pNL0tJ+SZahbYq2kaU1LB9r/dllsmh0sMisZoo9E 6uQt
lkGdVkIVSUU/WpAHf5mtqCXcOtWX1zjn0vXKRGukiFixojUUuQBPU+5KoEZj iUzi
sJPuQ6PK4okvjd0tOUyRCfMUyaIm9LStgTX2qCn6niQN30N/HPHZj80VljsT w7Vx
ZBxxgndFGoP8U2UQo+MtrpRqLnDFVakm8FzmaJ1XQFKDfXvSRb1yLGjHDg2y pT/T
u3Rhfv/aqlCzfd1qO045DZUokSQK+tUj21YsJsZZapO7OtFqOGiY5SN5QGkt WpC6
MS1akya/3h2WrAnBjVDmoLR8iHRa27ZaYAXbmxXDUmsik0ESs/6cudViC/gz 8wwy
/waOgeDgZ/nme1g5ZnRNMkZupjtzFqoOUfup5m3JiM3brqJangctDtGCBxRg QaHI
4OIeKJVD6McANQe3NUX8yA1KRVbZ/4eQISUJbQlyizEQiEA3LQxKDaHYxFxE GynN
aD/KEp9ggLIZ5D3NLAlz0o8ElpisgGpgkTFPpT4IHgtCsGdJMpOj9qO+HviP YeTz
yPxSMT+M+e5rCkFhysLlMyAJx1lOWw7eFoUx+1imOCkUklQEtRK+nMc5SlHR D3WW
JgZ+x0eXoUxIzjK6Fy3Je0pyzZyCNDSskSpsDIQWgCzHFEGNR3AeutzUxGU4 xXSR
V4pxGkTeczO1kaF1AyvXVf9ep8XEAW93ayIb9VbmO8+VcIi3y5cQPXWTA0EI hJJZ
m3Qm2TCfkAqEK5oIbjY0x4QREjvZ+x2evCg2ta2qj9naDWnE+CsDvoWRs9ze ZRLX
PSK2R1FYelh1Ajm4lYGMgbyZ42fsBUEBKe8Q5rPeQIwxMt95rGa7gMM3pfBN OIRT
nLtI2Dd7IE5xpvN+NYGDAeAJCxpmETYCKd5WJGYQOMDCfA2sFgZ7c5BDROAB cMDA
BA3ywGZNpXX84A4NxRQUNElkjvE6iQH4kQrMYYtl5yzGIYoRUvNBC19JMyPF HrAJ
Pd2yL83aqEJ70pKE9DNB4FKZKWPSQxMu8G9oiwjfgjP/MWzYEzzUwkkPwpnU cX5z
fJTcCixkOE/2TOUQ2DAoHLABUYtuVXdnOSQkj4e1X0nNbboMaqdY1k6ntpCj FkWV
bcqGOstNMndoCdwHIcSxyyxohHC561k9WTSPiSQl+ApoEYPnNjL1yKgySmOX 2rYp
AvXyLKq8EOdwppt19U5yCOpZpCyZT95djHTzoZnajPizTipnLcqJ07W+tlHE WdJw
/OPVTZAWKljGBUZR4s4jgcieCQVokYtqzaFE+bgwcuhKp7tRLuv6qUrKkqNq 5G1b
b2fY1KB1UANC7JwYyqKObomSbdRjBi9zz+gm5AxSSMX4mkfTH5GyWM/ryQ+X Fz1W
//HAvgp5njEOUxoDaKFbWa0OH4XKLWkiD0Y5gYMtvEUGFKRPe3exGHd5cIiC GtQW
HbYFAAVyHfUimL/O618SzegQPuKFHwAAQL5atjDPGQMA1+QBjW2sXQXF+Lx1 FLE0
e6u0McHiAS+2zI+byh04FPQMy0ubeLd4u//AiMqFs3IzQ8svJGNLIFi11Zdt 9QBc
2dFwT4EqD6RwiIVMaMpCSQVWYQMH/3GvlGsD7GG3lkWMXU6NHRSO6eB4yW3W xphZ
tNASOfoAoEKRksmlbB3VdtjaXQivDllQ3pRrSJ1U8ZJaBI1J+JIQOvP0W1dG 5J10
wy8vcpqzQp5ez07b3OCo+v+uuEkICm+yoT7jMYCWRHR+2FygEbJL2HkKdnQH 89X8
kFd6kDxNWDMDExTZGr0Fi1PXTj0tRxUNw5SmLVqAu10r/WWDgBMPFpeU1zdS yNmp
qlOrWrPZPm4QsEbCS5/72kg+e/WwbeRjTmRqkP3ZUiUtDtg1W7tcozHQvnUS 53Y+
AgflyUR534QVVZJlACkYAIeofs0KA4Y1+q3PFgBoqlUQFiIxUSbD3jTAQQdi C3k/
cHxU5cfNUwEP/5mYoZzSQ7yZbRJY3PyObYSPKfmLw0PkkOny7S3vGJLahILc 0DSB
DTaKvFWJwDQqTYZDD86gz0nCcqsBezTUUzhR/oYM6jf/rVuCl0UGA4SFeWAG 8xlc
Gqozz/BGNDmELWADCwzYb5mOsxwyl+uxxkEusa+14e1GV0ZeiRYsRdwcJrNt KmBq
u5NkfgzSDwloopVWlmQorBkbyDW57U5zuDWqTlvTsW2HkLQwPCxifySQ0++Z WPg6
EGKCBi6gbtRivpvUJs2qwbsFPYCBObZXyQLIJSnRrJW7PQxrj55xAxbRVe69 UceL
3dAN0d7LbNDAVroiTkYU/G/PjemrC8BYPj65rl9aaTL1ELdEEf4Qlwrl5+1G DMuD
eglC2Orx6MYkKsq0yMOVgkK71MsrlC6HDOAMWizJ7CxB+EXinAw4+mst/su/ 1g6t
/8Dk6r7MGNTM2wRiWx7ggk4rIQaqoFCg5GoOyzrk6RQiFQZv8D5C5roiIX4j fIpK
3JrnASzwEPhBzZDQ18Sv0E5t6FwsCnNwd3ZpIIrhDAygGOApCw3gHwwAAEIO oEgt
J4KweAAMklYDqrAOFoyMIn5MpVDjDNIJDs7Aer7pH9ACc5LCAMIQ0oppOZyF Jixu
tnSrK7asj7CKH7CBH+JJCsQsoAInxGBhEmOjB+hn5FjtP3Qw8DAgFaTOP34p EPtu
IrJv2QiNT9hOZbgHYhRmJtLmKXINOnxF9f7JSzTvLPiGPpQDB48u0Kgi5aJL SjKx
cbSEvjgicFaqlrKDbvoE6f8YT4DyDbpYcSCAy/8+j4HaJd3Or026xLJs5oRI hkZ4
z09exXOuZVdKRpIOjySebhU9zR3b8ZleZdR0xNQU7YOIj5nSqtmwg8R4RVNk Aosc
I9aaSNborbfaTCDurRDvzKlcRGpwsBbHqI7aTBkrEiF5J9qUwj44Dad2x1Ly jdu6
LQId4hCSBRbg6ZsewOBmaSCi8CVd7CH7CzVmsjpqcu2koBk7IuP48AGMQapq hGJM
Ycyc0CA07JtsYQZNTkleIp6ckg+D4xAmUSpl7gFkLiGuUieShagw0CgO4Qze zAjj
6wHmxwFh8iXLgia+0ADgIAodahz4oQ9J5iylMCoAoBj/AEAK8LIYpAAA/kEK /9El
6dLIGEuouDLWqOIQACDM2ND4hCoh1Gsq6HAy106+ME/MbuUknuL0KmIwASAq Ckmf
RjD/sETuDGATUDI1x+d0kgUyh/AiHMzuvswIe2dBYEMLtAAFmOcQgEb9FKKa AAYb
duEYTAMkVwZeGK0o2AhR3AMXH1KIjmurKo8e68NnRCsxGALlbM9vWgU7YciV RgJD
oGt4Fs05OCXckMJxlM0PRebKkstaiAkkxmWPqoJTcOZgPI6sIK36XOQASYTl 0gX/
nI39lFE3wo2XUgj5IK9JHKtYmsQ2NCas+obdeszZIC2iVO3X3q8/ftCSRIlp zKVv
/+DR+gpJQ7mM19hRlwqTjoZlV2jD9OCjFKEPhAJnPonvcXRMZyxFUMSE7Lrt Pbut
UxQlVphGkyDLmQxJ9JIiNjYhTHJo6ZZufojsAm/xJOiylj6wIvqLb5bH65Yq 7Mzn
cHpifpIFzFAwh9BK7lbIWyRPfpgK5mhwMSrKFFSTD8vUzSIgN7VA5lBAC6wy 5nLp
x1yqLlLBoaAnzArqzdbG0q6Uo/6DDb8QAFpMUgOGkObiSlUmFVCyGFLzHzyV DdtQ
4Y6iUSPkEOnOIWDhDLABAB6ADUdJhY7iglgJOcxneeJAncQpc9qjTLdwC/0H 2qSC
VBkEVy3OFJwug+zUKW3FJP9g6nawSgrSSamYKg8FVIVykwf4jkH2Jget6s2w IQUT
TVRTdE4YTbWma2H+s0C0T1ZMRIR8kRr5sdwWIm7U7tnWUT7iZ3r8Kaiq7Ego T7vo
7UKkDgcdKWBVJRTFA0Qdo4dULU0HyGSarWf6TFI6dFoQdk4kVF/njz+zi0CH ht5m
tUA5MpOGxRkPj2Bl8YduNDRUNqhY1hp3ikX9DGIDMLFuYzoujeDa6kE35h8r o1XQ
C16n017zb3T0sTlQJE3T6kVplrNeiG0spWw4NBvnz3MiMmPKVZSM5PfyCUQT kFCe
b2AeKZrC8CMMwAiNcB3QFsBYsvEUAiZDqMtG8JokYnn/cvKW5Csh8HB50pUH UuFW
sM4I6/C9tKq24A4bjKEPS0IHIYEHsXIpC+cpl7U9DgEFUIDpUgEYtCACMBcY wi5C
mhU7bu4rv+wMCsqhCIYH4NY5eQWjXAwl49JpBRMw2e29erUCX9IgjGw1YJJk tAum
6sItSBcbtCAmJWMqQtdfmcdyzMcfy1Q2DSxBVhegwhQo+gk3UNJOJ5d6RGwo Owmr
vMzusLCZHOM2LdEk9KAjNdUSUyHslihiSHY7fSYWOdOwSgoQ76hmk7OzasLw YMeu
+ojudAZ0gEpGYqd11mJ1xEi7Ag5JgM6PMA9bdu058axG/NdCLUwbA00kf5Gl WCpS
/xzHY1bOu+YU8aTHlBzv4m6G3GbvaoCItoJX/lpPSW4QQ/5qZptmYzVLh52r 6o6J
VC6YgjHY826LCYHIYyLEKuqE2m7xD9etrcJzsha1K7ZVOnkKaL0iNJFzz9SV syxj
cqQ21t5NgvfLZ6KvL8xLXNOiPJAYPnpY4IrKNkxQNo3hDHYAcqVMdWNyVrOi S4k1
nRiierWUedDJ4kYKiixlfm5ukXUOStE0DWOjBeO4QnmgKn3wKOK0jPeDD7c3 NGDj
cj2iLR9AC2joCyvPI97QVfTpK1uwAgtqCcENKKTQR/ejxZKwqWJnYaLwhqUi C0Pq
l9uyLV8XAOBQ4RiCdpMNVv+XhYUWCAMmUVWx4QxC9UcEFfL463ORSZAdw1tt JYEQ
iHM3mE0A800KwjINosl01RDhaVkrspep7malogewQQoWcRFTslWpyyXWd+lG 5Dtc
6ZPPt03uqq+4zTub0BQF0Ew8J2TxKJRyloKIGGomsmgmaE3GkbmClDAmKGey xX/J
biCZSP7CmR8pJUhDBJV0qqyw7Ol+AiCNePNApPY6DzgadIfhVZkwNNX4lWNv es1w
YwF35YR+VgNjcVFeppig5SWQuoM3SN6epqmTmVJ4LHhCL0NdtpWak2ORiAFF 7bkE
yInaBH4h0ZNO1EBcFN12o52VV5UzkGqBTZPiSmDjUwz/Sa+WHNPU0hhnTOqU W9Ku
UfEjLoiN+wV6u7kC+SHsEFN3VTripmp5o9PJarUycWc3/hZx6xhtvwkl54kk aG45
LvlPDcIWPveBGWITllW7Qux8PBGeWPVyxUyUFyZ5GdBvnQdtv7IHnAdNLZor ppnx
RsZ1C5UR882oevv6yNDF3gkMaVg+ACClMVPBQs44HEI34YCVXbWDhSqaxqdR +Is2
rtclflLiKm4O5UxFe6ING3Y0K6LJYAbRro7tOtuK0cyqoHd8o7F/rAo4PbGB CuI2
dTNbL7RjNw9efA/LZCS9u0vYaIW+Dml0Qg3L+A1BEgcZFUZ4DBeF20/2CEXr 2rOO
/yiKtkAnrSVaaX7qXCny28xxFiMNGauojWjC8GKYd6zviTuUi1+vc/oPL54W 0+51
PA88uwbk50ojrEjLsEJpIYxcOiWmRH9kya/Nh4ovg4XWZaQ8RBuQtq7LpyNN RCBj
0dDVhGV8yyGltLQrn46nhzsklxbPINLXu0ocPDtPjGoGeILJ1Fbr8IQrPAuw qwpn
XwRnuAS6Ii4vtEYCqKWYQmtlkvvieel4Nb+ag7qtVon168jAMut2efnrH2by jf4W
gUz3DLwunsD1Hg2imtkEc42scx0leyTZUaDqcjlOB2W9EzsREvqGBe9JxxLC eapJ
cPmBLC0dNfyPkWKSDR1qq/91zGq5DBx1F7lHDwGf9nCHkG6IFwWkABYUE0En oprP
RMnAVJzIiY4Y4s1+kumiVBZVOmU2DFdDufM4JZIvw9QF5lnrmRFhwRHN7jvw xlvj
LBXAK0duExsiYCACWnatubvYI0DnS351WPz8M0Z+iNU2LYAv7tuos/lY1ICD 2OM6
qU27rV9tzykAcJHYIzlGJYIUSY0FBlVgHGfJVUnSSIqhhZbmM37P6F77qGCu z1hW
6YX7JCtEB+dRb4tm3qxAlvXg+Rl/pugjiemHqVoSWANPOZfnBkVZV8dHVlU2 nEHu
ipEwkq/LejiSkX9Hp7GND+hoBCPE6H0aQ9/bD9Z62qz/kfN/516sgJbqwZgZ Kzw1
OC0l1CPuMHCwCfsnd6n/fGsrIhubIpumyufrJt0jfxNxH2Dy5fCd7HS/QXdN Pdxv
PcIAgGHc+4VV7QpMkv1KKpeUUwHs5HD1mwzzzTG+a2Ln3gyQM4pObB/3Sn0L iW5i
ULfZztGkX7JSc2/ZhQ4bXDMM3YLAiDcCMGB3C81pQreNKLM0L2wzjbK8006Y 8ois
Q2P6sVs7Bbog6mWZwzBkwbe+Az/2nRlgBo80S2ISJ1GG6Kcsw0+DUaaGaim5 7i9E
CRhbBpb5AMIUj4E8BBIcaJDHAzIHEw58cJAHQ4UDyRicKNFhQ4ICMSLM+DBk RIgE
/0lS/EhwoseCD8eRNHkyZsSKIROafJlS4kGGBm2KJNlTZE6QKlnq3DgTaU6B JjVy
nMmz5kGI4z42RRkxocWdRk1NNAh0Z9WtUJN2nbkw60geVV9GffrwrVOfcFHi REnW
aEmsXPeqnXqUjMuZGiGqHPx372GYfCkuJrz2KEeMTiV3ZMrX4crGKAsnvWyW s8yk
ELXSvGgWY2nAehmzhrs59NKIiGmGfrtyImPQQ0f7/R3Ub2yQrItKLrkS59bY mm/b
rqv45k6HaQ9i4wFrr0AD2Lp7924slcSwR+9Sr3oUzkD1BNmrZ380YUfX/yKz TMUv
v35+qfofSnUIQpRhdx0P1/9lN1MqD8BhAAAQpXKGAQYAc4ZoznVEECxaRJBK D2d4
eEaIPcChoGsScSfRgZGZIt5A+L2YigFUjVaZRlEZsB8/AWLHD3RlzeUjDwzC AgCD
AABAEVifmWUSigbysElBm6GAgnco8IBBRB5hBEuB10VJXV9wwMdDHM+pdlB/ tqFJ
WmbP1TVmTA/U9uZZZJh5UJcDfakQYhPBgQ2DEkoIC6GshfUgBl3CgkGLb245 kIZC
7qiXRk6RRxdZsa3WW1l3wTQgGSbpNhKdMjXF0KiTnUTSV0pFhKd2X7n6lKip KQVp
p2W+KltSA35Eq1mVsUTeccb2elJlrmE222vFrioltF7/IWufrsfqVaevaAll GEmx
0sUqVhj+luq1vrUplJYCdjrcSXca15JJsdqlGK9KhuSRpdwep6+c/P4lXb6y kcfp
rdEm6yywh0rW7TixkRrutIDd21dC6M1Z2q8G7+XwuRAbdVdUqQ5GV78SB1sS ehuV
a6tfwb1msKq2jQsTxmwF21O5DbUrXF/ErnvWcTKj55GJSV1nALY8GGBM004/ 7ahM
wxJH9S48GCMFRu4JyZfOA1UVZ9jqYYQRP2c8cLYUghoAyyGeDcSdQNg8EKVh 9w0K
zIOC5q1tTKY8a9QhKGDwYeEejqigUBjF/SSCqFVkED9wxCpYTF6X53Ka0imE 408c
/z27OaiRHnkk3EjeKjNKKncpN3ZTYaSFd1qgUCHC0DmpYq2drcfV45qR5DZK Zhbt
nLAzjT2WWnlNvRfursPKEKDffZc0tpVLdgigXUoBSUhxlOuQQZL20OKn6RrF s6ks
vbskVuRVvhmziYkEqU08iwa/ZqaF+zG1jMEkn5QERV5wsRt1WGa7Si1sY+Pa iNGk
Ez6JfA9fvPkNS1R2LvSFJHnqkk27tEKz9Q0FTwasC/EGMsHNoaZVoSEacrJl rgYO
614Qe9tzXta+4IQMMlTTGftgCLK4WIteCiGb8VhlxPa5ZYhBLOLKfOaXq/RK ZiuZ
IW1KVR0bGQ9eTfTccK5Cqv+gsElceCkLEbclmLQYZoI81Mm8EhiaGXVwNyB5 n1L6
JZPLGS0+6gJLbSbCxuZQS4YT+5ocIcJGbOVOJw/6D4D688j/aNByQfrMmC45 pl1g
Ugr72haDhJSdT/qRJP6BpCkl6RsyOA9BEUkFAIBxpAe9MpZr0WK1IpUKTOrS UYBE
iZ6eVD04uoiRQrmU0jYDQMngKBWw6Ji1kpkco5xOa6cTiTEXaArnySgpsfMO Dyp0
TZH8Mnd7JEjHTHQvQVYsMCJMUkXM5zdrXktevxrVKs8HSraxrVCFMoDOKEaQ VAQK
A4CKGpNCIikpUMqD8TyfiZZFTNJgMHO+SZ3o3rgkr5n/Qg9KuUufamahAnqx eDe5
WGgwlDoLmtFzWDEiswCKUrMMLzUzpdaxINjHy8VUaUmCGKfgSUek2OyL8mwo ruqi
Q6tAp2RENM8d29ebcXWEhKwB1/26uC0oBvAtJ9Ud8xTI1SOK8Ktb5WligMLR XbnL
jB49zp0a0y2gidQ3L6UV4BRmzlTG6iUqkyJU+9Q/IopReeea6AK5IjOnKm1z Y72W
wM7lmosZ1qItlcoRwwTZTobFVSeka7qQ1hh4GWaiQKpovf6qk+GM67EGY8i8 2Jib
7XhpabBRyANu2y3ceku1UJQM+UwJXBOKBHfGQNBwyGBQayVyfrmZyXJf1Vzo iZUM
/3A4knGdy1p24k6VbdwMF4/iEu4wBLT/Mk4yM8gro6UTZrq6asx8Jtvx0pYm 7nVK
FQdyhkNAolGJg+FKxrcj1ODJtUzETSVJKhmN9VbBPqJVXg7yR/baFL4d7Ko7 K9te
JtopMfal8IFtY6Jf3XeQFl6th7N6q68ii2ftQgxAHzZhhq70L8eVseiMxdVy 9rac
1WnnQRJJx8og8zR9K45Zh6wTIWc1rM8k8owTLN2QRpA07k1pjOdoqv51uMgV jm4H
vczlrEI0q6WFMjvPXGX3xbHCdjPqhzdmri1W+MrsYvM+4yMXvrBQS6hxWMZu 9q2a
sGyCwREjwWY2q90l+VfTcv+InsgAi0L9sFJySXQQJ52zrlhaSZjuyy/5aSeb UVrT
QON0IjOd6YOZmtGVLjW+Tr2uVEts1Vj59Cay0+heRiuAuwYaikwRaX/Kh9VA Y4jD
AkmZZLPlZ2a9bKxLDT7cXOSNQOHSdYAt6ZfNOtFrdLCuUP1RbPVZVM5Ejbmh rRdu
E+XPvVZ1vBCtVsyketfqfhy64e3kbeO71VLCFE8M7Exi/7lgFyn4m6a6aVtl esBy
jS2G9b1GYBkGM1sZeB1/prFpWZxXLKHYoRv96jwTy0+7mvh4+pJoTmc6YyZn t74P
5m2JCZU4IC8Kw2ftaq0mvNi7czkfF43UJEaL4E6ud23/fQe+o8Ob6EleugKb jucL
k9rHQyfOv6tdbF4LliHKns/BLLPpsuDp5Vw1uMIrksKfTfutPY035NbVcvTN S5Aa
l2BYU85oNym67vq291By/Wx3r5PZ0/Izyd7tlZ/OLPB/RrVx+J7osRPY5HSe TbAe
rNK1Vv7MFl7z5iHipCnGmGc6njOKB4Mi15B+9ANjvedtuvoJ3+8BoZfxQWXz S3RJ
+JYwY+yasv72OCOrrZZPSu5vv/kuEn8omtr9hB/6/Moz5ru8R345Mev3+WGr nFf1
q3vRi+LK88zgHVQxEF2/+eZb/YZmNn1v6nf+sid//sri8/lp/Po+Bt+mj/u+ aePs
/xp7pns9g3wEOID0k38IWIAKiFptRGc+JFbIAlApdn/pUnoJWGQXSC4wh1Xa wjwC
+Bsa2CugcYEhNknfdWPC9xYmyH+iVyf+p3p0BhEiWIH+Z4EUMYMoJh0BmCEF coD+
ooE8GBJBiGLH54IJQ4T2kYP+o4PgJ2E7aFOMwR04kYRICDc+iIE6loMXaIOt 10nz
lxS154VOiE8LeGVL6C/OR4MJ8yjh54Y3yIRreEv/AxgiKISfh4fpsinVp4Vg 6Hy6
J4d+KIhn+IfDh4OHeIeCuIalh4ZbCHsYyIQyKH2TKImVGH0gNYaHRS17CIlp 2IeZ
OIBXRVSDOH+BuC089oY/WP+InSh+hFh9n0cosSiL/USLg1KL/KRPg5KLuViL +tSL
tziLvCiM/SSLumiLxUiMxBiMxoiLwriMuxiMv3iMu6iMw/iMvQiN1uiM21iN wMiN
yMiMsSiN1xiOvkiO1FiOzYiN65iOzpiM4NiO7HiO6miMujiO0kiP5oiLzYiO 0eiP
/IiPx3iP02iO2liQ47iM+yiOxQiPBTmN3ZiQ5+iOzziRD2mPF9mPEKmQ/4iO 76iM
1ViRAAmOA3mQAqmP1viOFsmPDrmRHBmRITmPL5mREQmM3kiSN0mTMLmQBImT 21iP
4eiRJpmPNXmRCpmPJ4mNDCmU2kiUGJmSLRmTK/mNJ+n/lCqZjfIIlVOZlViZ jRMJ
lUm5kCLplVXZkQ1plTMJlghZkTr5kSWplS+5kQh5lN7Yj1b5lDwZk/AYlxTJ lP44
lgPZlneJli85PYVpmIeJmImpmIvJmI3pmI8JmZEpmZNJmZVpmZeJmZmpmZvJ mZ3p
mZ8JmqEpmqNJmqVpmqeJmqmpmqvJmq3pmq8Jm7Epm7NJm7Vpm7fZmGBUSEQk ht9G
NWTUTryGR4MFZczBeWtidlPWEWPRf2einBLBnL+XYM+ZP9JJNtQZnWgmQEix nOvH
eQ8mRtlpHNfJndDpnfACnsAintL5m+F5ns5Zntejfj+XF0mkKb4jZbJhYtMp XIqW
/0fpdlTZJzBkkX1NBz+OYUXqaTndyVnbSWQEGnxSxZ6FhmGVVUEnFCyrQX14 xUPe
1WVrFUGYV6DBGaFnViOWUWdmZUcGoxHOtD46lJ3kFxg4JG3meZ+cgUc0ATjL 0yx6
hxQQ+iZglJ0v2qMj9V0QOopASnVwoRHPZVUapn04dG5UN2V5ll1T2kDilm// onRU
+qMbtlRbml1tZqJmpH7nBZw4ZKMyqiVDqhL9Up0n6GSbFVroo20nRkhUg0ca c3lP
JWKgsRwzWqHdeT6YF3zwF6Vcqjol9HCvwRsn8yO6g1S1kqNMMVGb8Us4ZXdP Fhmo
OILleS3DJnULuHxTxl6lyv9xdOhZQaKqY8YZreqA4cRSryKr4TI/tYqqrNqp seqG
ufqqwOmKS4iGf2VDIaWoehYkL2WrkMFXK+KADjVPDSg/mbes2+eF06qfPjJu T+FX
ALMkOMEsnKJ1ZWgs4GKsZoWtMqel8+OizHYVVDiE5DqrHEdRqhgunrpszwqu 1Tqv
YsZs7XoqqFV4rIWtarF8ZViwFaZilqJwUaGqLBqBfxexi9eAP/esFHuxFqt9 GLux
GktWHfoZluavmDgnDnuDb4OJbTQsCpZ46rMwX2UmD8uvzNoSpnewFQsdHrWH IJcy
G7RAKtQyqjpZ6FJfUvOymbV705c5W1F7mFWH7kqt8GT/q22lquH6h1KLT1Qb Rbyn
tf0qhClLfF/LhjI7r6HDtXDIr2IbgtC6q2s7GmqrWWcbsP3qiVs7s7fXtSpF svKE
tXtLhnbrr+girNVitYAbtnAIfRaEtU+LGVobVjcbrzoLuGC4t417qm3rt3M4 tnsx
uPZqiAcLVJm3uJB7iAFrPqRrtyeEup2LuIZrSKJLt5p4uP4STogSuwMIrzZ0 uotl
tzmou55TMHF7iL97r7zLUr6rhMDLU5W7rHQEub4nt7hbhrDqupj1QLdbt9EU tVDb
JqsBur37s0+oVBkEtvJagk87t857vOH3iWTrVvTag1Lyk/NLv/Vrv/eLkfir v/vL
/7/967//C8ABLMADTMAFbMAHjMAJ/JMgqcAN7MAPDMEOzMBdGcESkhK018AT XMEb
zMEd7MEfrMEfvMAiXI8hTL8mPL8oPML+q8Il/L8tXI4EjMIwTMIsXMM3jMM5 rMP9
+6MvA3qFMhO5xx24ScRFbMRHjMRJrMRLzMRIbMEEMcRNLMVTTMVVbMVXjMVZ rMVb
zMWJaQBRwraMxB0GUCEvsQnXAXpoXK9otJtCt64gdq5QBDoZtcZtIWEN9Cx2 nHl4
zBd6jE98jC1+7Fls4hCCDFGEDGFz+0RF9TWKLKlwZMiQgch5lbKPnMeOTC+B 9XQi
UVML98jMA6nqdD865aHwZP9gp1Uj/TNiDMaktzSBgSxMFsN2B0eGqjtFhtWi 2mtv
AIQmLfPFPbArTsJkyMezYTZ9hGYvmNM7N8XI5iF/omGpdJoYIvscwWvHdWc9 B5al
QYNj5vRW0sytrcEVVeEQNQW7m2g0LaOmlMRSKvFAHTOiyqxYvyl82SKKnMqp 9+x+
+bxi+Ox++txb0LJSe6R1/QK9bNrKHMdbwre479RF35WuKeeCpMt2cGqwclyv 6LRm
6DlJODe14xpwT/fKxmJHvjfLO/FGEgLMyKJP2KBPRxF6vRljQLJZArrOWDQb 17sl
FGMjPG1/bkYc3RrUDebT01FMPy3UZJHURe2gS33URg3/1EpN1E/d1FMd1Uwd fE59
1enyRob6ZWW4oT6KQhk9GHO3qrbafyaVLgEkgCzIG93aY/ahToCIL2e1L+aK MI91
ouT7E3kBE07aUniNHiqtE7+mh6bKzEbld7bEJneFUZfThjCEqvczNddkX0py qX9h
P0vKVpT6GoaFtEFqgGVUqz1xXpRnRvg5SdA1vRYiRweIQ5tTcS7GhrM9x/QT zciK
2+Fmrbstak7bKrnd2+4i3MD9dr/NhhkUQpqnUrbkoOiC14r1N6sIgoTl3Hfq rQf1
T5GNY/uD1yQ9Egfafln9Qq6K1cUD1XcV0BSBHnstFsHLqMO1CSsdUP7xH9kT xd2R
/zTi44Oht1HUQs7UnK2ixmX2JWrtvcdzNsyICkULvswKzlMMXmdb5mQNHuEP buEU
DnUZPmMOXqRtqOEeXuET3uEX/uG2ymS7rK1T286p3RdBVc9zJciOtS6CnLDV HBF6
koLRErNox1Vc5LQFJhnn9MgC3RucwmKOCmeiwyyEXRAyHeQ8SxIAm4ZLqt7H 8kOA
M671x84ItNo8KDENjT9pG+OqlmO8V6wDu1z/ZkH35cZ3d7fZei4Jiq7ZTRiP uztH
usi2x9kzts0FHuMD2s9FDmd/7ueBvueJ3HjIwnBFoUJod1gxqBOPNkQy57Cm UqUL
21n/idMek6ZW4bKKszQFsv9l2MdhWDY/iasYMoQiLSPHXj4nKTFBfhZyWTHM Qg43
BkDfAhEjLl0ocPAA/YQNsHBrBzGF4YUNCUEK4AAO/MDszw7tzC6BPvWhRtVj hqoc
P/ZgaEq4BTgs3A4z3w6/4G5B4n5g5L7W3q7uA2jurj3u737u8O7u8V4RQ6qi t+eh
YpGK4LUQHDSnwILQgYXkwiTUCrskrc5Bz0XZwqMa1JdItILN4acaLoERz8Xw sELP
dluwlfHLUDw3b/cxXHetcgVEry3SvHI9BEE53V7naiVRPRbPifx1aagHCWps LDXS
IVYYJCfUpScQtE3PiB3fZrZ2L/alVWefO5XJ0dk/qWP/nOxdJ8NzL3K0ElLv OS70
Y0MN9cZi9eGC9Sqv9VSP8VK99VUf9vlq9mQv9lmv1O3iLQYKF/MSP68B2Rt+ hazd
gIHKoadeekWxXl0lou6VNATuETpeVONaF9Xt3g/WT6r0xFtfFzJ9SFAF36B4 WjQH
1duh6yJRSpGkIF1CxrZB6VP4EODQHQDwHfwwPeCA85uBQUOGIVS1iqEyZ1NP yyg+
c8zdRCBo+1y6Q3PF+y0O/Lf/+01F/Ay4+8ev+73/WMWf/L6P/Myf+8GP+3PV tloh
+10DbjHBcD1u3GM+8sUHv0fO94J2MJmq2xEBHza4/aBO0HUfvGHq6iiq88fJ Q4zF
/xBOPupumFSAdSZaAhBxeAzk8YCHKYJkCg40yINMQ4UJGzKkWHBcxIYIIyas 6PCg
R44ICU4kqJGgQJEZPT4kOFDkwI0gD0Y0RbOjzJYMx5Fc+DEnSZsYb7pU+DIn zJ8d
J/LMaZSHwJ5Hx0V9CpKpy5JNW0LcqvWoQ6gTbSrF2jLmUZVmv44sy3FtT6dn k/p0
uzZt3a93kb7VixNt271/qQaei7Qm1rMKUx1anOpYqlQYFjPG0BWhAWwzW4pE aNCA
AVh7z4qMSXKpV4NkSHM+GtE14rxrY0aEhXnzQKimbKt16zrOxtS3F46Navoi 5tqw
sNW2Wlg53dNn4EynfianXP+CAKzzqGz26keeqgfzMLCpR07M2LClV78e9MmB u8ln
JghOPYD22Pjlxwau5dSeJurMo5Tokg1Ap3wSD7CjSFMLQAUfzAonhSB0kCML Catw
wtl4yJBCDzmUsKwOPyxRRAxRRMrEESNMkcQWL1xRRY9YfNHFGWG8UcYaadSq QxVN
YrC1nQiECULsjLFMuLeU9Co2jx6oriwBK/ruK/m+cvIfgv6ZDjeGgHOSsMLe wssn
Idni7SvsVlqLNTJ+YzOwBT87z7PMrkoFgFTYBNCgAhsClMmFXmpTzaH8Kg0x o4oS
LKQ1u3ptL54ENbKtKwODUyM5f2Tzt6mIOxNRQYssyNH/m8gw1a2XCsRtUrkU Cu6j
Qx99KzEzKzLqw8GEGs6otHxNDVgdLV1QV0opOhauZH/tykVjiYVWWWkvjPZZ a6nF
9rqnUF2w0lx/SgUbDPjDBgXuyD2Ky+fUFIsHY2qTz9W3uBStt3ARNVBGqIY8 TEGR
DOBBuVgJmvfVfG0VbNKjPpvPPfqAc2u3ZSOCA4X2UDgjtJsMOuOMBz7GAIAH HqiM
NQ6dujI4O/dijz31jBGYq4Hpe8A2haYAYGd+ANgPP/78gynTXJfVyNIJkaZK JaXp
bZqsqJzuSOqooa6yuKmtTtrdra3sOsCvn8a66rGvPo3ss83mmsq1fUo77KzL hhvt
/7UPM7SpRf1K+CbqeiCDOjgI48mUXXoAHHBSy4JjzIECVyhwbvGN9Kh2RZPi 8MP/
xuklzGftydeIzjC8bzjeJdSwlhZP6yXPU6L3qwH/Rbml8vyOLzMEyQOAh0Pm OYQH
AAwwbW+G23S1wKkuNOqwjGpl6q4HVr10wFxfSj7cq72OSvo3h0rz7G01s1vv UU83
cHKZnDqawZjGLytB8NWnclXxYlV6tFyBGrJMUaHcK0H+7e9Z/8sfbwA4QJAc UF/9
sxUDEQgTqGDEVIO6VCq0MK788CAzkenOQ4qkG/qEiEwDA00ICTIVpIFGhclx mGYM
pJDPMEdeAiPQWa4iq8jpy/9gJPzMe+CikHbJhYU8FFj9zqeo9/0PiCuMoQ/b YpTK
oY4HIMvgGYo4oYHsTIta5AEkGDaUjVzkfBAijwHOMxL2KCc/xuhTWypnG5HY BwAc
4IDPfKYfoAntJVvc2edctDv01eWLAwmVhgborUPiKCqIRBQjO+LIRSryXTya pOAg
hZNKYvKSebsUJyGZSU9KcpOJpOQoGylKKYaylKk0E+vM1BDqSIEMhttOcOi1 EcgF
LpcGKSSI4PAxkAFTSkhEypewAjkeOI5DPWSmvDhGr8tkZnbIfAsNEyQFgijp l1Xx
lEiksx2CfDOHyCrImL4kF17uT2K1SljLDmIbSwFgHj3/mwcAdnAJQN4NeHzk IiDp
cqFlkY8kAFhNuIQkFh6N6juOEk/0nsctjQD0SN9x1bdupS8FjidfXOmLjGYV lKxE
pF/aewtCJjgXYykIVFFyWw4DypYDRtQrL3VIggraGpvCBIAvvel1clpTNv2U pjzV
aVAbVFScHhWoSZ3pTs/nVPC4xILj0oJ6NDiQVEjhZJQL4bAG4sweWnVgaooJ C2dY
GxNOCCEzXE9y0jqhFfJwTA+wSUMAlBwSnlWFctnNTVWImRW+lVY8DI0KYTcY wLb1
M4olkylullajYLM9EZAOMvUJTJEBsjIcg82TkHat2iEmPTL7a21+1zBsBMyE 9uEH
/wf4EQw6BgNo/OCH0Frizyw2p1DAWwgFFzS+1WkPgBnFYivzRVwBPsm4Bj1u c5n7
3Oo5N7rQXe50rVtd7JbUueGZCArNl8tk8mAXv2TcRlDmOF02jpxtKV1HpAOb aYYX
JsiE3L8+AgvMhky/bawRDmt2E1PA4XLTsU5lA7cJknTqbwImcHgZuhbRyYo6 sAQn
9UASk8peLryuvAjRTghTpNwCkAYRMUsPE9rb1YUf81jCPObhCH6oCYCAjMju wGWg
1jkkehViCW8R+Lp9HdW8602UbPyo4yOC6XyoIuZflncvZvW4VUXxL9KeDDsc xgk1
q5Kff1vDtiLrb6Mi5FZfEv+sNyDPiimzG06i2KxmpRLLV8KRs5sBA2ev1Hk8 b9Yt
nSVlZxz3GYtxiZwrOTLV9mgQXWfAQA8wgB04CpGJzCFhZsZymBn+tYTa20hg /5rW
FIa1iaFxksq+utjMwGITLDSsU55zFWe6B627bUoTZb0JAwySIsoBbAxlTR/7 pvgq
H6uiAcBJQLpoZyC2GBhnVeKrEhOkxHw1I3oCu8Y+qXk3j11Iz+4TDPXEdj/q sa14
cKuQ3R0Qt0U2k65lGhjf6pPWx5JYT+uNVJnEuy76hjfA9u3vftsbxEvNN8AL LnCK
IHze8ub3wfF9b4JDnN4Dn3jCH05xhht8UdY71Z85B6//9CKkwSFVC3jBi7+o bBPD
1EwUeAciupEnxYyik46UzrCLQ6z6lDhLFUHSaww4cJYHeoiJQBaU3idxzjoE /pgx
2/thNG0Fcp3u90CeAQ/aZr1nBiiQgwwip2hHO0Hu5PaCIAOAJUgBAHDAJ2Ms +ZF0
LwS3nvMeX24L4PKNcMnRVRVdGXQXNnPNhiT6aUI6pSylhouddCI08y5qlwci VUgJ
2ohI29fZBQXUdAcEV+UfuRajP8vvXwm9u9pUeiudXpMdJ/3qR38U1AdI9Xl7 fU5i
L6jZiz73ps/Lqhyav3EdQj1lyIweesBoR5cEh1G8TTObmB4F9hCss7YVC92z acdy
/yteKlyOpoV+nbCGUF7db2FFsiQo0qL103OKz/inT8MnIUfWmFl1ltocRLAF LmOV
deEL14IuWNCC7ysuHgg7f3IVFCMINVoP/jCG0xKtEMoScOAZDqgqbIitPOoI G/sg
f9oiudunDqSIDuwjG0ui8SAJzjMfvPOfJKOKFCRAjII8GFxBW3lBAUJBGbxB FXTB
HGxBHGRBG/TBHfzBGuzBIEwTszC5nIi5ocgloFMv6KiLbXKh92KywAgcA2OI +hoK
WCCdwoGDHkiFM+AvNxKssUA6joGer0C6wSAJNhyJxUGmOSu5KQLDwLmiIyKD q+OH
HaCt4KGZXBGxErsxd5qPnP+QJxfDDwCwBEtYhHV7ACepsQ/bHS7KrT4CwRHD xJ7o
p+y4xGBBQvsaHgcpvR7TCqUhHrvTu9cZnPRJCENDsggZKbEYKVNrQSaZvIjw LqTo
i+JSiNwgjoQSQu+QnkYxQSVDwoGbwSXZwWRMLotjxmdUxma0xWh0RlqTxmqk xmu0
RgrqxYpAlQewoAd8OZGBAwwwBpKYCnj6u9LyNRMKtrzCNVXzNfFJivpDDu7b DCaL
NekrrYSjjU2DvxKKq0lhvpHgR7eSCKwwCFVTP7AyrP7zEF5rK1zjvswQHtQi uSnC
rKbDr7ZRQFgISZEUSR4QwIJLCkFcN2s7o4h4mQbsE6P/iAOK6SsesA/9oCNs UAVx
ww9wOAuVBKRMBMoQ9LEsMgiSySKVJBOgkKilvJemvDCqyLxdNAumpEqntEqo fMrX
0MqpdMWr9MqsxMqtFMuuRKqxBMuzNMuyXKq0ZMu1lEqWQsu3rEq5jEu1jEua GDyg
UsKjKB1WhEKkk0O3MJUplLov6wxtIgwvIZO+M4DJgAzITAVYCEMfEgo4kqKE iMOi
aZbAsR062Quk24jFhAMu6QxVIQyRk6+gA4w5e4asCx4k0qeGiDYdQjEysL/F kCc4
WERL4JM2EokPyg62uETgQQjiDMrcEk6i3Bl0+8BDATKhMJHgjLzTrM67/D04 YRAb
/zyLkeINivoK32uqx4uzZoESK1wnskBGvau6b6SVRglPungNZOwUZJSLyWsy jaxP
IeusUblPXPGUwUIf/xynztJPADXQ2wApAU0g/DyJIcuJcTkDW4hMDhIdZvuJ eHmr
WRk19iAVU3lI6ys0BfQ1ZrK02Pg0s3o+7vwrEoIJzNg++HuJywzQT7O1togJ FH0+
ZxK9XkvR5KC0slAOALoYPUCXKepC9vOJAcyJMDyiNCkxTslL8jCPrIAFY7hS A7hS
LXXAdbpMnqtJPAoGH6Cj1pIt/Ygx1qEx4XwA3AJKWrGxdGtO3iqKOJWxzTks FZSf
xNsfPVWuJOvT0xkuP9VOPP+dQUAlQEHN00F9qkLl00U9VELd0z99VEpV1DVU L2Vq
nOPzRtVMJmPQHHJyQ6Z4L/jICQPbDuqQL/PpQjs0nNE5hDP4HVcLIdYpklSd jlwj
Cjm5MgP4klSNqlZJpi/hDFYVVmoSEP8KORoSG594hmMAgGdiFiuTNgCIth2j i5aJ
JkzhB0e4BEY0hBjTjIc6tzbNrYYoV6SsxDp101DVF13MFo3SR32xlGqpFeq5 1mo0
Lw+SGDCrCNQzCdOhstjAoXqNPEzpz+4pIKxxlG7UIcV7ux6MqgAdLBx8NpKr WP4E
2NuwWNjA2InV2KzgWIrd2Iy1S4lNE5BdyJL1spNtRZb/pR6UNVk9gwRs+JiQ 4Ujp
6I7fK4i+Go3b1KtI4hYdtVEjIw/3y8cx+qr6mz8mkiaz8LTlcIlUc6KSwD/4 sDW2
yhWEHFqbcRkQ1bSeNZiu/YiPMVKNgQNjYxbRg4XGYIxDeNs+CUMIwVeVSEkz KUSe
hQzGoFDI4J5tk0BswI/XoqM6ci1yc4t8Uk5+Ss7kRFd0pQgyqgrsmIjYQ5TK 7YjL
jYrMpVyBgo/J9Vz/2VzQfRTRBZPPNd3Q7VzUJV3VldzUPV3XZV3YLd3YLQza pV1D
ay84AFVhPQOPKgtZCi+XS9Jkso7KG6YjgyWfSx1VdRWIcMy9bQzI6FUyFNvy XN6v
/8qoNLlNj2C5oj0L+PPelkumOcwfEFjScDHAOSlE+TjXS+iZ3uSH3nSpNRVO kWDX
dNUio7w7ouQt4yTOveiXU9SRpChfjeAeh+UN7OAkxEsyW0KzNfnOI7qSsRg8 iDvF
3IgbMTsoagSgYPma4yGkq+CoEFk8S+mlV4Jc8kGpEsYeFTbhF3bhhUDhVEwn GJ7h
FRa9FlZYG5bhHs4hqLAgRsMAIi5iIu6BCw0M+wuoxRo/EySJdly/sYEKfqRH sOmJ
HNW0RFMT5xMYzgorQ7M/lhm/wFJbn7A1rhUrfeTQTFtAvsIGuQicMoiAMjhS wRSO
03yLQ2jSNhsP9eUastNIHf9akDdaLf0I3NcKBti6o/4o1RL8QN46DeSM5Mbd xOsI
2LAAi97IZC0TDU7uF99QFlCGIFHe5FL25FO+sE825eEYZU1uZVZODVfuZFmO 5VdW
5VQOZVhG5V3G5V7W5Vrm5WD25WEG5ls25k4m5mMm5V/Gt2TiEl0Cuiks5iXE VPWy
qKhLJv0KppC5Y6NQpqkTOcjxHOLowtGxQzDkrwcQiVcjpDUJHKFbPJcIDWoC koaV
CXpGR6IwEzb0PCGJE3+WCYCGFIWA0oLeHQ/KiNDCk0UygN1JhUX4HWhFjTdN IH9i
09wyt8F4ZDi15Kw4QKTwvEvBm30mOQVynxBJC6b5oPb/mY3uBLJUFGjWVKQi G59E
/cv/AJIFZpXwUYvAa7KfjtfsCVY7NZ2IlNa6gEemSWq9tDB9nQunVj6oDtqj XmpN
aWqqVmqVveqpNmqtltj0wersqZByYbQVSgU9KANISD7hwAzsmL6pFSzUeb98 FJWW
JGMnNiTCUqwSUuOzYDWwyiuxeo11pBwSDauT9IitRSurIur2YyYmcphknokZ dYiy
DSe0rbDrvK3tqIzFUK5Ops0HgNKGoVLQM6qWKGSsAIdxw6OeoS0LONy9WLej 7F+h
VNxO3F+kNOOXSgzK86kvw8rJ6W3gJlDiFu4zOW6wHO7fRm7GbO7lTm7odubn Du7o
/65u455ugpNu66ZuRdHuoTJWXSpM3y456lgwY8IL18AcxAkoi8He1ClvtXBM voWM
0PA82/iTx7FDBfQ5/u44WPpv8pCT6TCcagxwA4+PK+4WYTVw9NZUMCQWCV/G Aw80
AGJfOA4VQ9mTVBApdvOx+w2Oo3xcH3PcTmTco+TOJ15U7NmJgjmyvWlU7Phn k7gy
LBIVmHZPuwvvL+OK2Rk9G49Kn7buQflgtnjQgR4huqJh9fRwHnzxTBZkt4hy /pxy
vIPyKw9uKp9YK39yLc/yyNnyJlcyHMRyLx+npRBiDGChVIgA7jDHiPsvBGzH uIag
y4MXViut1GKqvMJH6mOUEf91yA61OIatP1azqkQr5xA6PN3gvsCKCxnF60EP ExT2
0X6sHJKoHPGYwkVD0hQuCMwaGeuojN9hCkgCkrLA26Alrr4qbJu8D3ORbRHk o0Os
RN6qRKMkwU6kRA9xHmfkxZ6GkowCdjtNxWH/dWSnRmInMsE4dmVPdmeP9k+X dmOf
dmuvdmyXQWrX9mvn9lMN9mbvdlNoZ3dGHDITbwiBEHP/D3OPXBEy912RinZP nV+F
uv+QCnzPCXeP3E6rNp7Nk0X9z5Ogbf59ZE08V04EQUq2dbJqt44B7at4xVQ6 PB1e
HpG2rztPJIntrnh9MPPEdtlhsu7UFIzakOhJYHrVmwf/DWvULBSBZbeUECMu 3zIF
xVN8Vc+kkXmcn5+aV6qbz+GY73mar/Khn3nh+Pnn1AmhP3qd1xvhM2t56RO1 Zmuq
2LZerxlzKSNsGBx+jfUtPmqCyKAMgseWEPvGXrz2cEcafKeI6SyzV+NQDPtE +/q4
z4m0tz6IIST/sr/iBSZctY5avC1+2h1IyCQouWeccCcklBOvKipIbBduqw9w mHzW
pnzLn3yfiNwr03zhcHeg2l8izHzlAs7Rd2dCIf3TN/3iQv3VV33AYP3Xd/0g O/fZ
5/wJsf2ywH3RT33a3/zS7/3O/33dh/3aF37j5/3hl33fR/7jb33gv/3mj/3n z/2M
/9RhklIa7Nea69f+Bc9+udn+7+9+7g8Y0zZEg9UfzvDxBkaumJzxBlYqLmtP C8Ph
KCS0pOCViGe9MglUFh5yvPgTgOBBhgePBwMJmiL4AKHChgwLEnR4MKJDigQP LoyY
MOJEgRYzQuSYEKRHixQ3ZgS58aPJliZXmiRpESZLlzQpyjzpMmTLmxFzatwJ 9GHL
oTx8VnwpdCdSnkpdGm06dCUGSBiuYrVl1RYGkOMywsKGM6JYkwZgGTAw1uZS tlCZ
tu3pEi22sjsVGhDbVCrct24jps1blwfdhuMihv1J8AwcWI7Rwil45gGcxpuI mjqj
WTMGAGd4YPCIsqJRMiOPlv80sKnHzJIxY+YFXPbgwDj8Fg5M6VF37oa9If7G HVL4
wpsASvIevtu38uDLgTePnnw6c+rQrROvrv369uzcv3sP/1y88/LSu49Pbx67 +vPg
27Nfj17+e/rk3d+Pjx/+/P30Y9dWUoC08RCHgAUeaCCBCl6E4IIJQvighA0y 6FGF
A1IYYYYTWhhSWqyZQkZsJR0GEUwJ+dSRaw4JR1SDQamoE08hOiUXRRP9lhRq Oz6Q
0EQg5QSSiiv9uJZuIfl0k0xHFnUXR3/tSOOSillERkpfYebUkFXuKKNRLAW5 lIHK
1ajYmEcOtdCZLL61JpmvuckkS3HqaCabZTZEJ54Q6Zn/JoJk+tlnm3cGSuhd Jco0
4pxs1jXYooAOCmmTgk5qqGxiZaSnQIryaSmcnj6KJkGNIpYWLFTywKmdkgLp kmcF
hWbSRCe+CNeHqDq5EEgApqrXQ7PWuhGwrgkbFLHB1gqAssf9auywzzobbbPT 7ggt
tcVei+yx21pbrbTeZsvtt9iCWy6552rbLbrihqtuuuO+2y687Jobb730rusu vvbm
Oy+0YfUrr8D36luwvwcPHDBBqrG2sK8KxRhjTjeR+1CL4BYHnZNPMrdiazjh WKtL
HXUUR0enVbuRjzAaK6uxRw7LcZcwmSbRjiaL7PFTNzJU811RCYSzQ7SWOVCx K9to
/7TRAtH8Im0m+9j0gUHX7LPTTkPNNM9Tk5G11Vxf5LXUBFId9dZkd1312Fir fTbb
ZnOMtthuCzh33G9rfXfdbdtcUlh2X7033IE/zTfhYRsOdtl5H77412gzlNjj hAOu
eNqDWw54RmT/nTjkHhe5dZcuXoTtaDXduulZprK+emCBPTBOYgTNvrHtt+Oe u+67
8967778DH7zwwxNfvPHHI5+88ssz37zzz6fea8s+ZoTtQTQefdT1DRJpccsv qny9
0juPPuP2s26PkPgPYS8z0jL3FCPHNIK7pfbqR7n+/fO737NGZFcJZypjSshc 1hSX
8ax930MN+kiHwAGWj0tRcv/g1iB4wPRBcGTsoyD/JrgTDHIQfBv84AgvWMK7 gDCC
FRyhBj1oQhei8IQkhOEMLRhDGrbQhjVkYUtS+EId5pCHDxSiBHWoQBqNY2nl 81kD
P/ak96VqNWRpFBWraEWHIWREukFZxraoHC6ixotibAgYy/jFM47RRGgk4xrV mMYu
svGNYYwjHd1YRzjaMY943OMc9dhHPppRjoG84x8LOUg/HhKQbVSkIBdpSEcm 8pGN
nCQhI2lJSGKSkojMZCU5uUlNMrKTGWEYXjDlkhKd8TV9Ed6XMnaRw1TPIIf5 2u38
ZKO7jGYheqBJ9UpyQCcO75delBEDc8dLBo7EZxNDnBv/lbgxkggzlc9ko+2G OU01
VpOa13TlNlXYJGx285dU4mautFlOcJ6TnD8z5zrR2U51tgWefpHnN+mpSnvW BJ9G
8uY9+ZlPf+5TnPOUIPlw5T0eYClVBmgYTRqalIEoSlXPmyhFK2rRi2I0oxrd KEc7
6tGPdhQtPTiIokRlFDmJapyFhBTKQHWnmrBUUm9iU6vsOBSMqJJVeXwTk3qK qzTW
k01ghJScuvmlf0LEp6gqaj9f2tSZIhWq+3RqVJmqUqpOVapX1epLrdrVOm3V qzwF
61f3NFazKvWkpCHrWdXKE7GmNZ5bfSpc14pWu7q1pnm9qlXHmFKSMJUk0fMf UUI2
/5K8jPJ1il0sYxvr2MdCNrKSnSxlK2vZy2I2s5rdLGc769nPgja0oh0taUtr 2tOi
NrWYhQOIFKra18I2trKdLW1ra9vb4ja3ut0tb3vr298Ct7FSHCgFtSgYKyI3 ucpd
LnOb69znQje60p0udatr3etiN7va3S53u+vd74I3vOIdL3nLq93oHde86rUu Btbr
3uq2973yha4t5mvf++I3v/rdL3/769//Ajh13hGd1sCCDZICOMEKXjCDG+zg B0M4
whL2LikLMqLuPeV0vlwn/QhazJH5hDfkKios2is/goxpWgdJMUsSSuD0yUSg UumI
TETU3ojs0qBHTentMFxAnf+eTmJ3MsCN9Za+gpx4w1YjW8WcyWSROVmEK4ry hqfc
pSdb2cfUEo3emnxlKZPsy1UOs5bLxeXAebnMae4ylMWcPjKzOctxhjOa26xm O885
gXl+4p651+czT23NdZbzoCN2UIHeKIPpoQgsWGsTJTZlE75K74QrbelLYzrT mt40
p/8bPUkziX5JrmcSD9jLP31rLR3WGQI9dOPTVWypogEgyRy6xC6pBH+33h+v KwKL
+hIkiUUhEK1+LGU3FXAlyobfB2MHv1lqxADAPvWu8bcSaitGSTyE56lhwu1t R7Db
Y9G2B9mJJBd9u9zuPPfo0q1od6M73OAm97vlrW54t9v/3vWmd7z5nW9/e1vf /Vbl
vgk+8JoUHOEHV/XCqVTvnFkn1lXmUkJSd2SZQXMgtaO0dS0AAAt0OuQiHznJ S27y
k1N4uA/glP0OBLfN6exkMTfoSFx8y4qYApqMBnabcW67wR2zRtSWJVZ7c0Gh oYbI
Zell2ogJQKLhWmRDBZrDh5boQ+OlyGuxepPIgEqc/tPrHAsTcL5eJ96YvUxo H3s/
xf4isuMm7XAXiNzbXvew332fbkeO3dmOd7/rPe8q3TvYAw/4wQueTYQ/u28S 3xzH
r/3tfZf83ylveMsj/vCKd7yGT5ybhGaKImNyZhQb5i1b9DApEd0uAAQAAJTD Pvay
/5897Wsf4IXK5n65rOPWg87NU1vJRUoc0oljtxBYOpGkkLDL6FKco3zv6aZ9 yymN
g5bTJPmtyPLT9rWJWaPzOUl/MVNR9bVUJWnPxsPe33oAI4JKsnbN/TBtf7Dn f6MU
v39P8a8/++8v//5zBP7ZXwD+n0ERIP8ZYNgUIPwJIAAqIAIy4ALqXwMmoPVB 4ARK
4E1RYAReoAZm4MhsIAZ2IAh+YA+FoAeOoAmWoKywmIwo2g0JR8AplOnxBLMQ BOo5
UGIsBMdVVzIAQDLo1+uNlxBCFxFOlxFS0bIoi3YhoRUp4RJG1xIKYRM617Jg wxNS
4XJJYV1kYRVy4RN6VxcWYf8VIaEYJqETfhcVEqEV2l4b5lejsQZEMR/xIEWM 3IQS
1ZRDwZxiiB0TPUSJmdJYkN5yDOJahM6ykY4fzkwLTVWMKF3UAZOOEVjorRKP 5BS4
IGKVwFqqvJoMmVTeLA226Qoo9lHA4Ub2iCJwoGK8naKfpWIrctkrkiLKmOIs sltD
wGIosqItyqIf0uJY5GIpAiMv7qIv3mJSEWO+BeMvKsYyHuMoGmMvrqIyJmMt RmMx
TqM1ZuMwXiM1dqM2uiLp4AbSCchQZcjGQBTumQQcAEBk8AAcYACOwMSIiAgV uQ7r
hAVzAYAZ7KMZkiEX4pc/nuEVPpdAJpca/iN2mWEZjmH/QkrXGjpkczWhQaIh QA7k
dVGkF16kRUpkRXZXFhphRrrhSHbXrVQc8z0AFi4LDzCLhtHPqkGdazDLqAmb Ae7f
AFoE+gXg9l3ck2AhQxzH5xRUQeRfSRzHsoXZ9NCO1t3IHkYQ0gxLTRaeiejP /G1f
UxLESqYeYTDlzOXMDX0lI7LaVoYlWY5lq52lh43ai91OUqIjgYFlWrKl7bhl +MHl
DJUlWq4l/Oxlz70ls+GlXPJlW96lWPalldFlYZrlYdZlTBQln0nZ/syjFG2E LSyL
ZaJeO/ZQQsyOKaQXD/IgFfHDPgoAP/JDFULkfWXkGi4kQVLXRCKXSHrkQc6m FtZm
/0E2Cmxq5EZGYW7e5kN+5BmGJG5GJOvRpm+SZHKul2q4o/QAxVFGBLMQHS39 RPnB
4kJAp/H5GVQZxJVhzlshRpHZWpK9JEvWoAu+DN8how32BnQ+Sa7BGJcYwBQc GNdF
XdNJmZRwHfhtTCYijVNGZ3RmBADQxCOqZ4yh2Jm50qmpiYJaoiUyyGhsYqfg 4YOO
RoRSE4M6iCVOaINWaIduqIRynYdy6IiGaIZ6D4Zik4aq6IKmqIOCaItaaJ7A qInK
aIzWKLuRqIjq6Imu6It+qI3mKIsOKZCWaI/eqJAGKZIWKYTmaCqB6LAlnTpy hBQA
wAOkpGViABxYZnPmnsM0Cv9oLlcqvJ7rCcAVpoIWhiQUXiEbEuQWQiGbTmGb rmmc
yqmb0qlr5mYXvt5wummfyulv+qadBuqf5ult9mmbfiGhWiRrFipDcuSgKiqd TmGc
cqQSDiqkRmqjDiSgqqGlvmmlJiGeIuebliqmAuQWciqeomqo1umckmpqKues jpcB
sJaBpad5/oQNgqeOQJGr3JxrFKJdEkXsAOLPgN7WDSjf8eoA/qquOltWgpXO 5dNX
GMDyiZn6AVRels8W0Zp9/sRKHAd2SqtCYIlORtAgJtm6Bqa2Aua75iW7iqW7 xmu7
KuZZyqtZ0iu+2iu88uu83mu+ouW+CizB9mu9Aqy/Fmz/wB7sv+orwyYswm6l VVkc
RdjCA9gCLGApLABAD2CDLeAgroJpXYipclnpGZhBaZ4BAEiBciFkpIrqF8qs a8Ys
zXZqqdrszBbnpe4pcgaqnuKsE8oqzabmz/JmzQ6nns4p0NbsRUKq0eZsziYt m26k
pk7t0J7qzIJq0jqt0sKszi7tpEYt0fqscA4t1tJq2nIXeokFALEkzB2HVpqn smSl
3LKkVmIn3UpnrTwfhv0nS9DEQJCUiUFMSPAksHbJlb7t3DKLElKE4y4LTmml 4sZt
4/Kq47oGuuZNcfQkzNiIdv6qkPgFX5iEDcYtklkELGAr1xXLiuma6+4P7Ipa gsYu
/+3O7p/c7pjk7uvaLtnoru/yLu4Cb+0K74v8rvEG7/GWhPLK7vDuLvEyb+8i L/Qm
b/VS7/U+b/Y67/ZOr/Z2L/cur/V6b/hiL/g27/eiL/mO7/mqr/lKb/umL/vC 7qhV
2FF0aQ8AgGBMhrQ1JyrFxg7aI6W+Xl4QMDZQWkoCgAcoywPoo9XebNZyKtPu KRue
7deO6nF6bdlqcNVSMBmi6tTypgBX8AYvLQjH5gQbKs6GbQk/8GyqpAp/7QeT 8AYD
raSmKgxLMNeObdiOrQXzrNoC8dpSaWysxOi1ZN16hOUG6LKm5ONKa0LQ7frF G/kA
RSYeK8WAKzE1q3mSgRJL6/+y6mrXnG6VmC4S361AjOu4PnF4zuE3edNprJpc iC4E
XcnH6M/KDKjensREHOvAYljLtFwgJ98gOx0hA7IhFxYiZ2siF3IjH7IjM/Ij S3Ik
U/IiW/IfVzImXzKzaXInc/In54wnhzIoe4wolzIpCzIkb/Ios/Ipt3IqT/Iq u/KZ
HVE60uA7KsvFakFdbKwNCsfGBbAVhSYVSYEA8IMAtCxqnioYSvAP8/AzXyoz cy3V
erA0t3AP13AEW7AJb2o2+3DUlrA1n3A3f/MKN6o4u3BFcrM3Fy0EY+EJQ+QI 12nV
LmoH03A5B20Q6zN1fYiBrFwbH0SzumfjGqUT1+3kNkT/UJ5OjbVG304Nnqxc V96h
5ElJQJdOuRI0RFwuuRYLdC6NGhM0FFu0rpYrYNwYtQIFE5mQ6OrZwAaJzckx 426x
0rF0VM0VVgUW46mdTs+dTeM0Tz/VTUtVTu90Ufd0Vgk1UR91UgO1Tw91UyP1 Txt1
UEv1Ulc1VT/1VDu1UmM1V281VPvFDKIKl2KpFqQClkpbx54EPX4mcg1zozwA P8g1
Azck2jZzBkNzM9v1Oo8zDee1biakDv91CIMkPeM1ORc2Od81OGtzCH9zY+e1 Q5pz
Y9NmPOMwN/P1NqczBO9zZ0+XrY4UFnEuUA7H3qYxUD5hSZunKVwuLu1xSyCf zMUu
/0nYmF0cYu40axPr6uWmNkkjxBab52Fk9Grvdm8Hn+raxe1aoJ/g1EYgylfA 9P8Y
C81czExU5dwusUf0MR2jmgOylVu58SXi5HfHhXh7912FtXlXIHqH93izt3qT d3q7
N3jD93vPd3nft3yfN33nd3vvN37/t36vN38HeEVMRP1abP5iKcaegQG0I8ge +KRR
UT5W0Vs3Cj9YwGm+5mV3bQSv82RrMzVjsNn6bDvXJqhus4l3c2Jrtodfc4dv dohD
tmLrcIhHdofL6o0frWFPM9i2+IwLdj579pAvV4XV406wp29nNLkqh2l/cUlP hPPJ
YIotE/lsxLG6kh0uUEIfCf+BLq7ilitJgDkYJ65GMzlJL7nq8dxfhA6CssRV Cp0B
RUtLtQRBn3nF3VjoyAzS8XmU+3lE9Dmg/zmKDXqBFHqgE7qgK3qiM7qhL7qj Nzqi
Q/qkS3qlH/qlP7qlZzqmRzqnU7qna3qnb/qoi3qpfzqpn7qph3qqs/qquzqo wzqq
v7qsx7qq17r3RM9Hc6kBLPiV4uAcAXOYNpZzeQA2nGl1OeoIH/ZdY+oKs6qq 6iM8
H6qrCrkA93CzU/tje3MNt6qKdzsGs3g9uzMKV3uNn3OiLvYD5zi5jzi3p3AM Tzul
4rC8L7ZdE/m9V/gQo2RCl3mAKrlBtzaa7+3f6ghGCJv/DAbfXWjutNQUpPn7 wy/5
OLS2bkvr3mq0v4P0Egf8lRcZj225CrXIQmMclxxVUzUxFD/8Uj4Ml/En0ri8 khHW
y7c8zH+YzMc8zdt8zeP8zs98z9+8z+s80Of80PP8zxt90B890Qt90SN90yt9 0jP9
0zt91FP90ls91F/91Ge91HN91RMWRVTYSnApDxyCLcAOAFysWSydhT+XlV5h Mnv2
y5aXbPIX3Q8hvgdnteM9vjNnFvmKigj0ygz3QQPAREDuQKykl6Ml8pkZvS7N QSD3
nm/oitA24Ucx4mdlR2Au4T+84WM+ml88GtstRGkfflOZWQXOpH88gurBsJbu AivG
/8KD1OzTfu3b/u3jfu7r/u73RfRkBOoNBGaifcaKTLBjpBSKOBDLPXnZfRD+ V/Pv
fURCf/STJGiPUiASSSvy6OZo5wOGD1WO9sfo50DU5IMG3wAhYi/1cffbT9B1 X82M
9vGOdvuE2vqMtotetO4RhU4OUNuMz58ABJkHPHiYIsNjHJk4BAvyGEjGFMGI DSVK
PPgwIkQeBw063DjxYEGOFhlOTBgnJCxI2DxqxNgy4kuZH2HWnOmS5s2YOXni 9Lnz
p82eQIkKDarTaFGkS4cmdcr0aFOoSqVWjXqVKtanVrN23ap16levYclyFXu2 LFiz
aQka2NSDYVyGAOBsJDhyYP9EAyzbYvP7F3BgwYMJFzZ8GHFixYsZYwMw+HFj yX4j
T7Z8WTAAzZg5Q+78GXRo0YEra648GnVq1atZtzZgAG5fuSPl2p1N8S7ukLV5 07TN
eyDB4HYnMtwdcnhcAxj48j64MPfdjHGL997dG/t17LzHJb8dHBbz7daxB1eo 3bnx
8es9xtU+3Pvy5uzp17d/H39+/fv59/f/H8AABRyQwAINPBDBBAF8LTaR2oPD lpKw
g4WvB/ZqDcMMNdyQww49/BDEEEUckcQSR2Twrr0UrC847wbU7qDwmkPvt/Fo 3O9G
9kLKkTcDbJlxxRqDjE5IGYc8EskklVySySadfBLKKJ3/RLG3CKurzq69QrrQ xC69
/BLMMMUck8wyzTzTMLfg0gsbWF5z0803DYBTzjntlDPOPPGsk844X/vTTj0F DfTP
Qeks9M7XmEu0T0QP3ZPPSO9stFFGIz0UU0ApJdTORQ2dFFRCKxW1TlJJ1RPU TUN9
1M9DmdsU1lNljZXWWW2tFddbdc2V11197RXYX4UNlthhjS0W2WOVTZbZZZ1t Ftpn
dX1LOLk6aq9abClsiMvOuv0s2+uu5JG62VBSjyH45AoOS3SLy+uuB7rLtt0d oStu
IXF3a5ei4MbBbd1/sy23pfT4vbbcfSX87caJ+PVuOtxazDY46Cpa92KCB7Z2 YBo9
/67tyoVDQhg4jnubmKSOy0tIZCLjGu46ct2lLeONYebN4nBf1tm4c5M7Lrvc 0OSQ
Sh6Ww8AWDJRGmumllU66aaahjhrqqat2+mmpo956aqeTthprrb3W+uqwu866 67Sz
brpsrLueYm22zVYakqvVDlvuuOeOG+q63d6aarzP5lvvvdsGe2zA8V6c8cYd fxzy
yCWfnPLKLb8c88w135zzzj3/HPTQRR+d9NKVLtqheWu7uSIV+xJT4928Q7m4 6gbS
ozqNiNxx44vo3Tjd2mBcGEvedQR454GTY531hA/uHcudOE5uIpSlay9mgofP TWDf
MQZ59d+kBx95kBZOXnngq/+t/bfZKYoYYBczkv5d1eOyGLncQnbve37D55g2 Eake
cWqUM7nkzEV4Sde8puMwggxtQ7CAQ2wsBEEM8cCCrMFgBlWzQQ5+EIQhFOEI SVjC
xaiJf+gjoIN4sK3XfeZbgTnDo85wGBZeTGHCU+FBWNYb873PNv7LXrsG2JB9 fQxg
RUwZUPSHrorQZmQXY1cKz3cj683GRSlDVxaL6D/2Scw6DayR7/RlLqBFh2Q/ 9IgB
eZTF4BnxjVR0mYRyZLzomOd9Nyqjw3h4neWxMIr6yV3K+lgzQx4SOyYMTdEM 4MSS
0IhkDOnh7pAns5HRbI53MaDJuEgSdnmPRvJ6yBPJF53/mJ3rXU5E2HD8F8c5 OlCU
FCkjtoSExuS50SPXyt1CWFc8jf1SSsEU5jCJWUxjHhOZyfRP0b4YyN6oaCAx VA2F
4hAHYxgDFpGxAAAsIBgdAgxGxZFdvyryx4Z08jZJrNYZa0nL4NlOOGT4F06w 0658
tRN57UylQ2jDyvTU5I7GkJ8jnSMwflIMkrbUHc7OZ8gH0CyLEXWlJnWXEdV9 0S4P
xdn2hGM/3bhyijU713hQQj+Q3nJn6NmnFO/SHUwGB3cDKyL1jPMvPO5OnB5R JGhQ
GE2/gOR5uKTYUE02U4JlUXc0jaeDWBdFofImJi4tWTrdhciMwROROY3YvJKq Ppcp
/9E9YJ3pGR14HoOWcoUYc+DvdrNTt74VrnGV61wvg7o46tJ7DHGh0RaZJmyo Qx1+
MUBkACCA0/hFY/5cn8lkls/vJU+NA81YzrCUF/S4SKKPVSlVbSMuom5nRyGV JUM7
ir4vWpYH0IEYyOzIEAMqdpSlfCoQd7bKlp0MXZ6lI/gUSD7Rou+yR1WdUN2X vHmq
0512yattMMtZ9Y2zPYot5xuLQ1fJMGhLiKVubuk1EpndtKN+nKRNr7e68daG vLT9
X0ekC0B/nU+Nz6PkbW1Z30dyp7WNhRdwzttQ9V2RltrpyCTVM8mJWRfBCVbw ghks
JgNMkLv0YVN2M2QAY8ABDv/XzKZfkgGAZHjTnK5smCkHSAYAEMmf8tyIVE2W whNP
NH88MM2L43Li4MxYM9YCmnyHh9G1ugzHOQbAQE6cs83KeLdI9o3x1KieE4eE xjNm
bJMJQuP3VLl5Um7PPrVc47nYhsbtCbNrZTycMcMPvaQk6BRz2DsqXifKprne i7tM
5CrLuTZDzhiUcSNlFWskyHPB80h3M2Y9y4XOcmnwYahkigvhdstTJWUzL6YH z0JX
qPADcHJViU+vxkVgKKPdG6GL3ECKNsbqweUUY2mxUVYse0mOLmn92Gne7ZeW P5t1
LRfda1//GtjBVgyVcM0DDKAPEqlokYrYxNM0+ek1jwH/gBmmfVjjmHkjYR4g e4HZ
ZviVGsnXYqUCbUzj2E4nzDa+y5Or/JsXrxZbCinYtkndu5GC5MVA/TImxS2c dyMa
sj7cWL6rRXB1F5e9cv5ttl8cxXTPV8ntJnKOs10RdV+bZUxktxbHnTHr4VWS l76v
g0xKx3dv/OFPjgjKI67kjFC8XHhud0MuLvGLnbgjNC5rvg9i5S/b3IPCxsaD G/To
YieU0//Lp1i/idVDOtO7rI301Duby+Sx87GyBjBxbYY8XNcxtVV0KDCDuEU4 alKt
Qcu1Y78odLe/He5xVyQK5XIIWBwCA3c/xIodkgpI5MZ1FaxwYLLJj2kLgNr8 AAzN
/zQzkX+PJ8ROl5A5xzzRmctY5wBHbeZx7vK51Jp/D8t6c795aBdVPuktv/F/ cwNe
MfPv4UrnDeppHm5sqVzG0bPLkPnsZcf/PK1u7PzWv3dl3KZXhdvxDgCgvJMo 2xn4
dMY2n9/tUSVDH/pe3lns89zyHDtf3WGGO4Mm8ujZSB7OS/5hcOUovs9y1Khn Pafa
1UPpgxIP8zO+scLvDPP8x1nKBsKguuz/3smJOOqQmodIjGqOOq//0g3P1ooA A3Bj
5M4CLxADM7BLXqMu6i4CzmDvHmDv2gMDlI0gxmGvpMkyVFCwUOCarmmwHsOw BMAx
UuEvagwCG44CT0zIMO/O/P+t3WSuAPPPI7Rs4ngwOvxv9WYv+mYNCSluAnsQ yaAQ
zx6AB+ms5lYOY8qtCKuQCCsOYUwBABONIrCQ4sSwCLcwCM3w4nqOJvIKCdGK 57AF
DWvP4tIl/L5Qya7w5KIPz9TNDYcwD7FP0KCw4B4QyLTI5jZu9bTw+pBs9WhP C3uv
4iDx/6Ls9cALCfcP0R7uIMYPNoTD/DYC3kiRJKQH3kqsvsYHzXKIFcfI8kzL v2JR
ETUm0c6DDAMR53TRI/xFINrt9ywRyQRMeS7K7Nxv/tRsATuR+/awJRruy4Lx 4sKs
rTTQGq8RG7MRhiAstULiEB5gF74RDkaQIfwuXVyHryr/DFDmZDPMAPEcQwpu 8PI0
yvb+DQsdDwtnLh+xzPsuzx79cfjmIrZkjBi1r+VyzwftDMqIjBMxbwn1EQuz rxD/
UB8P0RIBwBERTSLj8MtiL8rmZxExMQ3LMD30TNtq5NB6I92SYxoFzQ730Rkr siMB
LuWiL/1GUvoeUecksv+0rzg80iBNct7A7CfB7KaKTCYxz6kucibtzOAmYvwm KDjM
r7KaiEW248dk72JaSbLMByhGyvoMsNb8ZyCb8OemMSPL7CBpaSX78Y0E0Kq6 sjzI
|
|
|
|
|
|
|
Re: Need HELP! Performance problem [message #120361 is a reply to message #120294] |
Wed, 03 March 2004 10:10  |
Eclipse User |
|
|
|
Originally posted by: none.us.ibm.com
The best thing to do is fix our code.
No seriously, create a snippet of code which generates the problematic
graph, and post it to a bugzilla. We will investigate to see if we are
doing something stupid.
You might also try building the same graph in our "flow" example using a
bunch of activities. Then you could save the file and post it to the
bugzilla.
"Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
news:opr4aepelylhlh26@localhost...
Hi Randy,
it is not really that many. It is 21 clusters of 12 nodes in each. (take a
look at the screen dump) It makes it 252 nodes. I run on 1.3Ghz machine.
CPU utilization is 100%.
For 250 nodes performance is surprising.... It seems that performance is
sensitive to the shape of the graph. I could run simpler and larger graphs
faster.
Serge
On Tue, 2 Mar 2004 14:51:59 -0500, Randy Hudson <none@us.ibm.com> wrote:
> How large is the graph you are laying out?
>
> Perhaps you would benefit from implementing the following algorithm for
> horizontal placement.
> http://www.inf.uni-konstanz.de/algo/publications/bk-fshca-01 .ps.gz
> The results are very similar, and it runs in O(N) time. We would like to
> implement it when we get a chance, but we haven't had time. This would
> be
> agreat opportunity to get involved in GEF.
>
> "Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
> news:opr38whvu7lhlh26@localhost...
> Hi
>
> Creation of a hierarchical graph spends 78% of its time in
> org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters
> method. When I build large graphs it amounts to most of the time counted
> in tens of seconds.
>
> I wander, if anybody knows how to speed this up? Is there way around?
>
> At this point we are pressed to make a decision not to use GEF any more
> for performance reasons. I would hate to see it go... If there is a way
> to
> make this stuff to run faster, it would save the day for us and we will
> stay with GEF.
>
>
> Thank you
> Serge
>
>
--
Using M2, Opera's revolutionary e-mail client: http://www.opera.com/m2/
|
|
|
Powered by
FUDForum. Page generated in 0.10798 seconds