Skip to main content


Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Archived » M2M (model-to-model transformation) » [ATL] Multiple metamodels for a single source file. possible?
[ATL] Multiple metamodels for a single source file. possible? [message #82045] Thu, 22 May 2008 14:11 Go to next message
Eclipse UserFriend
Originally posted by: user.domain.invalid

This is a multi-part message in MIME format.
--------------010403010201070804060201
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

Hello All,

I have a project and for that i try to experiment a problem with the
basic Families2Persons example of ATL. But the difference is that in the
original F2P, the Models themselves are mentioned in the form of
'.ecore' xmi files but i want to use the papyrus uml class diagrams to
implement them. For the output, I don't take any trouble and keep it
restricted to the same Persons Metamodel (Persons.ecore).

So translating the metamodel concepts to the profile, I create the
profile having two stereotypes 'Family' & 'Member'(see the figure
Profile). the Model using this profile(see fig Model) applies the
stereotype to the 5 classes. Now i wanted to use the resulting
'sFamilies.uml' model as the input to the ATL and at the output the data
is as the simple sPerons.ecore xmi format.

The confusing thing for me is, do we consider the uml EMF as the
metamodel of sFamilies.uml or the Families.ecore. To me it seems that
the two metamodels are sort of Nested and UML metamodel comes first. How
shall we have the start of the ATL transformation code (header)? how can
i utilize the Families.ecore metamodel. plz see the attached files.

Regards.

-aamir mehmood-

--------------010403010201070804060201
Content-Type: application/x-zip-compressed;
name="F2P.zip"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="F2P.zip"

UEsDBBQAAgAIADGMljjKwaW2vwAAAIcBAAAMAAAARjJQLy5wcm9qZWN0hZDB DsIgEETPmvgP
DXdBPXmgbaKmR2OifgDSTYNpgQA1fr5AqU29eJt5md0doOW7a7MXGCuUzNEW b1AGkqtayCZH
91u13qOyWC2pNuoJ3J3AciO082lPF1SyDopqd6EkqoC46jqQrqBkVIGmeRsN mblHL9r6qoEH
l+zRjzJZR5KuKNNg5loMvBXaAma1wzELJvDDIKcifo6Zpg8NbPJkDij5vZXI WMYfdr2BlB7M
vx7nmAo1YjoundZ8nz7/yA9QSwMEFAACAAgAWne2OJrbw4TTAQAA4ggAABwA AABGMlAvTWV0
YW1vZGVsL0ZhbWlsaWVzLmVjb3JlzVbLTsMwELwj8Q+WObduywVFLYhHIyFR QBQkrm66SS1i
O9gOgb9nnaYlbTkUJQhySbSemezYu5sMz95lSt7AWKHViPa7PUpARXouVDKi T49h54SenR4e
DN+lCJ4n18Tf1/ABwg8PCF6oomyAiyO6cC4LGCuKoqtl0tUmYUikK4jdhBTH JWLQ6/URdjON
FiB5RyjruIpgQx0ibWCDDFEqMgulAsjYqwzY2MOoz7kkBON7Hr3wBIjiEukh lyIVYD2CkCFc
ptxaEQv0RDC5wH1kiKqo5SKtMz+WPM+cOpNHLjc8DYHjHb4ReIAYDHgnlUjM 3QIMJdrMcWHu
A6ld+fRXrsRrDqs4SXUB5kLnCqF9PJvHUv2IsQnImReKtHJcKAnKjShmhBy4 yzJthasDWVxm
Hy5fz5qZkPpPTUx0GybmPE8WDo99fx95lq19dFowclWl0NSK1WrXxVbyNVMt u5hq9UMD584Z
Mcvd2gC2mbvFp6YlVelfccd9gOw1K9DPGLPGiVfZGLL6VPjxnKh2semcqFX6 3rvydZTVsNo6
t2WUyVYaaKuG207yqz8bFlcszH+qrob77but7a0u50cr2YX8Vwo2rn+2dtoT Axtf+jJU/bCc
fgJQSwMEFAACAAgAWne2ONwTWwdDAQAAzAIAABsAAABGMlAvTWV0YW1vZGVs L1BlcnNvbnMu
ZWNvcmWVUl1rwjAUfRf8DyF71tjuZRSr7ENhMIegg71m6bWGpUmXj9X9+91U OywMNvOScHLO
ybn3Zjo/VIp8gnXS6Jwm4wkloIUppC5z+rJdjm7ofDYcTA+VzF5XjyTuP/QU 6cMBwYUu2mV4
mdO993XGWNM0Y1OVY2NLhkLaUVyf0ly3jHQySZD2tBF7qPhIaue5FtBzB2Es 9MQglKwdtA5Q
7aJLyhaRRmPmVpAt1ly88xKI5hXK1xjeaBcJhEzhXnHn5E4iSjBb5r9qJJ2U 7SXtCY+6qNx4
G4QPlqslcNzhF4Nb7618Cx46k11Q6hlPlBhbgIUCIa5cV2hcQcuPAB1OlGnA 3pmgkZrgcLbn
/g/c8wiQfzXlirEFpsbRUnYsn53Xf3FHVlxhQNiEGmxM4XKKT5z6xC62W+Lk /zDEwL2ZttDp
a86+AVBLAwQUAAIACAAJerY4Jw7TvzkFAADlHAAAFwAAAEYyUC9Nb2RlbC9z RmFtaWxpZXMu
dW1sxVnfc5pKFH7vTP8Hhs60TxVjYuK1Jh0k2CGVxsZokvvirLDg3sAuYTGG /vV3+SGKukqI
pg+ZRLLnfN+ezz0fHFrfX1xHeIY+RQSfi0eVqihAbBATYftcHNx2vjbE7xcf P7ReXNS81zUh
+p0tr1WORHbFwbTJrp+LkyDwmpJEjQl0QYW4doX4tkQ9aEgsVlpeThfLZ7NZ ZXYcL61Vq0ds
abcfZ/iKMA0ANuA8ChrEh7k4aDjIozAOhq4VJahJarRsHkM7wEUOgjSLS/lR KfuXNKIDBDXF
OlLNmoavn28N9DSczqTqPMvUdbi47H+1aG+VqjTQuyyComYC0SUGCOJKlYAW sjUVzycWcmCF
IX1i60c/1bX1IhNJEFpsRVMnJnRioZB5Lo4wakwailVbWS9g4LJaZiBJApaC zDA0FeK6EAeL
LG5b9xjq2WoWgDEJQABN1YFRBFtaP9VddR0wzc8QxsQMLz47wbfoR4fuGPoX F58/vVx++/jB
Qj4NfkXUvlwh90tLihen1KRlbtv51oc/EC3G9x+l3Sd74KsgbIblGbfvh6dV xWoUYDwa3E32
wbjtA2wSXJ5zF3RvaDHOSs/2dcU6fjtniE1QnvLt78a/pBjlqjEgWuEyxwcp zCg7YM5YB74x
KULYA8YjsKHmesQPVg5wfwsNFAdAs5fEx5FB6LHTnbUDUZj40DoXPRBMXBC1 ItaqRl2tfSPf
aGo/+tTzkYsC9AxvWSitOGjsAz9Mek5VlDLmOZYr1OfFW6GgsGJQcbEjTmHT lqQcHS1tLi6U
HAQ+Gk8DuMgR1M8Muv59SnNYbJ/QF4WEA68lCYgOMHqaxgEOZZ4BbNuHdtq0 DcL2SFEQXaeU
GCi9zrDhbLbluxw1Ys+D/hA401U5uiyfD5wBdqJyQ/MXCKbss7iyM7S+s+co G/PoTIsYyCGz
rUAaDqAdlSKfv18of/o9zcq/WxZN1gFzm5PNsrgkJwun85aVRZMvb+R17D3J osl3XXYMTw4l
S5xfKZT/9bIYakeWubJQgjNNON5SVhPj8qymHkwTQ71+kQ+oSZz/UJrYd8Y9 q3R9syYmmNqT
YOmwcAy0rDD23VXUP+uHESbeG1rf276EifP3C+XnCJMZ2dyzylkZz1lSK6sV trKQb2XRfUUn
b2g8B13/MryzcQXKAY3rVHXJev73kprnVnOpa2IRe2RNHvH6cCK1TvYh9aHN 0GoUNKuSZsjy
rzf295KaZ4JzqY/FIpbLvGOH1P0l4y2p8zsYbHhYg22/yWD3pDjPXeeKn4gF DT3kGXqi+OWq
rZeU/dD27Wqbbk32Z98s/9+wb3lRxJxxbbTFVLilmBF7Nh1Fpi648YBCxfxH UYHn69JbqHLa
OpdqLU918+OZwPOlN1HldCYu1eM81c2PLAKvr76JKuc0came5KluvpMXeA1h QTWZ68qe56Bk
Urwy9UFbpj5QTiZWLIquhIXr7YSSqW/AXTPsajrDXj7dPrSgD7EB6VIp40l8 U00nTpunS72b
647WVftSPwDYBL6Zn2OHfwb1xgPCqvkUPI+x1a51R/W8xS9vcXEZROWCZi9J VgY6N85a06CI
OjOl59nKq9WZKQ9/DOUvqfO69wkldeCAAL0TImSFvJPAk6ElZSPM5HOWv5nM Wxe1/X3/2JU3
NPExoHAU2/0Wt82mtWI8rU2JLaElA+kFWt8YWtouNN7D4WKcLV4hdzfY7eNP pboLjPd4sgQW
v6HYDTf4j6CdcLxb5CW49PXCbsCh3n6wdwHy7tBygNG7gRivJaVvLNnf/wNQ SwMEFAACAAgA
Wne2ODwwvXNlAAAAcwAAABgAAABGMlAvTW9kZWwvc1BlcnNvbnMuZWNvcmWz sa/IzVEoSy0q
zszPs1Uy1DNQUkjNS85PycxLt1XyDPbXtbAwtdQ1VLK34+WyqcjNtIrw9VQA 0XA9RkA9vFwK
QAA0Kq/YCihpq5RRUlJgpa9fXl6ul5+brpdflK4P1KikDzQFAFBLAwQUAAIA CAAjdrY4g3W9
S5HcAQBfkAIADQAAAEYyUC9Nb2RlbC5KUEfsuwVUlP33L/rQqUhJg3Qj3SnS AtLSDdIlMYQI
CNIdSioh3d3dAtLdjXTnzB1f3/T1/M859961zj33/MaZtXh4nu/e+7P3Zxdr hExBloAHspIy
kgAMDAxgAP0HQGYBcQAZEREJEQEZCQkJBQUZFR3nHjoaGjoBFjYGDgkhGSkJ ITHxIyoW2kcU
TJTExHQ89EysbJycnGS0fEK87IIsHJzs34XAoKCgoKOh49+7h89OTkzO/j/9 grQAmMjwAAIA
B0MBwGLCwGHCQDoAMgCAQYD57QX8/oKBhYNHQERCRkFFgz5Q+QCAhYGDg4WH Q0CAh4fe9YLe
B+AxEbDI2cQQsZUMkSgccNh9oj4hUz4pbcVVHj6k4jBy9EVBfYiHT0BITUNL R8/AycXNw8vH
L/5UQlJKWkZWRVVNXeOFppaxiamZ+UsLS6dXzi6ubiB3v7f+Ae8Cg4KjY2Lj 4hPef0hMz8jM
+pydk5tXVl5RWVVdU1vX1t7R2dXd09s3Mjo2PjE5NT2zvLK6tr6xubW9c3R8 cnp2fnF5df0d
FwwU5x+vX+LChOKChYeHg0f6jgsG1vX7A5jwCORsiFhiSkiGDtgU7D7IOE+i PpW2olByKB/i
GjkOoz6k4lymPvoO7Tdk/2PAfP9vIfsT2F+4ZgB0OBho8OAwARFgrcLPAQQ3 x1nSaoeswjXQ
4UMZiO0T7Z7agB7j98ZB25dZDFdv4Wld2Ffp6Cf3SaR7HrHCH+1pL6Lc8mUv bu3l6s122n/V
wfGnEn1S1UkduG9vzzHKHNFguXfaCypSpHLIVMo9/voILod4ycP4hOu05stE o6BKBpqmcM5V
gwJhHD9DtrrDvQKdiKuX3uTP+McnvCfIejTUlkqaDysNTMIoxYVaVcX8lcoU AJJc1P4VEoz2
OtzOvariYqFhC1PfPeqXSyjxGu9ticqHXiOJh3tZrFKiBrPwc6ZlHayPzNR/ GG1zEusVSml+
fMKnuJdffLXlzSBSVdS8+ek2v7j6UP0dqODSFs1qe61iPH6rXoLOE19KgLir lmBfI3U+THX0
luOj5b3l6bDOvcqmWjueOOJo8pfZknAIVW9Uo4El0tQGroj281sh76uHZMq5 dyKKJ1I8d5XO
EEAIY13qfHzy9lQkzvlda6JQbBhiBs1HFhtOPi65qZVXCPiYb3WK+O2GhFMY udvbE23ASYbu
hS4hoBWEUTW5InVE+Za0hIOb0/O8cJ774yOjo9e7GEhKLyEAB96N5TewO1lf xO9Ydlg8KTNZ
QvLmNHu9XF2NHZxxoiQ4pXpeZJlKRknD56r1UmZnOUxMKLrs5jI3eGg4WIUE LuuYYDSsoZ+M
8hW+nMxQZ1Gadv06+Jn01Vr6hWnaTy5yWo5EWkGM7RODlxUjgQCvzmLs8i1V dmY8r18XF1ji
IQPVCUrtrK5Le+JUfmkJqSKyyvmWg9HBMxc3t2mGXW91RV4uar/WMxGZ1dA/ +QpW9bbR9R4S
v9LIFizXHgJldnuaTnJCAHRdtPyLZEaU5AyKDzL40739xjA+Q1p+8o2jdg1i mYogDwsPh6xt
DQ5LjfhdEmJjywCHyE7VKgX3xGXNxPLXQ6beg/PcLosDL50Fm+08rkeHnAZ/ Nz8HPFMHAVLf
HReBN1ujZi8Vb9Dn2PUggFU7Y2krBR+VG6UR0mEkmsvmcYG8eBu/TqrUue7A GmiSSCJmT1uf
RWQ9fQ8uHAPptHB7Ax9UD5q1694wFbwnnZ+8+HtsyX7gUtvCdPNQGDt9Lyhk dPFcqzjYtCpa
M0V3sa8qshQfAGQfIAk3tVX7V+w9HOoGE8fINGsOtOl8sNHaIQp6xBCKuBEY d+UD74VBW2XF
nr762FU1qdqD8bbYKFWfc6JO4LULb8RPUSn4amOdfsjt/9myumtQ6PV2EW1s WKY4loGjG4HX
O9ry11xOciOj7YlDgRkhN5KteO3lX2jMZKj160+6nudYGzP2JYePK3ePyurt 552fVKXUX4Mp
XuC5fWtesocA/wyU+uckg8S9cXBG7uIOHqFpqDRV/RjLF8dHZleiZE20VDWo /KmrvEXBmy0z
iGme55McO8oJE0YjK2z8LOiRmZ+SGGcdBvmPRipSucN4ermKs295nBuDwu87 6XydvT7j/Zlr
xX7tiVxZ52nO5tyZxXiBzWXE9d1pbI5PQ44fAIzJDxx5V4ra8W+YnstwtWOv 5pJz5D+KLJFC
3VxjvHhjbdNty8hnhlOxHgYBYDN8EmZceEV+El9ecxgffCzvXGD12I757O5a ytnB2Q5Val22
By3fhkUz4LUoMGTLEeW13MgsiGdTsD2iO1/fia3IIEcQjGTXEN7AfoYvuCmU t716eEYo57JX
rWzum4tWZQgBfrhK6Y+8V2/gyZixdMU7Xuzl13rxYsCDoTWCbRy4Uk2F2WzO cnH3lXqcauSR
r8/Y0svP5Ehping3XMp2kpawoZvt9629w5h+OI2WeVFJqY2/dKO21fsn6bo2 /vPrze3zCjcv
6iysN6vAgyO7UyyjNApUaD59qa7OV4ofi2hmevfn46irIyz3mR0ciBlDfS6S fVLdzbkqGUqT
0thlJGbuRKirVfi+riuVN7OZ/1RR5g/xkjECUwcdcCDAlAYNwdt0obDjPZu1 NzW8AmVsk1zZ
ueJ2K1aFFNNFBQdF1tY0SWpNvtvKQm/CahOsfDVqYerOd9hyQ8L4B5PCQ4r7 7pq094czWZNP
r0bHViHAz3n5ebNNi7opw0XZoz+ErkHQOaetBzMtxn9O5RNw9hxE7JLpjbjN vsP+YkZHj6tz
IoY063PH7ptS8nKioxPsiqhQ10/GJQcns9dTpKjpEOAdn/fPidJ8mB1w2jU5 Y1HJlz48MUx1
bCKqp6mNjqiBT6A/WagxLEiWvcN+Kcu3XqdSwPxNx9r5SjCtvpxxscnp8nnp 1GsNAYvtuwW7
HuEs5dtGL8+9q39lfqXr8jyrG8WodolVfa4evt7K03ju4AXJrjXn5QSC74TJ j5vW5bRUKUj+
WOUy1VWIJzMj+e4nGWllYXHVFLvmJi9/jrbmDd20FMXuw18diXVkaf3/xAnO H/c1bzCyiBSz
SAdc0CjFf+MU4Y8wFNxlj4Rlj0SY1SNEffoh494PHROvR7clR7elynV9e77+ 4ETADxpaiVic
ZkDf00V/6v/RT7nSKq6VoO/dSYMyzh/yM34oG5rxooO+z61KNAl/iB/+XZn5 nnCsjXCsB9cU
UxjGb+Jf/q6s/DxNljtNVijx32AU/wPmfxcwv811O96yn/4y4PGPsqxy/Ttp FbdVuf8UKAEB
fj/xm5m5dwwBf6Ft/uPAb6jORLKe/2U93o8ClntH98PK7NM8oj+toYAAv5/4 DeMYOE78L0/p
/3Hgh0vSRnJs/kQe8qPrjoFjvX/YrHbvr7B4//58xH8w/m+DMW7y0tSobkT+ bGF6fiOaSkYO
/nnw27RYX5kTpNdsB91wFdca+hmyhoeNH7frzjchgGh1kY4OGYXSyMGpuSSB VJquPKjYxogW
TD1BdjEGAW5d8jq9EfYzrLJD0F74j/UCiUhJnqZTdIa1U8TYX8OlsrVMz9/l F9gxbifkEsJ+
GYADPjpTrQZ/Gb6/iPOyJbXOvxkcqrX2PCSLXlLDwpU/jSExJHiyZ3HY6M2W y6QrCknHJGZF
cxMLrA/lR4Dy8QVK79n5xoq2zsCD+Nn20gEic6tu3FH6TZKnceKiKAxuRoNK 7zcCGYscIm0/
w6vXW0XqbONVXVvzaMmJEfbEsGRxUJipqhzfX+QThDsdcBp3xpXMcC32wqrX nVwKo29Lo7Bh
bpZLPuucSvUIoTS8lzncLugrHfopKj0sOZ+xHp3krTHgd9o6O/pq1nt3VvHU tKEuET+LRpxG
5pVGC3J/y73wzeBNFhaj+iPbfMHHTfQZYyZhJZKqrWxISKlx9RauTnYsaefc DvZVLq/1WqNl
qiNCXYeeuRZzCHWotw+/o0q2ndR18eYY62WNdeDKGsDZTb2xDSAr5QzBcVdL 6lljyKtsZVIU
RUrSGQp+VJkkPq4lgL+bXf5W9tlj2kH0IAL1+wNQSsH0dItPCrqPzyHO6epv n8c3H8aEOIM+
Si2umwuk4OGzSLILdevcgiXy+04uvTvsGMt7JmA+vF8r5XluEqP3EIO1S4pA Fiuf1nV+ZnFy
zmO8BJ9vmUHVny4bdxq6mrCkpKnwtAlTNB5+Q9mdt996KJ3ZK0VSBkMc3n2N raVsVa5QZoNC
JO34pXZoHi70dFsvwnVJBG47Xt7JwxyhsODFPNNFNAWLNByTPlw0gnKE6KUd Jz1X/fSc5HEB
g83BWgKL7gOMuKEjOXzhpEneAS8unVWWfDW1OJq1umnv1OzusX7GXu0P2tfH gtfdSrUjB8aN
JcmtTvg20QjqjJFiyz4kKDsMVWmCic/OTzQVjuTtIlhEQfj4EEC4cpfssMiT Hkrmcgjgww4B
jlS922oPs+9gh8Dw/RCgUx0CfHt4r2qOtM666ubLhIouI33RnQKG5FHlelV9 tp7lBYeu5tQH
zUcByLG+PRpobzJqVh+pK6QVVFyHJ7kWDzhxqishSNs85G0ozCA3fo6LtwFH +9V5SeOj/HLx
O+7ryFGz6DaB4z7f8TMarHhrGyL0D709Ld18uELdfoIYFiCErM5ECc4dPdYL DqCFn1Z3anDb
GHCmDuDQgQAzV44xsRa9AtpPKxZtXMcWd3izSTU4z5r1v33aJAxvBnnnW2kc 9dkkqUv5GuQV
eAbAPPFsOalUxRI6CtYV6HAvirI59xK+6QkZxN47NvYUZotqVLjPu9LIjfEO fL+2OnxlUVHG
ME68m8rVsawuKlIMwxf5QPl330T88I1awcHj52vntjOvdLl3xPtLFXTmdq4v dkDGl+80ovus
eMaS2/mSBu++iCXL3qwR+a4hGkfj+Gg2U7tP3pI3wU/bguWr+uMw4Lwajxii 81BvIQArzVMg
fD+jJt/796Bk/B4UtSzhRy2jl/SVx/obT48bJBTDLe42oy2uwwZjvEj23oIl xgyrpHFfFIkh
BcC/os3JOa2vrbAKZGGiOc5+Y8SHmo+7StAOyxFheQYBLjWEoRvCRyUI0PLB +zJPZFnnUgXs
IwXdv0whwEpuE3mrTNXSmbo7c70tdewKloy8RbFKH9XEGZ/wlPwxo544E949 3JQGs6eRvjfB
XewK/Kkg3m/PxUBCmTwO2jr4EvP1s8/UVOPDmo5vW1Z5d/iKVewQLzH1jgiJ DM5lSffkbzbm
pefQoFjpHmHHhCNaLt4ypqF6f6WDAEvPmm/VngzZY4YEf969TbiKP55TsVSw /DZ5G8Fce0Ra
7Lx5VZecObR29ZYB9ikt2xuXNYM16Pssc0xQLG+nXJx6P4spVfwDuZpaKGXa 6hXQ75EcNZRb
rBizDAH80t2i5YUwN2yi8nX70KrQDDxvkxmJ3WE9VNN+8rRqPCiBJjHzFOpo DJZOLnOVI/P3
c2752nWpBCbjxPi2ryd8eY0iLupRbamfYx9H89EKnYhfZmslKFeNUY3NF9mI o7lgSqazztvn
fSS+8dOLFSa75CsinX91ykGRX2G0r9tXIK0seftGtgrDK3skEwL4Oy0rXiOQ 3aIkQIDgzPKG
ShuZu2EIwNZQ//Ai97K8H6+DMH1+WhftYOFF59qMD7plKQ2r6POPjkJiOevQ oIT1y+TweSRx
GFIiZ+hop12Z5eFZRnxEbNQH4w75i2zheB/S6IMZcrzbaA9vbjRuGB96z+if bN99BLvOz1/w
bO6fjGZzQoBq9oOrU/A62PAuJaTxLntliHv0zGOedpAbTxKO3d87SoeY2K/S hwAp0qFTq/5I
odqLq6GaP6PHZj/+mNUw1EhNPrgbLcZn6uhb4unBf4dfQ0L9mywgZZuLMihI KeZOScHSXNOd
ITp5K2VFxjuhoYQc7uwvDreTtCJ8V15DcBGWr/j3s1CX9B/SXO5QNSjFnPvK LAjrYdB+RuTd
1ksGIxwa6bcbzTjgcTw9kUz1nEvHQXeqJybAPjnnEvknsx7vfWn07s++eHxC 1F9qB9Z7/fh6
BxRWHew8K00TfE/PFFuOaoQtnF1OWo6PQD+BKq0+2HdVZ6zodH10o8nYLJfY jJyQZT10HY5V
9wvMFkqnu/OmTwN2tpbQ/Fkmd9XwqufoQk9gLS+B0SVxpAgh0+29pRTJYZZd G/K6qhgBGt9z
KcnW1nak1jXMy+flDbWWuSK1r678oIa4p4UIDnuK59GUcxc9XtwbvVfM0tnO 8rWGMSzT4D7y
Xmol8cxGrv0FBk1652YJeMCo5OlH7ZNj4AHAJ7gq/FYjV/EQArROTBzr6Fhs 47DRg6ii99VU
n7PLUB8CJDuKPwWDFJRQrxczKh+/6BavG6ytejvEUDfpzNjPy7RRH1S4FNiO WplSjx/75v7E
y35Yez4kPoICCBDd+PZW5NBxjrreYovG2fzFwFz9B9U3HfeuHj3USZ19VygD AVA329JOUUUu
saFzH67GffJWlWYqwuZoCMBuHmdEa2uRbad/LBiANr1H3hA8sdT2mHlhwigv s0I+rL+Hd5A/
3OKcMKwrwdGWKZtNWvUTLzqBdCuC9KMIo3vuAZ+WFmEtuL855IrbmKJxd0Zv 3K0qT9EC5T7J
cN2VikjtEABJZ7bbwS47s6Tv02q0QK2mrnTPo3et8K6fL9/BH7jb6Z5qgSk0 1cm1RrVsalu1
LgfPNJSTlFPlttdGTEsrEZGl1Y2Q55BRNSgjnbrx95Regim1vbEggJ2V8sKi TodfLyaO/nsD
hqgWVaAaVUQw+Zrnn6wSc13SR3zxpFxnu5PSwvgtmbDxSc/yA/v56djXgpM8 5026B1rJceMV
coeTuc1jpe56FtOLxSsgFUuNaK3FlgsBbKUU28e4OEYa902II6WJggQxNXYb NAq3479qT+1I
In9cXIeBV9Bw1Xn4BCQ4+RkC/LP9IB2mtW/tsdjOaRZWFnwmCkp6bh/Zg4xA Ur2sTYVOCsLN
H2K/koobsXFnmTiYffJQN1h5Q43r6jrVhqY8ZyCzM6vXc8CYWEliHXlVuZ+M jsA3wJpUlBZX
bq3Y9Ke6lPGPalLx7sFSbv6TJH1qsIkiQ4eiprxIw1FxdER0Y8I/nstI+155 CwvXampGR+iM
lI9lqOfycj6aRMstAQLjEKCgRn89Ya75S8Su5eKXZuzuJllh2bNCkdYm+PHC mVX5gJlzXJsw
6sqbnk8l91E0KHkpI9yrf+Ka1HW/P1jTq/+2/Yaw+uRxx6/MiPi5Ik3oPD7u 39ffIJsab/7w
mjbMM9Yz7puWt58nSr52ZVfSvcpdhllCOauLKHEDYqwiSXsp0jO7f0o8S0C7 LbtJuHp3zmW3
oR+0qk9NRu3x+J/MMNsGE1465etwNSVR++/21c8I2MhkGtTCUTG9XaVyOvjZ 8uOh75a7H7Q0
oZf4m9WOBkuOdCMLe3ZvRrU9Wq4vp7sF5UKAf9bSHAigad/c/7jW+723sTrY 9DKV61jpWCP/
vyz22m6Ky2d7txMPfQc9enhAVUeW90ekKpb2n1/hU8Glnnr/ERSR0jxo+t4q 0l/RXTFOe/9T
cx7H96rTbx+/l/3xw3iKMY/jvqky3AOetTeajh62pBV/k5LvDRVC0vHKiP+s +VLcE6Vs/jbJ
JoGBFPHGY0WNWhX3CmzwLBCGZF7KQf0PfOZ/w1cCxdf+Z3STpSQpi/WrDx/7 sXyuCyDhrYgv
CzQje/nexjF4yXHutig7Qr9Q8XeKoP1JkQGoo1+T/RHu0BV+NhKP39OY6fdg SfF8ryTaH0EV
Z2FoDIgetaJMHQzh+rlUgEA0Atk3brwr08s/vSwQuNXhvCv+ndyJy3uTiirs DPWSLOtzeR3+
VHY98PkGFzNe9EHQuiB0O8GYje2ELsMZdB5UI8WCs+nCx9a8vk/3M7Bj9O/A zP7IurR/ZN3D
P0iXBCXdrcgfPiX47tNzu9/JrfnPdvvfceF/NP1H0380/R+hKUm5Me0fz8SA cbvfQoAtXAgQ
82PfL5iCFutl6PAfpn2VsOI2OJZhqVHu3VZzmHYH23xs9qOFkmJDbdUAP/s+ eCiByw294/Ud
oQsruKvwtv9I0NxSqZJxunlZx00R7KN/xfFb4b1ljECBAF8ZIQDN3xH91a44 Kulm4nYXD4sE
aaEbWPHth98R/cq+v5oJwUysjex39/3DJGjVX23zPkWFAL0/mrz1P5p86J4s d9b3qv+zSf4O
yyLXCN5rX6Bd4Eehh24IGD8mki6XLCLlxqR/GfQP1/zm8r/NAgLKYbl6Az+b 80/P/NaS/ja1
pORKjv0W2r8b85Nb7szaIABT0/p/4vSfOP2fFaeqPR7dl1XnE2WzBecX7H29 Qm3itbrGQIAj
TGvomrlghKe7/n9th7lGYEm5Pjo0Jmaxx3lfXTf0I66IK4eCGgxdrZgbJq+d JBhwnG+8Avui
fHktN3et963PBkSeN8R3CWjLvd+noveGL3jCao0gxSTThURy1bLRSPtfQqg1 TDYkx8PvzLyo
UIYAs+FBBlaysvKfJ5MgAOXgJ9A+M2ftq28hJvGD2NgFCQ4tWwvW0YgI046s q1Ff/UaDK51c
V+TqXXxXlQJeJB1QJc7X028K+jG7ev/XYVVTHjws0pnw5i3W38BqUVdat/E6 uI1gq6pKUqiP
P7+2ogqysaVUCzgnSJmRTuWCMTYT0qdKRodbhK2yPmOMqykfq8iv53y59ynk ojqyY2sbq6ul
IJT9/oiTL+vryhno4ln9d/aqg6Er8kdF8DM5KFU0SA3DW1aXMjRSOA9eRd95 Dn5p4g1Fn8vN
qRgv2L+AAAG87/crpR8/PCfqR6jTWKAGT1RSVXtuKDgtCjm90Lo9uB9RJO/t bEXdeVcT9BAt
Z9PMidORg4w5UClwSMdRUmB1rHlZ200O7CNyxfY9DaQX0W8f7ahVhGMonX9n 5on9GHsfboYm
f1jnwsJe8UVqlucQkVZsriyrrOykRmMImKWipvGrMpoxe9/k+VNBZIJV2B0K HVjkK1HmHspw
t4LHDyzqGrQCYmAXLN2TSS3lGHsJDWUXpqKisBgO8xlhJUUXB2G6PUq9N/Ne S93STTWfjItQ
gnG7wo19D59qregnjNvZmcZCPZQtwZx51JVAoF933NMzdbdE+iSwZ20JZFSf 97oTAqTmXpEd
ZhhBgCHV24jL5y0r1lkej4m+IXqEWdLtP15l0+7M5owvh7NBtbN4SotvIHa3 4lOeerW54qds
oyhZI105mk+FSZNPle+0XlAIMjHFjL+bevLQOrDpSZ73W9QzmxAIIKRyLLIs +Yeqz0hsS3Js
2W6yXZ0ZjeEbM3TLdXIZ9LPsXZ/aCHjpo7qGYopmtulv8MDu2WvebWF/nJfG EAiRHi/oVZN5
6647/jnNcO0dgk3iMR9VK4CnWH6XQhAOCtC5YBZ/FtJxpCnv5OCRO+AMr6Sz OMuc1WYbz5ce
Lb1qQWXqYqoZyYRaWrVvz62Ru6t/tZMWBS0n3I9vzxR7oJkp4NOzxb3w6J3e izPNi06Egmjp
4YYAeqqUDJs87eL4ozk6EnWeQEc5DQ3F372NY/2HDFHQu+BXjU+IvAks1dXx VORcRjQbWNu+
TLL2mqJSUvicxMY6D+I+uyTgst3mCjnAv4L1Uuhj7DWvrA1Htg3uRIp5JKPu YmxbINuxaoSo
PCtDJXzw9F86XOEGD6CrKGttRTiYjJ9ZaT16mnnvgolhWEvHh1xjiXGOOJ8H 3Rd9aVyqluZE
o3xEW/cGW8zE1GNoDyl+KqGWmUJS09ygk0J8PZKvt0cdd/sPJ+dZXEsmZc5W NiVZmZuicZ+H
z2ASxrcQkIsStBDfKNkLLj6rnkSdXyzbscnv/SxnkyVrlEoFoog/ME8Mlyaj bFOdM0mZ16wm
3PbExd3Vtz0ptrO1UUxY98ob2bhXfGLXPWMCUiQSemBg0/s4vP4Poin9wVsD 9hrtzbHCz82V
hxk7NgJ3hYkzG/391QGSMmRfgjUpn+9OIvCyfAvC96mAbdz/F1+VRUFZdZbD L6uHqReyHcw5
S3JTdu1WPaztzEwlk+dloimUMeMkd0NXxCTD8IJZCioZIyp2zPYXnzmPKr9Y QF5/L+8WxUHV
EH/cISjdTR6X5oDaPnL+BxuIfndPSsvSx+FdLl0Pee72DjRj3MKNK1uWxx+j TJit/BcpGfce
saGlZOY/YL/PH3F/wMNhOYXBRpq3OXoQrxaLpgsrFqGsBp9vCB+/UPdfuZCJ JLLyzaO+EIGi
VGfurqk38n2oj8v8084PYvA5QEzPEqmU1sA78THyI9PMarwLhQRGB5DnRPBX 7V72u3je2KIX
PlWCqy4v3m1asWuY/lQHcGDWE6RUFdEslStmxnieb2lgW0bLMXcYPh5Wimz7 IjpbowjOvjAx
IPatNJJu0LjLz+u18vC4ywInrc3eRevTmk0LD9xMU93w3B6KUNgN3YMAzPfc BSdKdB7JNHx4
wF6joSxqSh57zO8Lg1QKjCX95an08hIvD4mm6ogOxC6yCvEmJ68NlPnCPkSM k6unktPzNwXh
IK55lX/5OJJ4MQihwPWhq6JT/oxuei+xBqFNiE6JJJ0uPnLmcxRVvkdkCX5h LSeuCa+pYzRG
WFjI68qa1cvCraysPHKX43Rjhoy2NuDRmtTa81kx9+/1YW4T/VxBREktMrWs 4qu0rLMqP6cw
v/qgoyh4bKb5md6NQCfSAV9ZNVTq4o2yDCdnRNUO/30/6oTz8TFHCUPuzMk0 C/vRkHx1jdCB
cZeQABqRBAD7luub9u8KMnwn0Kzc9vZu338KeiJFbKmmJNoCwLwB9hSW7BeQ Q3Tkjq8L93bL
kvRPt7IqUnlHVhkv9DQJiMga4HqUCIiTMZjUFTKWierT0L8dM3GAnCCApTx1 oEpSiA8TBDB3
IF1MYqTZPaNhdGx2aVT8V/bUkGrmSqx4C+hFC8wr7qWqgfvdmFm4r7SpboSn n6UqHJxRgWQ2
zP2+h89Gp93702U4pq0ziFPOzHfFuuHCWq7blcgnenDVdTpILLKBG4mmPuVf JE1fMrzUskoK
w/1chye21lD/Ck96+1HgnLRxXw064kANPDq60solde2heqOdHXY/Z51zG9QJ mimh1gDgKCOU
7/SzzfQw7bqzVi7VGhc8z0706l+UDWVrNzg0ZuLBrOnWp7x9H239WeGMAQe7 AfU8ct4tpHMS
g2/SaLhfR5DPI588CjdSjz0U8aDCgBRlQcpJz+9ftI9bni62FeTIks9FwjvW bLugeDrVpvym
SgMOiW8VDpcsiGn/8Smfzd7qifaA/9q7R6AjprwRiSEkd8RnbKiuBpEoXOX/ Ern5mq7eaqSu
MXHHJZ7tLnVkX8LXQ3NzEWTnLwFjapO7ie4D9W+gsow9g75UgTSmQd343imG sDFcv40HV+vd
HBEck23CI7sbDRaXVWLj/u6sASuENvik3ig4Rn9nKkRlAkXKnEcPPB7ck/nD Q3MYwhVlE6vY
OzwclseWDpbcD4quSIxfagmoJV8hdxF7jkaLkiusEK3DKw1LLB9yp2QWDgXO 7LKkEH/tN2Yu
no4yCzKTXn+RwTvzArsxfJyWF34y+9/NDg+un0tO6LlmN/HwNxWtXmfaGTX5 jiLK6rHCCcRn
pnENYXu1rEO+a6VEeXJbZ0GwTHhajU0+m18MQDbFZjUi9X4GpmEja9DCYLk+ OGccCnI7vfsF
dUANMjlyn938JGqqxqgmKhGDPtZG90az8UztjSmYiho9iabk6VvzTWNZrSBy keMaz9tmnV7o
9LYrGnDd7LegUurEm9WTNI2LZbQLCgbeRlO3ErliLvwbCsBe24ynZSkpoCsu IcBF19CvFmN2
l8u/i2SLPFOOTGUc/pD7W1+14s+BfXNSUxGm9SVO9b1U1ryWxTmptL36dDFl 9LMHMK9uRKaH
32++Nx1y/Ko9YxXPTxqyzl0x4PpZiqVwY0hwhBHFxrOlPujlYr9HMpPHi6gW pvwIuV807C9M
Bi8q0TajH2Nmv9toiGtnWERLSOipeNHbfdDnWQ1Hu7YEN8wwX3xL8zDoPOmA 38KGwk+5JsiV
7UMoZicVMvaa2RVLmsHqF7f79i800q1/EUOBp1X1ZV9ffZO7ur3pYTYKB1XH n1CpwSQ5rK35
OoLySP/rGbPI79/ZuZG4EFc0Y6VhxqyokjrzoqBz4NtMeU3Y6wkXhpnAlFLy tynv7Bfj+0zU
UJTPR9VGidTTtKy0I8rbTrTbndBHKYrSt5KMzGKXQFS+nUcVvX6JZ4V/8EKp 1wq+GLt3rb5t
dtVMWZYbdc2htZ116BNlo4BP3HJzJQQw7DwfEnBN4onZ3PxyLDhx7Gp7VQ3y 4KjfGFq4Ktca
+zfDMuHofkFtRnRTnF+wsYU9+N8Tr5IBgYTIv+pqCXp62s90eYGo9O+5j+mX BjyEif13jwsB
+v4910q8+Y+p/zH1P6b+PzKVLv0NKkPYRqmpIX+7A1UIJZ3BQ7zXHOF5yHsK NhIEGj3BFu9z
vfKJYHFgHR15B0eAfbcz8l5eqUQ5MXp6YdUzFqVnwaqJrFuO2bPwpG8xp/y6 6E9jmnIMJSQc
2HyZl8XZTCXgl0zf0/We9mZW8rhicly59MGVOXCQ1UmLtO7cUw7xQKkIysmL v3DsZQ1/mfGk
7Rn+Ggt7KG55HMkQrm2MvC3KHF3OiT3zalrP/XCYDmvNN5RCrPQ7rV/Zk33Z 793jqkGTwFHG
V9Kc+Zw+86rq7ZUVfJk1iOoRwpZ7NNtxgNAV4JpT6CmVrWdJ0YeCVv5QNdIg I5JdtHXIeJCt
tTVroNCfJsOqccCSLv19WzBD1nlu9nZwobeXnSU+VtOrTzzGRRyTOdvfRENe qStEraDp6gmI
0N7ZdBbPkOD6IYOAfNKPa5G8m8bu6pX3XmArquIoScChMt5f7cDinGTbnqD5 tlt7kmnBTdfa
2gVDi1RM1jM2o9D4MJtRu4EZoa/o7u2+OkErg8cqZQ5SYhxvtdWOWV5rvc5E ejBDGGzwUNM4
QuF8Yywb6MJp08Sj7Y2QzN4V6RliSlHh+rdpHVGbogQRmruW1Zyt+16BuRsa paQjPOu1xRI4
ag+hZgA4Ss/inwZwR0uiBrPLZM7I7mI1BXrhpiDmjOpQ4KsZR6sHaYOYa+ip MENdHi0lPxBb
e8BpISkru2XDVaMkAf+GXQHhuW/wFxbT0RlNG5bsGruaMIy+t8esbH5jjk6L 2bJejf4DTe+1
93gw3Nmn7WXTztnCkT51ed9nuMIveqn0XEv6eJZSNsuEQAPeYM3e7c7S3ccf R0kUATfMKU9X
sZA77jOTsAlmQYLKFzQmsaYdf3isbvgzfNxisg/rETy24HV3wlqxTprrsPz7 UGfA46joBvuE
mpQ8V7SO5LgeffpWhslEoMKmouxpBynMXpqWixFVemIBiSNHaFRP62qwM7k/ jpqpVS2LEq7x
gxJHE94rl2h+W/jzzbs8C26KAZwuLMnh/Sh8DptHLBhPnC4isoQDCmAkcPU8 ppg3wun170OA
V4Di1WZEh3Jl14v092VIRoAQHKz7A6ee2zDhN6j0Rd8IOeoRJAjMjN8g5eYU 7ku0xiKvhXbd
IEfZg563rFaj8y9d+8hUpPgOObpDeYUANb/DoTx5WYwWB9ihhxkUg2flZXD3 kxNF+O4SHGWB
gpeDu7g4ph/CAdLPbx4G556fHrNQv1yP6LHJ0rX/IuvLyr+2j4+UnGzMxVyw 54B4IR9OMhzL
LcrQqYDxWkI2WbvM2MFK2ZKBnJ4jlg527c30jigS/q23rKM0WSlxsnnT/fsi hPVYwsH0kaVu
lGZ81GIiceQR6WXLYybRZxQcs9zba6Ft+Sc5ulO0GxDAxOVAK5bzUXpwhofL xMWDLhbmJQ0p
oxP0UN8auA3S7OOPpjsMRHyJK30oycCIZJHodjSHynMYCXEQh/a0IjugxTvd IsSOaNkYN6uj
I09QU52ihOnXxsouZ0L2/hpjMOVNowTb1LtAuHZujDVLgdy1t22lkkXHTS0E 5z7H8d/8tqVR
tvLsFwm0ePu6ykrtVb6ItN3IEDvNnYNN5BFa3vdkfr6cYoQ3srfH+HgGraVw JUE56WUbYybh
ZyvYsyzTq6FP+k9KbGopoUBenu890SDIlVAradCedYnzkN6+kF7CDm+ayld9 Q1ewVck9izb3
pLSbSc8o1nEz7w1bdfEgv1mRmANJizHpQVxViQmDWIsQ8ilFyls5CTb8hFjs tiqkNQYC2rQ9
eXTWrhslnYTIYmUpU5H5TPYBXFmPpJ5H0WZVbwosX/jwDQJDFwx7AI4aAdfT UI7KhjbWwU9g
HSyfoIO0ZaGcGNXwewue7E807O73Du6uXjaqQgDhD+TTgY0SuOgGz5g9W4gc euHtX6tIm4wp
g+yhbaBB5KIlo/8d2GsZAjQhsKFJ0CZg3N60QwBPVMEa780Fspul57DDMuvQ 3wgfQoBF2Gwr
D3vg4eHp0HXlmfDYSI1OQLBDACYEYII2lWY5MC7pmOZgh9oXq8g8xNdmp5+6 Wh3GlCSk24Lp
PsL+j36yzNi6Sds0KGmRCiWUZS4oIIDr9egT7IEYsLvI3enLExNoU4uAAF6E /ZOkR5wJN/Dp
jJ+jqaR4W+YpcncK+LGnJmyysoOeaQQ5OGwKmpuNpcCxzRChtuHOvDbsHVoe 02C0d1S0TZFx
lJVlJuFJor099b7ZGnvem6v7JGa2GzNAlAA9AT3T7+sSPdhZTtY1HsUEVRmO MTDDruENG/4W
dzivMntNlwfsRYf6Av6hmv/pUa9gMQ6rtvZT9gts9jdRxbUin+VxyCrCdvny BQhJ9cohgOCe
9yEzBLic/+cVaKHe4YigwqNRW7OmdIRzJAerr8vI1tjMWQ3hfKlKmpiVOHH8 UiXXkt+/qeDx
AQuLOr1v+2bPi7wAh8W7ma1zy4H3/L2qqvP7d/eb+ye8N1OKwQjNEIAo4+8X BSlIXXj8/o2h
1/EJJOn622G5MyEyC9uhspRMBU1akdCgP2N4NzQwCsdD1pVIAWJsutpI+NLZ oGXT/yWJ23YR
q0uXN5rjBCZyR1IMNyXB2MYjvqHRHAyagQBL2hDgqE7wH1eObhHS8QtygcUZ 8cj7j6rYJdHo
ow0JAmER8VkTKWtMPOfdeCNkjhTCiu7eb1envdTOSX2J/3TZ5OnxRaQ0sNQX 7EXkeKYOlO0S
XpCsfxM5GZyEALCLECBslNDqG4hSrlIVKzpn+JmOOfzS2v0WsGoVKd2Is8xe emmiR0RFRwxV
lJbscF4ZCo5gkktXJ2rVJHlJf/cXDpbSi1MIcH0lcs0gS6j+MB1U5j0kBQUe RmqddjIMAQ4y
nqWX1H6EANyKV1sQ4GI443emWcQq2ZNt9EKLARn4mvPPY+zBLHC30yKbGdB0 kIzs2WXVDTyl
SZLAA9KD6WCDtye0Aqp568t9HeOPcNm78CMSFT7kTxLSpHGydUw4hNWiPrAh f2FjGBWOTHt6
EPx2Vuq8uMKPor+Cnp6S7pHJG1FeIUV9Ldpq7Xdzx3P02zf17yJEdDPNkjPX Facbg5RkPb85
JDoxbseH5uE+oxOFA+6ll55ioJGgKY+xzGqNH4wsNzsg7K1FZ5XZy+YYOTql vT8JxTh4uBCA
U+3La6Rb2vUJx5wXMFDZMSooUBmfy8gXSTAq3BYUueayoj8jCjH/wLwhTijA YYvpmxW+ImyB
k9Y45dqtM7G+nqc3y4nFQUf1oA8E/0CMLBD3vScfwX2RCjsHynd2Z55Rod5I N5TBW9l0dJr7
pnRV+29HP2s+LuSW2WCcHWC5NRZI5R4UcC4EuRy85bPxP7TvMF8XjhNXHDYa 3ZDB2ljRZ6HE
Ykqyz3O5pgNv5U8+PJqXWO9NNhd0HxuL1dmvYqDPysUP2QgKDHnl4XDhYTzO MTuRgponrSTT
EsbOg8Ux6JAap39DMTverHiY/3AiSgsRc3ODj2qYniYgSghHSRNHivNI+yMo S/pr2UdzAxgz
clWnuWiApBe2Nr9ypNDWlqtfV0OmCnGemn2wJT0IDSGW+zCP7KM18dKq4KZi ByGWW0CbgHpz
Y+nLdayszpC8Z5mwwhoMsmts8EUo8KFLkaA78WXzd2dEVlOkuk9w6lWlHl6Q avnLEHy1gbNC
QMcUD5gJ9HEIHTa5wJbZD8+QbpC7Y2d8f8B8gNlvkzqjRMGKLoUOIOG3ruZw uX8sq7rB9a/M
TuMEP5UjSxHYj5b/eO/L/NQq1fXYaXRZSVupoBrOwEc9QQ7DeCQl2y0CFoIA XOTlauy2vUf7
lMWys+m5Aij5+aSmuXpTctlcFefDTWVsJB2ONGaJtviIKv0ZJFmSvET2iIgL EEBGc7VEuog5
FeVBpFpR4irfJoXkVYSOI9Ijny6U6Ik2NM0iWlEtjyD0aOmpOQUALrxVTfTa ZG0tSZXbXCEp
QiW14rC08sh0sMq5UO+Fqf789oie9MQR3+AGqgIyJb5KW/Lqpcspp5L02JIn itsM7mA5TSl7
V/ywv51ua2DLGe1ZTgVR9niDLUuhDdbEV7yYPmU3+YJavn25x3DhQvllzV9f DcgqMY/nWHhv
pnNQkuUqo9xaepBwDz0L7DS3jaK/6XDU3lGkPcpZn+1ZDSe1yFwIOaC/jJDw 8pZI7CKRvZBP
vv06r/lluMGWH7sirH8nu7i09eFpP8LI6awHVU1dzYOiRf4ds3hNDBczwWjF JX4AEUE7vWCX
L8VOoSakY8alEd1JkaRsLxq/1jis44HA3U6bn2pDzZH9WCVzyWDejc0HzSd0 AGCfVR4E00sW
ryH8TmeieMmLVnvMpKmOA1SGMIdniAQHl5c6jqX48XmGxPhGwXx19YfizJ34 66403Pna5Tg5
Fkel4IAud1LkNXsPddNs/7DiEBbn8kLL43YG8IFC9LFkddCgK6uyvRh+WyrO Jll7tbjEMPMr
oocVFez4M+LkLGLU4RxfMaAVT6Mqa2xt0zMJOvM984FOkA+N3zAmTSRef5Vy 8oReNGFFRwdK
PSKdfacnNiTkA/d5H+MTvArLp/CzZatYLHz9LxGuEtYP7guBuO5x3xR10hrF J+GMit3b21nZ
XkVXgUc+5sMX3Jw8LkSlS38QipuOFRNTjyr5vE811JdVghnX5P3LiaoSCfSp RWJESQE0zzxE
Gd5vPau5BYqIeq1520OOJxUJ1i696KHcnxf8pXQetNPWFiaFaBahdYI+y9kH cXDaEOfgJvDp
+PbvIj86vchLm6ZAyzEvG6aqOnblScCIeRAVzlaT/4r4/OCSjEX1m+40x2SW NnpOjdyKd/ZV
0vUrWDTdxi/hHalXxnds6nmMpq8qg0wB6Qd2wBrcYlqhnF6yi1T0meHzAaqc o8AVlrcpa5hx
p0tjY0pUM2UuWHz3YPXLL9s7uB37Cepro1gwiewphGpIJO/zbsk7OwD56++Y NHJpueIK3cy6
dRLRgvRWZvYX79TGC1J1ggVCr9XD4pJduPPhJSXhoo/5zJ3mSgVjNKjxLGq5 z8EFOpmJTEoS
uFS4+5Elks/3WwMo1btWk6/D3w8JOmfPiNFc2epIp76EAKoyrdsnmL4wSw6h PpNfsVuqMXeN
RDd5ux/5Im9OJZpw+y7gBtMTGOv5WR4NejGsjMwprJVCgH7F6x1oU8PMfOnE GvPFHkkN3d6i
JwmPgLmXKnUteTRPeww2RxD8TPlhEDzYEoNVmI8X2CSGqTny63JKTmxW4qrj rO+1/Ri3K73l
LfbEBfDweTw91o/d3/AQs0nShdth6NlYeP3XIukhe3sJZpy1/VbyKKn1Lpx6 tv0Xm1x6x11E
n2VIhfbT9jCjtltvX39Uq6OnNWAUaqmJ3Rg3NchgUnIjEHQaKpSBLQughoWd VsW/kkTKJs0+
yoXNMWoVpc3t1tIiqnmR60JCHbBqmIgfZB4kqeDW7nOrbf9a3zNcFDEzQZ3n gkM6kWIRl4HQ
WVraOr1k/T12O+pEzoovPs+VEpXHVP3ucx62HcXciyL3WL51jy0rwuR8IxJh evJy1SgXksG+
DzfBL+L0eJcesPKuhjNSjLZ1TXYm8E9PVIIM47xds2VAlNodmwLv6XkfhRoq ojpFLM9+HdaW
cMyn5N7fx1Ut60Q6sMZ6EnLSNCZQwieYWCktaiAG+LUi5gogW7yf6yOme97w EHxRvQkGccqR
fSB4vptdqhKq8gYVAABeQPnrfMtT3UA8qtVaPpr4YHp0hrjV9+bBoCYr6Su7 p9aHezvQ2YFE
MPlMu0JV9Z0gyM6wc3puIH5nQW7bpLpUO+QykOg2GcEog8CRbdTuWbLLngYz uZXHixWXuSXT
2fEIKjAos7KsukxD2+2csemYXXoQWBVCBID7iAzug2F4ipoCZdmcp9q4WfeI o7HxktDfM7Gl
FPBun358VgzbiWUA60KnWy8tmGYLAdI8xxONnkbFM9QwOVplvx9sD7BnFxM6 elYNASJeNs+R
9WV+fppF/lRITZQ3l0BW2jTRTXvvuEW8BjOsWYT2s0aqUATcUR5bV4JrbTjv mrnbplyQUlQf
y5dVOpjtKQiAa9mbPSPHIHs+XP6JWkZfJ607WnEy0abyTZXbUBqnL90X6eJq 1AZ3mLthNQes
BaZiU/72NM6uVlZ7V+NwDzVGY4oh4VZ+uuMEkxhQ6P3V+npjXyGR+5WZfUX+ JOKM6A+gE6ke
M/8gCql0YbqktYk/SWmouyPMas0AVUuWOVWu67vUY+m1lGG5wHMsmJ7VDTD2 KNxM0aLoJHcA
tapxI5H1O9QWVipSDB335/Hc26xx4vv3B2GiggP4emeTXYXqxxOJ4BDHlV8U wWvIm5Tlxj2k
O+/Cs/SdNiHTQ/52OVFZVucZxvEF3uqdtWc3bSqikEDqoorOy/N1TFrXmnDe Ly+j/dv8wt8D
mz4DOgELRM5o6DL4cHZ9bN0iK94c4gZYEKDg3R0EuIsd5nww90gmXQaH+M0O 8tCq7I5mBuWl
Nu0x5fXoNnqvHQWJAk94P2brje9WDmx5LCXxJhnb3q3UQsYIrUbdXJlWva6k eZzhMxzDCoNj
L0W9q0K80mpQaAGZg7MjfChOSdf9udWSvZmC0ZpgnqowBwd034UF56fO9Gwt vYy+wipb3vx5
Ccwv0wf8u7YeBTlhFRFE9LYa7kipzE5tGn2KHyG4SFBJQEVBF7tSkBLvQvnE SmBO9yruqR0R
1Vv2Gp2128X27iPvMO6NS21Ov554MWIjKZNZfz0vafB27sfq8PkXkkSbNl80 +7HskZRlthDY
PfBZNBNFr0ynZk1M0RsORQXPRFIIYdJwHrCNwc5ykj57k99NyGj4pApppXZz TK2Q1mkqc3+E
M2ZFigXYBBzC59DVMlDj5xMGndqhOZFmeH2d3KhK4U/Qgk/AJ/LhUwkB3nVv M3RdmJYw12/F
mdwc0uRGTrCiLomhZY6KDtvrbrSgiLNAAdP03L4Bx+l9UwzYlwARiqrmEhHZ iacu6rdX8X2C
iZ9wWR7tDZbhqLeP7lWFKQ3kO77eJG0W1z6TlKdZkNJ4LKymKWlmRnzDJpzC T7o0vkMEd/8C
LGYOrteBAFvso85o+XjxmqTSWSHcq5SbBPfXTocON28Tx8FD1Sc8Po8EPgRQ e8JO98LxIsWM
TqSel0oje61hJ4PCJmO+HVwauKMLfKTJsbnWBJNdw+TmUUmFPZrBTRQ0wX7z WllIaEd9SU6C
9j0EOGkTubn2botggwCbb72/bzf+rA+DFf92SWoM3e2RobvNNgRABbQSl+GD jY1ETbqRSAbE
NkRuDyPA4LTDbM4RYRR/R0TeBAhQmk0CEzeCcvvVPLas+4LtVm/zFgKcrYt8 a96DKvyaGFuf
dmUicnABAYyleQh4cFG5/QHu/bdpYt/kKw3Ec9KDf/wR7n/0I0M7F3K3+E1p LNqrp3keXPE1
dMCI3mw0uB27b+VlmoktbnBB8ICvdGuLUKdaNRvVpKJIQDHtCTV6GKMYJcJU BnxF5hlSo/Xw
ExfEIqURIzdr1F5bm95E8xfhc+kVoX3CylJP+Am/jhYU7lekEFqs3j8vpSrZ vCTrZ6z/Vvn+
NU2S2kAySEBvhRU0i9ueDhb1UUOhC/o8KLLKkuVsZZit1coWzgc/2jTcO10q dg1DyS0kepqv
j5ohbTiWHiGAaaDWOwTwEk/Kn3NBgNSLtEu8375sOTUJ9ljwXtJpvlWz28vo 7TeOW177xlA9
m92TZbzEzPPs0HHLRWlGe3DiUMLJGTc9e2aGybvouRMFHzx7/Lpul6TTi2tX X65CtI4Hc9s8
/Fx10gl2HBJZsdWBNeVqYeSarfB3Ke+rVjiSwyVeNRvrXx2AIICP4/evEnqF eW82boIRfvvP
155H/NZ9Wq5vP5UcIb4fbqedOg1jR3OjjRYdEAykCkOBI3rm0NBYAgEszkKN pAWZQdkWM6gW
dcmYixb83uduiRtf+4lLox6ulpooE7F+QnIAHuLzwWveEELZ5DF0i/bb9wh3 raAb8YHIIYs+
mCHczf9Dyic38lPtPXZDbyC8a4TR5Ya6XIx6Wfqp6BxrZEEenymCY7YtEUy1 7Teyb5x/7OHZ
//CdQvgM7+Lrbd13QD+jtNSoA++nQW40dku69FImuvRg4I+PVU8UOYhESUrd +A0DWfU01KY5
sotD1UPjG/UHIFh6fPPSPvQ7e+lbecW7YuQE9OjA0FTlgTeqTXs1S2ue0wSP 7vMfs9+N15dQ
LXT+dVzp/Ebk6sYPDEadxu7qRt1R/Mh5d+YZTy27QTa7C02ofYybS7obr7Tb u1YI4I1ga5fh
xSI21/7Xb8jsyqGNtEbkYKlw4NQuI5LF8K5pCPx6CQI0+0b8qUZ945pnuAeP FbxoDgFE7L0X
W6X+FM8oqas+QTReHi2J/aAQXFgV1uHfb/ySyhegjWlJZ1afsJooD5fkAAag t1IyEduNLR5F
IiP5tWbEfGEx9/qFLrWkFZGKwp6lCnbbi9Zn5tsxV4my8QUtxX8iFf7TCHW6 TPbmX+F8kf6G
8Vc41ILpYP9fOlBQP6C9O+OndTC6MoslU3d80jtfU9IWls07OzT2HGHoFxHK Ns/3yn6urXvt
WZ8O4tFcAM26xOEbVhgL1FwTJqk0R3cy3+YIbibqMz0e6u4bSKYoJ6ufUikJ avoTrrKEA/rV
sWn4M+eplpUyhXIQUefG9o3SunS/TY2OrUFtf0v+Yi1ulkNn5ydibHJlryq2 7g2kNTrLdjLm
gQamh5orYYGDBC28n//yevYIrv4AExw21Qcqc15HpC3gljHmyLyz+J6bsYoN DSPoTF5J22pW
U5LI8JR5VLidyrVTh77Wmmb3VfOftMnYO/c+uUC6u8Vdr/Z+UHmncM5TZTJC aR1jcvg4MWRW
YDLma6ofWYqzCEaDeO6ln2KqjYLbujOyZE8cQGsvxB8Rn6eqo+I6tRnOkJy9 OwEBJq9IFH8d
oVJ+WQjwC71GGdgdkxi2ZZ8+4OpmoPMwlJLLkIhSayM1jW6LYv7PBTVnM5XR CsTCQi39KUiu
lyoUV0kUupEAcI2A1C/oJ4e7lwmWinFGT3sZOHC/F+aEksjxW3j+yWPKiPfu wam/ZpRqgFv8
MvOMKjZ/eYFpwIbaIza4XKBs7XxOyFIW+DXJP6L+GneRhai3yQzpHmqpcGZo zBlVjBr+nPwH
71882mvVTMR5j0fN5rFMeePk4wdxDiYfRMVaYZpDdmBIz/r1biWO5L+Uz83u PJh+6595Q+cj
E1Tnb9BO5UIb7sWob7DnYqyBSajuKKT9h0ScvziUd4mk2TQpyD/p/rZNs2Hl ky9C255K6H2B
xG3DVKLYx/ClfT7TaJSIMHHBJas1BmIkgRSfVWt1k1hwcVYy696n/cLaZonH ZmpfMH6RQos5
S6lE+W5FzOvhL6lFj3qJEDWU2ZEpobsmpwdrbdAvvKd9RnzSbmXH3NlR2g4v rSdDZZAXjChD
dQgQb0SY4bEJ/6qgvQ4Weq/T8ssaiV/pQZDqjL13zHNggZmhQ94e+QJoVYQP 9elyD44fBC/c
Ub1ET6vzZp6QTuRWb+ElfyOET9YVrshaG/ML25SXmPd2wnGesSKJxSp7Kyuu Kua442j8Sm8+
jjLs/6pC958D/z844Hf78s87SJfjP840/3ZEpAsqzPs3Wd5hPw71/3HI4vWi 6Q+ydkIAwtRg
wG/vXP/kCpqk+kcZv/2I8f3H3K2PyMKL0KFdJBIC/PboX1dWYC4hHBik2V3v zWOymz1vqDbo
cj20JnIxAwHCFCUAsfMbsqvbd+Cb7yInRL6LPG9eVRkWfXBX1w72JocATZNQ 653f3YLbIYBX
8eXY2HN4EVvoFJg21XxQ+V3ZvCFUWan3d11cODAYswUim+ePf+iygO4bN3h3 p1CJSlCJ9Yo/
jmX9diwbasiu/sUI1BB5CUD8fE8E7G0E1ZcABf73m3ISgMTfbr70ku2t8nFF xDEwEwNzMeP8
t2YTBO9flLBSCeC/keLP/9c8/yJDd+44QkDqnUkxaX+YXH/MulEtY8kq75Be QKIGZtYvoD3f
Tnx37qtDduq01r9+UJ02ENakZh3QAj7nd8a9t5HrgPhxokTzatZIBs1I5SIE 3Yh3kcy1iX/Y
MOEvESpUQQxIYeNjp6Z8iOXWZ3JBZwiVqUO989g9RFgRdarGWJIfbubLR4qk uj7xEsMRspFe
Gab1YPQol2BJOuSJQwAdE+haF11yxvjydF5Pu5a56F4MvolmWO+xwfu+zpTI GiqTLnsYYpe1
iV7esU8QoIjdmzPfY8uCy6x5CeRrI/DZyd0TTFpeA9qr6Eehrp6t2nxWsjBt v7qfHt1AjxTN
R8IRnL8yqx2Shv/SVZ3tKjE8zdDD9eUHuC/O0WOcIMF7W0Okqyn1F8aPNHSb ws6UYtZlFQ5q
EjU883qOZQTtmBP8vSteecmivXxbF/4Jpb5GmrJZvT4lmlMjKFWS6LWJetCb KGHrEsZhtwT1
idXRBvFsji7JNFMPL6pjCaKC/4u9t4yKq8vWRjcWHALBXQMEd6eABAsBEtyd 4O4QUkggCe4E
d3eCQ7DgGtzdgrtD1a30OX067/t1n+5z7/lxvzH6xxq1a69acy+bcz7PXnOt ujx68pDGTYxo
4hjl3AcyvQmix184yvYRM9JcyTuxnSxrshuzOhtyvbzrzT9+aJQc80ljLCN5 Knt505QihQ6v
g2G6DudLVHntf/ZmgtWo5YS38Ot4uVGDj/7w6dKKDqrtES31xikuPWk8L1xk St/VZzP0HcpZ
dXN1yLijSAJtLK6u7Em328FCVDxjWB2tk6/D0MigM9iHrN1k+KKcYLfWbS5n aq71/lUW5IcW
z1AUZeVzPOdqflK+mwDHcISGvufbDmJmPVlarJ0EnxLcDSzrN/oYQ6nooh2K hBiHAboUuOge
uuSfyzIc++ZLS9phloY+eUq0VxWG3HrZ9mqh1Ku+VJUmHRFvjdGZB1RKeVCr 5Tbe72IgWb/Q
Cx6NJWOkC8IQMNovUgyCsZFBAupGm10+GM3vV9qK3S13fjowQ2cWWRA2ESs5 Q1eeccnjU8t+
CFN33yMIPgs6nhq4tuuhDwock0OBjojfriMH/nGeL8sbNcg84RUDFGhzhwJo Yr9dA5VSGnc2
BgvpUABu+Z7xt0v4LnyDg0qwE/geGXyc/V9XGej/3YPUhL+zuGv7DKqf6qKw oTdKq/JhKDaQ
fiLXdC8U+wc1eIyzq3FFElak8zTOE4f/cYMnCXkRgZqxIh1DhiiSnDOkZRzS mP4AV/C3qj1j
YsPVSZZSi6XkSU96+uaKtAFv3kbarcazYNZD6bWQEMHEVlRpqeM9lxxf29LM Ysqd2tGja1K5
Y7svFXOdXw0EFl19aLa0Fk7l7OpHJB6cFErZNqlx7cOdRPqklZGNrkYcUErZ D4hADa6wbq+C
sXveanoLTSXnnvf01341IJwQZkk0rSfWqPvjFYOhPpEYPs+D56+t4XV09CUo 3KQjM0YqrLbY
3jGsMfFGObmEBL1xdRrsz0cU5sTiDhghl35vdSBCnr9saWB7Zxs3of92KL3h 7TC/eYZYVm3B
+n6S0q3SLZi737+YRTs2pra1SIblbOG6SIGtf/dyQDnhTgGG518v7SSHlY7j h7ztsTE0MxWO
3Rc0OoNR+Se702mYY5k1VY3jLHSVNdE/pf2FSXWqtD6FMybSmxvVbam6gJpV mrZJfbBHKM+6
92B9mQMF1izOeu5PGmGDYQm6Ttq4oajcTtC+rLO1B3s0Ng9tShUv5ShgCCPP HIrUr61yV8a1
2Lm/y7ZmF+zzgSmbfnNTZW2Qd2f8ynOUWvWl3rl2cXxx4c9SiGXEVU6K6+la v8sWOYECInat
xyRKkKcRkRSOlJ95Lc5DEk1P+KLoi0Ye80ftcjR/Yab2WE8sXfftO+2W5Irx n098Tq23aN5J
g43WObrLr05o1eiS8ESvi0QBkXu4MiGS68bqGnfDBE1iBUNDbTviZv3XmI2B T3iRFtSvjkv4
+eqUSAbI2nzS3px1r/44FuYqvBfM3kCmzdm9zcte09FBt7U/EFJ+yJP6hvPi wJvM+EeokG+K
SFX3yzKOHBOPJc4y15ADHYXKOlujraSdkrzWcN4Qtxjny4HXNADb683NG7Ol 5cZLm1v3NNB2
2DQEQQ4KdI7+Vg2ed75n5CqvJ6qX8axYLZ/JOdtUtV8mvqGlJnbJpBvjyvuh prfQoIzH/kzN
bVpj1dZOq/o6QWXC1p5i7aR0/5A1ZfCrMTtHAE0XCSep6aYq43x1dNu0zO/y PdchHovgFZ70
ewXAU94aV3+PBH+isUPfih3RwKbC1S8onXZZEznCUK9XggX5izyTRED9Ez32 gDIRQXDxgHfm
4s7Joa+fra1QTVf/obIdmyeLgcB869brfc3DyCI3MQ8okMZvcI0JU9UnMr81 8Qditar+P8oc
+0rM6gxhUVC+a29U/Jwje6y7O4SfvVCuST2jLzNyVySzvqfz/vfC2tpWPF56 WUJxZoFwyhwS
cwKlTGIaTlrPv+vjj94z5PYY5Wj1oD3zPbWlMM2/G14cuSHCX4PwTrWuMp3Q 90Qu/zxFsLb7
nlH3/AxmhuCNxS/nf1ovs0XLsT6VlcWttnlcSWVOZhp8fMf+cYkpeG1Jjic1 Q5vlFVKnjAm8
wN3yNv64Qj5z72r32Slju+7hPao5zJD5X5ASi2mW0ccT3OBXkPAibxqqXvxs i3gtpdYy2uNb
LZf/dZq29k5vj/Tzkd263Luss35cVDaEAPbhR3TCpFjLtMKi9te0L7+NnmuV Hq2emlkHOTTF
tegVcbeLBTVqf27qSzZSCSPK80z/yPN0qlmuYM/ePi8h/HJ0tsaHWP9B9msN +CJ4l+a9FyK1
Dp2XurfHuGbjpPbwvFY4T4tHyouv7bxLKSSXc7SkPRuMgZeKu+rPmTDSvTfp vzkFBzgPbE+7
mkV3o4cs18o4FxAFL+h0vgCbTdqWxiWgiJlrsHRuY/snA13OtwStxZrX7oq1 Na2VY/uDrz0T
vo7gZyw0+nyWHSzHKBpcMv2I5I5DiYGPlu6Q5SsgytBJkjoSUmJTQy7JH6/j MVvi8p1iRmn2
e5Oe1DP0T37Op48dB63a5W5O733WGNnvRYvWOylnG81GPkImYRC0KOJOLlfO XeZuksWhGLs/
WdOz+ULXKxAPbuNKA0L6jdWoWG9HXSiqqYXm9lB2le91yHygFut3Q/SgZ+9d iZEQejWLmG+7
8F4j8yNthk4nmNm2TJJp0LcMkbCE2dJwI3+JWGXxRGsw8W/DHQppoaj3Xxs2 whtdkCPrYmgI
C2A5qlE8lil4xjnqWO2QVfMz5xEnFIgMvHpwNXggiN0Nf2tRgz70Y/i5bEku tRuizZsJ7NeW
v5uqKmvlzxYFzb8bLxHwCGn5/aMYKPA59y2X9jP2325k/8G2foX/d+6/c/+d ++/cf+dq55N3
XpJ0Da51rG0xla6J/6g2QdKWlFgYeFhVufkbjqH4HRtINuIgJjxZ3iMYT0YP scisi0N/NZoS
b9GLYM1/pSCbfoqTDGmQuV9K/x364bG3vk45iAK7UmIFYmvsi2cu7rY5Q4Fe acrbTYazl5Vq
yxBJDigwzQRKUgt+jvZrg8z/JJX6eF6S2ou0s/QTPcKJI5WA0Gj6AofOPSpt T0tGxfH0IR5l
hv62z06fJn5S1n/iK1SJtrHiGBO+4kpFXAaengNPq0CBDF7WbykETc2xzClY mimMP7NF8UxX
ZRAY4KO3H3zyH1xBtwiv20bHQBuUUMDWDAqMhmkUhUdBASoocGfNDgm1+qZT +gntL5sP/gcL
vv8XJczIuM+9u3A0VQRr5hNm6okdn7J/ehCzx0ScjdXkQgFlKHCY1BUoN5Fn iOeHB/bwFfpm
Ltr9WWye/f6k+X4cCoRkH8CY2wjpyBDoulFsCDb8oFIo8O77L3x+aZ1+82B/ t0UJeZpjRm6g
k/5ylFf01fzggJklfZtMJFNk1lf8XtbwgPT3KRqgjHcS6Sqt4cNQQMlb6+no +pQR39dvw0Ym
/jmI6ksCN6p8ntt5XpgGUjHqMCGCR7L8U9E6nmEVn66Y2VaK60DeJz3a30FY JSbHdBDSr9Gk
qGUs67X1rV/DaKLfij/aBjb9BHsZIge5hy3gMa3XaDpuVb1EOuTypg5c5mfY VuOZjOQkbPZt
S1ABfLrHnnvBNa4ntFLy6H375Wm7mrZ2dqwTJVE97hvwulLMbD3dQpl2XJ7w FRnXsqNWebCZ
otiBseum/XF23wbxcfnsZHeXAc+6233MTED7CAFPRCDBnNqHJPPEnIG3J7oS l+n7mzonZJk9
9+88P9jBnaR+oTKBT/NVTMczfnvcLuR6HaEdrOFTMTyCQCf3FAfRO0+lGXOX s11kZd0d8sSH
8E7jjv9O4R4K1PhEgBMYYi7DmprL+Sn078FY+9uh5sHdIW3asa+v7dSmSoag wMe41erY2XSm
VYsXL4Q8Z9lPA+o5KPdHzY63RIU7+b1SWLN16YezXOGnG62GnJ9wIsULfgip hkc1iD0Yeb9C
nr3QR+IvcoM6ghPVM83ClG6bAPFYem8JBbrGl4i1xOU+eAy/vDEHXf3gGfmq C5sEe+BlmLqf
8PhaLw3jBOssxvcAVYDStI/SX8PKeRHmdIW4kqe/Y5B5ikOMPArv8y6U7vbB YaziIn+NMY/4
r8D0fntVKNDScz26yV8EXja5t5jAMmlb4rYn/Bm0kxWP/kVnIFXcnqWWO9Zk wr3biXvE2ItJ
TijmSd8dj8HQrihIvnashLqyMoiRNVOvsjuUA3m7T1ROJNrJsmtKZ5SGrFhb su3WX7/Mlm9B
LYpTgS5twx4KUBOB92LTh551aYBvUGBzWDcHYqkSjYcrCzjJlQwQBFuJrX23 ZlLxJzKpAE2l
whRIBcNXVjXA95FOxbDjfQHc+RuFt/PVcPEmgRTnwO4zEGdccLNtuqq00X2g qCbXhkveuCRB
sDEnOyNDoA12rwobG8EsAlc0Kq3/Iw5UumjxbrhM5p9+TU/eaJWWaT+LZ6lH EFHAAd3iG4Rr
boXKPSnO/NnvhL2u+MZxET7aGzsry5M4l+DYlpujj/XKxOCI/5x8JAMxONLq k62xd8F2kIJv
v/ac1AuBbbpQQHAjRZ2t5MlXswK54mzJYKZPnc0ZafgVIGptXLHgoY+d2vTd OS4zrmFi8seD
QZNsr/uJnettkAWJBInWH1UXAFnBBXN5aeUeYWArir7ni4WJznY5dkg3NxJA SooDtzjBz4KV
NOZkj0PWzf84FN6G+Nc5w+EotN/k/mZtNBqggAFs9ugpQXwnjYsXoEB5NRQo g7EWcSvg/3c2
GD+u4NvAbnz8j8UBmwiMKs7Pr6PVshGOmCAnOXf02w+P7MFHn0DXiybP+lmL 8fut32iBTJth
/mbo6OEE+de+lP2E9HPib7AJDGvGuktLRRPo+/33hMGprKr3fZ5QQCJ5+W4N G8IvM8sO+snt
DTOZElCg++dtxz4UwD7DMuDWDu77/TmUf5S+h/71HjQo+G7IipnhD09y1T/J qfB72zhtbxKW
G/74XYGivoyqRKfPrxOXT2Tq9NJXIUYDW/b/pLo+Rm7gjzcf2RNLpUwfos8g AfytV52U93YR
VfrgH2+vINcBUCBs9CJwFkK5RdbytgY/5lJ+5BZjCabAj8EnjWJ/aOEUofk1 +IvTTdKEutIf
W/uHBmr+Z92s36jyeOYlKy2KlLKE8IweGcJRm5oRtyFkkBc92BI70/1I+lrx Rgqv8z82Z2o6
X4931Nbhzi94JEgHeaTkRPWBcas4BKj8ZxEpOMVJYzVAUAB1GVbfn9Y/oMCx CfZfzopjeA/7
zCx/DgXaQ0H3aoAL3r9/B+DrRCphTjZrEJz28OBmeGyEBTAXEiPitCM6JwHR /2D/2iN5CAwm
LPIOLxY16TIDqsmGEmQ4W7wuMOBQCL5ScJ4G7T2FAl7TUECaF4YcPtVsVY3y tNY+jSBfT/5E
pUmLUrKlFU3tP0N889VfXKBbRq3O3D7HYI5+qKYa+8k2Yle1PxZaBRW+oQSS LOJjCSCgtjwE
vIFjDQWM9IShgDw1DG9sf/QItjbA4rbOOh0bH3JI4NBdoGPykDypSQl8gqSP SsXxukQc5aSG
NKPBs7oJyCdwMMW+2YJp49m16sTbJshk8NSUrMkZrhZx7qfWRVMAIAa33qp9 E1apnKr+4krO
tyWcLPzpquuZi9EDCpU/Si+VPxwlCyG/YtKGui9bn3GSpPemNgfonPtW3UlD ncQNV/UbZzd1
fZ0MwlXgylsMH1/H8Ich3vUJjDcfGmtwMY5M7Dr58x5BQNzXao3PPF8fqo+X URy9qm6IZPTM
lCNiF38Z0KVVlKQ3vrTD5+6EhC2CSov0E52RgTJVJy8uwCErmBH4ayqqTT89 ggL6BDA7Kar9
h2+8FR9B9x+MYNZVGcxTaPCs98792anGcuVVT/4FfGZcHPvaWyrGIEk5EbjY 3L+t/tFndHFL
iYSvDZkJAi2TwvUU+eP4dC/VRXDC5RB+mPtdowXa22gI29l2KyrS6Suw/9cq 8rPk+hIxcfdi
ohe9cEgoyGkcnuuV9zu4OzTmn7RKzHz7Aw1SyE561qeS/2txUKl25mj5Mtln pvtd1zCjsgWL
EpGZONHGg3OEvZdpZ+Hnjkq0G2FpRQ6Zi7y/F/Ol3JJhmryXm8Dy5dsZvN1N rWGZY1jD/DzR
3rDzkK04Smg0ygA34LUSLaWWZMvnhJFAsC8D3GSAtePsbaLgSycAOF+RUQiv ctyP6EoWg1/z
EwwFzPBldA0bvQmoMKuwwHvJEzveFqXU/G5QgNv0/bEX3ANj/GGHRRoTWwbj rtrHJEHkcq/X
70o5+/Q030Vbr0k/3iExjTLfcJ8g10qopO0TEJsFqciZdSqHmjzQ2IEOslXh 9oG2CdOeB3Ar
TM+UnzsbIb7XdX990Afimf9MtxEt17eRNJYrRW8auqrQdUgSnKVDWtotaIiY 42tOkXH6aLzb
SXxdkAjROf6zEVVFzXj2+NQpyxPhT0QNLxiyvvLJw/VuOHlrKP1X/xZ7TBFm Pb7ao4x7emyS
qJoeW0h8ENmTh52J364dkLwVDiNlKkWpUvhvdWvrCXHi2zBK3vgKkvq1tx+C HmQQH5P/V2yx
ZEI8jnRlj6PNp4xnRY2+wE8gR35eyhK1qe4mmfYq4Af2jh6O4lyisMHzUEjf lO097Rppsq28
RvhKbdHlJU4XEVKS1qAZSsRQX39j5H00Zw/eCM6MdaRVZLtlkZU1mnZhdRxr foOnXUivKetm
H5n1FAvqx1juQLTMLnfQ34n00cDp3sGxTj9OkqNfPDi699H1rIUCpul9d2IG fQ97chsup0qH
MYP/cVCYHBRA6Wz8+Nk1OR4bqfk2mH4upWhxHt3aDSGPzDMqtv3GTU7owmqv 5e9E9DDWU1iu
zoMet7N9xLsiCSwMQscLmrXJNztF5PTMnB/UfHx41o7LFGmy2XfapTPGyjug w8qnPDeuGN/4
qowhzZObZRyvGaNMViCU6Zk07V0bE126+N9bYs9a8ZzrKZe3NCevntvnL6sd KHnZoVK1sTBv
Z/GuTcXQoDpmE4FiwQ7JbVry8mrUI47HW2c2qVuJ5lbD+qNnhmzQMrsjAzot nSZm6oqe6Tb+
6N/CPbIJSawWRDuGrJ66qloisG2p0RUwFAJfDd0WfCzqCRmL/l58GF6QZtEV aO8AtFcIBX6Q
/E3ZVOiSmHKrLXLk8F5Jq/kRz0zAFeaAe0GQuQEokE1SrkZOC4E588spgwei Sa86nccwv8zx
P+b6/x8S1xFoAwSDjb92G/90mCwqhmEP6jv224t0KPA8qFQDXykMhjlx9B6/ kcKn+gUanIXC
0hoYgg/sEJT4opuc8UvWcNO5tj3o7G9qK3tUlbPtiNk89QjbErR1tX0GvZRl Cr6bZdPqJuLk
ydGmtkwhBn7uiZWMxEIDQiLhI15nFcpliKR9b0vKcTMmzph4P6Y/ar9tHWKh vjO1ixxtaiHZ
v/HsZYecpiy/A7qwsXw6/C7BlPWjmOx2u6pFXTkRt7PSgijpfIzauzTQF1s/ 0zlxlgAqQBa5
pf6EL8raxXa7iVFd4slLYzA9WSQ8T/1MafQj1BGeJHAwj636Tcl+OeJXzE2w 2270vgCYtRf9
6Xj7nCK2rspWZDgJFOggrDMi2yF8/XPZInF11Da6b27ZxeFZDNl8BoKLO2Ys /ccUUPOK9U4a
Ucv4AW/iRtCunrp5XfjUisFhDLq9TeB9N1FPIjHbK89IaX7asAKvYlFrhQle 5gOhsUPBsn1J
0i/jDP3LqRlpiTdK5DLvs8rHnEy4RHgfFdpmPacoZbvzu3pO1shg5rYw/8Vr s7KNlfqRzHRW
cORfR40KBjo2yKDAxYUzbBqlVVsLw7BJJOx6enIEEu41WtZvgOiDxDoDGzTj v5RZEYEBFgr3
1kv8CdB5ldXRnu8xFLj3XPr1d66vocBYX/E7UOerWt6CEtmawgtyY29MISI1 mw21pvg1cXKJ
bdTHwg3fgZEKJ+J3XbtSpUoFe09mLH90FJvTlC7U4QK72AKyfovDRI98AiIH ttj1m7IUGpmD
xpqlPPO+F7OefduIXlzsy6OtRY9y+4HuMyMANyjwdgXVd4c4zxLCkP58lKWU l/ROuFRSJ/nC
+tvLfW0pqqDNyLOaimWuA3EOPArpH2jbEibNWQ1y7yy6HzXVjC3pEFXXu1rm RhuGVtRHxqHB
DX6JoDK33GapJ82e4r1bNRNhN+Gt2ScUejeAQYg2Qse1iISis/l626SY7eWp mBPq9y0Jk/Ks
Bu9WQihgPts6b/i19pv8qPGa9WJ8/xalwBPOV4Ez4neJS27rlLxiPV22hQO5 MmbGMSGb9eZx
bBLh1IiFpBU273blcXMw0hOoJegVTQmEtJlxx7VTeT+MujIaEZYSx9HVRAoJ YfFzPWkRifQK
kui4Ce1EY+UtHNdUIFQOwvEaTVSW10LIzlh3phZe70MuMCVj/zIonp0IVyeF pwbAEDqgwbui
87kZtPKAtbYk+HTcrMLv0NZEeegJ0UR1JePGxkazyZHTwNmG3NgUhhj2mG1G OArdpHEQL0pU
XrlbUdEjAJBrQ6gxF3CGdxPFQl1trAteW9Lc8lfFJouqMHOlpfIXoAp3Vtag XEE3rYjoJHgs
sjW3rEZDn+QeW3YH0+bEPpGmJgqvStG9irJHJfsWMNWn+rPtIGa/TYACLtOi zpAq+6tS8LmJ
xvP/uDVFkyU62eaKAd8xQ3eBSU0u2vULvd7L5S3uJonXViSh2Cnvzrl4TlSx x4k4kRVQpT0+
iUpLJNdImeRJTqVU/jQrcuXOr/xQO1lGh7Q5QRNWl8kQeHbQGbWNTqavriZB hVU/5Jwez6zr
NjiGAONhd2il3na8zDLVLePn88WWnC3Ei4ukiDhxTAH+cPdIaBLGi7kHLbl5 Ej6WDMm2zmhD
6Ae0Tlybiii96+QymxEJ3GpTtudDVijsbLalB9vB5lyKq2KuFm1ATHj4grf6 x2TXUE++LzA0
eAo+4SXmt+mMq+nbgNxAgetgueJdTGELCbHyPO0ujDqSsBzO4aYsTwY1XCws 1ZjeDZcL/MTy
PXd1N7fTnUt3Qs4B3lo2Q4tXNuVcTG8a2uljVx5zniFE9ZEa7Bgs1MBczwgU 6FShD7aMZKnQ
6s2M87Uk8u2XQD50RYQX7ULNtYUfqd/TyqmvlTOrjZ+dFwxWzk1Iu9P62Ip4 UVjEfl5+qA0j
kNtQYI0RCryEbJY/QMAQmhzTatXfxb+BxD0MGNzdw7RfioCYFZ/wVuOKFXx0 BgVO8MC5YKdp
CMyhQwEcKd/44JAH5rv41qu/tBQ01toA4w1gmFv4lNUmr2YL2lyGNLPCXJdX ld/lWyUWPi9a
AqLbyGc1+fdNMDsU2AoZkZHALb8PPIDhQZhvkdOJC2o9JYTVo8weRqbo7dQj Z149Syv2urVL
cPQmo/AMdI9dItxE3hK8JAZ9xKd5TjrELfJSNvLxS2+mPb9FmXKJESJ83lTh kR+8pNYCtIS4
c/J44kADS7L4iF0wCG5HW0a97KmxWGWJT+7bsNJ+e6RMS4dkH+TDK3Pys+kU k+DJsYvisOfK
8ZP70bzhOLTyZHdtdJHF/hlnQaBjSkfdhJl3MlBAnLn1DubeoUAPs3OHunbq N0i2WKYJfVEf
HhNRtOxMpQo1yDFc7PSibG7CUhqzq/gWxggFC4eL43LrMq2UCCQIKp1Nb12P 62qbgvt1YMTO
k5mnmFiqGwpwbAyRbDyFs5MFovT3un9old9KhxX10DVhpihGMS8Wy5OJF3Bh frHM6k0YMGrN
ew6Xzv+Bnf7E5zCvVlvZJ/t1XVOEGi5l7XMyx45SFAP2w9bYXbDHo1mdgP4v 89/fU0+67JTW
hNjystnZsTI0tNRO5LGtMX/aOP2BEtnp9yIZsPF3kntrLsIgN2UpVGVVqQQJ Ey3tqm5R6Kq+
c++8U2ujJ47dJCfdNLmqcJBAkCzcadTLi7H7MUfnK5wQtRm3GS3dRuzupBUO ANEOeFi+aA3/
2jsg093WkzsYtNDDhvhelGoJld+/nwVPwxxVhuirSxIWS8pTGGuurYLNje7i SRlZmAMDP9Qk
/KK6+nm1MLyB1/b7jp5/LVXxUuLuNJrdVKYYyDnRaCUJK4h5pxZ0+cdz0sJF h4XCTNOPR9/w
YYrQYQYj3iNlDVDAn3kZwi1z/1Tb4P52L/2a5hsUWOeB+/FGF6Yif7wJ/lMh cXKkf4v63xVF
+fGdVIG1UG2lpXuW3kyPmQNtuJz2k4iFjjtK0xL5GGpD8fk6BOEqZswLcu1x 7RP8jbkcpNWJ
J0pflb7qvqT91E62wVqt+O5GzC6DGaCznQdCXSiPEy3BZ3tl4JXgKygQOqU3 nL0aUum8ZblE
pdFQT6jEoi2dTeb/hqSTnNwE46NxoLBsby/IYwMheeqdXOmutmlS2LerWWoD 7D3vdVn6wDkd
T1xqRqT2sK81sRyslMMN9FXfnmaulWpIh6gEQUhlmvxYcsJKjaOlPukp/ghk FPMMNUM3cyPm
AlRFJvki2qWHmXlHXXtLjYN3EYPIad+EIbozcD+dDIXPOUWWapsPxbDQ24WQ tMTv6oTx63qy
ZQUT61rUrRyEJa4/e2HAzCzMYfYdISDFzxftxCPdoL6uwp/UAmlyuGgKfuu0 2/tFNKiqecmp
Y9tjbqDO0pjS5N1AE/OCRvrwEplFqVTGiVpqV8mBM36/Jf9pv5kpZ7wzC/sW +UdD9hR2BADN
tEVogsciSSdZZ0h5jDM+0iKhNubZXdCnbEqfXkaE8maYdj4kPHjBhjDzu3px 5Oi9bf512eEw
FJD9OmGmVpeoL8h6n9Vg0cgdGTaeWuIYlVbzA2wBmxY/KK4gdx+hQLgGpoxl 614W2xzNA/7z
O8ltiO9V69UC6N4p4gA9/Rbh18tPB5gT6g83JWAfVQVVs4F/YntDAZ/vMGPM CPnR8MtsHD1c
wUwGWXYiUsi5GvYfy/2pBAzhRR7z5duvjmB+z9xz97WO0lPaFn9cPU5Y70Sv OUHA2O638Ai5
/FGxhddwzDr2J+aigcIZpnGMyySFT/XPRUI9kowTh1FeMUIO5fb0ei4DRx7g jsBH9eDrTco5
QtA58q+XvauwKRunu6dOVrL2DtPMOu9e4eQgLhan3RZtp5DsTegzPwQH5lGr j/+4cGzKuJHx
f98dur0sBlkFf+zKNw+ZMKgv7r18d0gJEZThQif8WfQnwX8qMOjfFYYNkYCN noEG6FZwT/or
zyP2XAJT06dbK3E2ZuB392Sm79Xy9apbUG6fwGiD1te9uXf8nPMsQ46OdEHU 5NW2TOpEvbYZ
H7o3+2zgotTWk/UnCBh0LKoLNPm/1BElOfYM+IZVUNzH74SS/JDurOrBUGAp q+wOYNl3AC6e
VmF/yqhfaFRonov50ty7hNSJPQw8oYy8+im3nv+qkRJrzj7Iesd8oswkLPus bNmB+vPI4QRK
+82n3teOfj/QpgBGAABW4MSJhsxLreAlXMHkH3Clv4R3ub8Ma7dfqm+n9HDw XdmmOt8S4SUK
UWgM5eZQUHmtN+ykyLa1kbb17VE9NmzS9KQePQS6Yj+wJNV9v38xYLw5lWzu Ldp8RfDzbJ7v
59OfJymhB0a9yABOCsfKBtkb17zZpRF70a5GkcuhRtRGEXNaYU0nuDZEcwwB QWT8zhnraTcc
K5K8XJvTJRReucu8bObnVVNm4v5cmXhndQ66q/wUer7zzSeiQ3GLpSVTBD+U hD4+XlhmUXq6
RW3ykaokBni0uYAvn7Eksain2xt9em3XrlBIvTCvN+SWe5k6xFwdqERW4KaO cDfa7fRywna1
4I2JtfzegPynjXrX+pAB887Tm6qn5MRu8fPhXHzhXtsEUODNFBv1tGE0uIqF ZDGstHqqauuF
jLexDCMyzauzerNZRVXMqZKL5IFUcyWtqLldcrELe5YV28wy2uiFd0WDAtQh 1MZicnjHJHE/
SBLEyL42BLwO3GyY98nPS6fmOjQi+QxQJ9PVHenQfx5GblGQ/z51G1vHzTs0 +ESxdmBLUoXR
MC5XMjM29NAkxR8FIbjnYw8Ta+p8j725j6MtfVHsOPvUGv+TgU1GXHxxssed hYCJ/VBfV84J
75oSnbu2snTttMPsYh/51AXuS5PT+5ICNuRkYuN2zpi690xL1IXWEJyC9yMR dfo+dQcg6zvw
4f0y/8Bpne3sJhQovuH8SrR99G7SalkmGL1JPq++Icnb4ukHkWGi1qTew6Ee 3W6OR3jw4oAh
BuW1EqtiIW9SbRInfSdKlRWcmUygKcv40/FNqbu8m9MeJKwlRYYxEa2H/KLn 5pfpmK2JTZtf
p5pvFPHS40RyRxQ9iYhFCxSp7DUta71MMTHjGiVL5hfCtWWo4A974k384uli FkaN8mZ3Inn4
1HfQvto7CVqS+aI3UWiFP9KMVnLWeiLjmoeNOvPtfLxx4RPDl8pH67Y5nfEb 2yyZFXIb2C+H
A7pxe3KfiwjJfyttCbMv0pWjX30bzqBBD2eoLQdEhK7wCycq8hPKYvUHt8s3 Delrne+Y+HDt
PqppflhoMeJIlEPpNMHoIFR/rSVuR+xHU1cUU//rkJ9fqwyIx+b37z2yIR3F UCDHbXJSg3ll
5Pr+ROYhUANmvw+Ki8r5wE9YbfD+zuF7f12gCKO891mAwXqB1pS4r//J8XjA J1cwO6S7BnFS
d16wiE2B97x/ZI2GrtN0YDyu7X+4S8ogSVeZ7rQdBFe74Zce6ee3kKaItFXj vec/XVHUZS8Q
PcOSc9S2+sVl14NsHbgodh7Br2lOIMTNed2ZuxEtjfbr7zyVALilDzf48fvx DXV0ZYS6J0/r
+D+Ni4/ThM/0USlV+9PbuDKQE6L3IafnSbk4LSsVzcyKhfbsX42ixp+XITo+ RqFWEv5EC0SU
v1KbF+Wb6kbJCqK+a448GMD1qmSADYuG4pv8Izm986dZsQ8T+5pSsyR5W7YZ GJV9IO3Cwl2H
nfjdw1K6Kr5ew4iEuLtnEXs/MGK6hMgVh7ffNI1n1IfLD7wI2/5EeWF0ZbPg jYuX4tqNxSFt
tdNoOuAwF5/Tx5ZJcwDnKe8CWQOr7/bMA+Z4dVFO9hbxPL1H0YvpbxL1PXU8 wzn4JDk4gh1j
Ql1FFZXInx2otk7sV1f7Hdkp4ziKuP043KMrcyhCVpa796U7Ri04LDV4E6+j U6CxT/ran546
x2bDH/n4WOAoZi7i8+JPUKAWOuKZvu5NpWfkfMepFJ2zRAAT0XemYXFEjg3n 83b+gqzcpn2e
EthYU//lFAa1aiiQAL49roMCs7uTv3/bKf3w8o+EjQQK9OpPQxpaIR/iGrSf G3ExKprVEw/T
IZQ5npY39OycHxpP2McoVMSfam5GC/iyVLLpECOAJFJiZuAte0PoxnGH4iIB xA8mgaII3l5Y
+eFyPK7z0vZYVlHzJWOvplToLL99qWTy/bWV/cFH0SW4SfbVMBjHCt2ppNHT 2+maM8xv0sed
mDPtev4g7SLfqEwK/P7S2tIVL4QwSVtKOcMcMNNcSXPA1qV8udoy7wlzkIuw 6Y00DvOi+N9W
phoSlCc2k8Z2ETnaiuxYl1g7ieW6V7hDI4abrFazUQTZPvIKfY0tpbOuC+aJ naIbm7OcWmNS
RiWbe0ktR64WhzH/rqJTyNCujyW7EL64LswFz18ubAKibcMoldJzAJdqov5x 4+E03oU0e0HM
dRuDe2TBgiS0hX0iX4Hv7oFWrbop+KQcb/aTSfiCgIfIsOnDhJ9mp6ztB64V rh5no7LroKGk
qxcTJbyWbKzkdto66uHDdI1B0uFksjfUrxveKi3hEQOIYR6KMfXjrvIK2ot5 1Z4oMkw08k+6
6Gx9HX6ucKU8Fqcy5RBF4VWSPpGOKd+HjCQ5b71gCBmpjscW4o5IA3FqeIUN RDcgOG0fYcQL
vWtklo5EvUBlLxtMuIrpDV7HeUz3rKgIPNlFMflm2rEPQyl9Rwx3yuSHyx14 P3nPrXp8xf8W
/W6j/k5Ly3ZONuNh70NYNFNkJme2fSgHlRkgalw4a/V6Wc+K74TFb58NqTnX t90Ez2nTc6dW
imw98n1+gAHmq5iQkHQ0n2JJrmHDYwhr8n5u9ALzjc0aTlDwxn2J7NlZ6Ne1 nqB33GU/b32/
TSJfhoawoLTnYbj7hC8RNoZWEtv20dRCgeS3Lw3jtcRF/+nBoFWuBtcPMG5Z BsM/4l5TJaka
EJBN617mL1SU541JwBNxgwwF5rXA5yZqu9m/v5JX0UGBcUnD/1gg/9cT/sgs FOh7PgXexzeC
ybHbyyh7PwJ5SfEVChgWYz+QusMY0P8wioLsobu0iP1zDTq6vAUbde34wVb4 k1PhAZ6qPG3J
Gc0JqZgPbzeiouGT3ChoJsrOoQDiUkW16tSo1Ibx09631Z7toYc34ha97ZiR i9KCP/znDtnJ
rQhtrRlmDnkGLMY2uGxxZVg2I0MPh+mVsTjbNyiwvCw0vFzeo4ytBMsX8Hzs 6pqZCS6Kd+pA
VZ6vGqJZYbQx3AjngmsqnNvltyZzE4qeKVNKWluQoyavJRDWaFWz7yjoWiVn HtI6itZTXlVc
ZcumTra8UAXRUF6pqh/gwSW4AdMl4kTwU+/gIOe8Vl8v5Iu9Re265ZM/ZTy3 FQqK6/B3l+pW
YL/cioECEvLs9yhKJ2UkYUxNUECbZn//L4B/iAHiH29w/Th9Xeb3nxVs6X2P u/zFGup40m/R
tMArkuAwyvkkpQckltZjalB3uNmCoMFfgLazHIxH5CZAEBmuRx8acmCzQRk2 6vBP7i3+75KR
G9ddeslkNG5jRKc3BIly55vpT8xdrNFgkW1bOUB213+2fUmWwKajMlF22DGy 1YVnuyHt66L8
BKlHqUXTvKLQBVnOJZvOrizM2aG/3wmFWwyF96/gfxYpN7X0Azy6sIXtKjKN wGuaiDZHlVEp
C6pfi+ZlCDBydbLt/SuA4DkUkH9aBmngXHHGq8O0XlN4O8dURl9/aqKjXDAm O8aBlMkaNugV
oz2W9KGsc3JQ7p7eSLT6mGea+q3/5SPqBGq7HFxZGXIJSvaMvaSaop+fi+3k 7Mtp6uK5MYea
FVv0Os0F1TFyyiQMX+IbY+sTkoCPg35Rmvky8HITCCKTDXk8kH5L6jpyd2UO c0sXdXUfjT21
Yhg+lm6m3co0NDB7utt7jG7y5UR+OanbHMaO9fVXUuRMYrvnzjOw4l4aeRLf UB0/vMbrVPhM
roKTCkxAq7bA4QAIdqzr/FHyObiDGIZyntvBGOj7fShwQxFhj9XeP0h3XNqa LHJFeHWl8aSm
WI5lOPHpkgqLB1qmqulKIPCY++qziZXeoyn7msNoo8viGfZ0RIcTTx3x9UPI pvNyTO/6P2nQ
ubeHG5b6W+2fn83fjXf5eLDe9z3VEd2l0SKLPuj4aBPvHGScUQcYORb+Wqk1 G3nAbNx+uIPZ
mg0v0CoGrKqZdTDhrW7g+wgFY6pGZGYuw+OLZpJg3ZDk+CCmjYag0WBPR4Wn B4coehvpXIrE
n0iHgY41FNgYUcQ55qOWvUs8r6/OMx6olyLpzfxI6Y3Lp6SIjN/0z54lP/+9 wqmq2g1HpmjB
ijp9OA0lw4zOFp1Uti3iXe/sLVrNP62t0t7jfbISbaY/35e5p04AnfPtpV8d wlhs1M/bzudx
IVIMf7oLBT5wbUOCFp0hDzBrfCpKqfnJqeJP6Fdd0S9DJqPLo9jH3Zt1sWeO PmlvYEFnQLYN
DkcVs7LcXnuqTEu4rwqGhAuB3wNGYAku+j/jcsZfHi8MdkhJzT4WDPFk4DK5 DhKe/s+lj2nm
4n7Dum9fTJjIbLjH/ZhKdoWtVNXOnxKGgzdXwcekUKBW/X1Dzsx1goKQW1G3 t7ThAW5OVBBt
nttLVOJt5FBfLz9lvefWNiayZW+fAOg4eDHx5Fz9+egxI4CTwDpNRt23oXZ/ I0aWO2O3Wo8P
ARYmV41gwveTAxgvTPetduSYkwg4nqYb2ZpYPpOxtcX9juuTklqQAXCZ9q1g 1ZiK9ED0VaAA
XAQUICsTdfU+upYRm96GQIE7+/3kWvbb8gNsBjvOiAswm9fV3hD/q5PcyQk+ Fd2d19/xTuZe
QfRmo6KF809X2zjLtpZIPXrROCScHPi5+M7Z0SzTyOq/1Y/5BltvYTvT+Wtp qyN9omvO2WZZ
uBrhrcVdgQIDE+BrDPB140pQflEE4jVrqR0vcmOrJq57zam2p8wsXeTKyKm5 E7zcNnDFS7dE
/e34spSOG2xhRfhkdpaOQze0qv/A46BZp7vtcZTtUx6bA92TeAysANXjoNRS q0uSvOzPh+eX
GjXG9GqfAx4hUsWyOT2SI1tBiESy9XSnPLsghCBQQtgacNatt13nM2+saOrO kCaO0D+bp8nS
wpGw7LMTCSdb2xi6PTkdZ7j2o3Nm4bBI0OCWLJmOaot5qVoyJqlOS/aKKN7/ lWcQlfSStI5l
AXlEgiMUAL0Br3BCgbWfp4eg7V32+0egez1H7ZHQGmYfZNUmHUZbE9AcwRQ/ 54JnFWrplBPx
ukVHoNjz9OaFA6KNqNnZb/NztAYSGPwMwuv+Js+wPL7jK3v0HEfsySL/VusI tnXI+ywo0GYC
Bbomql9zsf9+Y3RzATwyYfCXvo0PBkIG6qFAekHrMRHMUrvi/201Rr2o9H+y NBP8+EUdMYtE
pImjAOWz896d8xHB7Qqzg4OWVIsrDWVPh0ygFnUjEhkhLQcNl4/7Vfss8hdU OJmhjttyUc6J
C5Fj+O3rQLqIjtuvnmOyUqEziOwMA5fkHqDEy+4oDUvUuPQuJvL+ADMH29nL I80NNmSFLjdD
LCjgLXCQxiw9rl3xrZkv8iUUsDgdTNPp/OnmDwfiIO8tF4EpeLYSzHWGlT9A DE7KAtqFQoXC
i4uan8g8yyFYd+IwxNqpX2uyNhJNIav5sZWvN6xbSk55eRjxUPkQ9VBs8pAP BcQMLJSEDw/v
EhevPHfGk8Ka5TOK9JusvSzkkVE9unc47bqC/RhA1DD02UOL37WorS+39qCN RFJ8M7cYN+j2
tjdE0ET2QP6V+em16emC35avNj2pDr32t1FbbyV/a3K+227Ikg7j+Z2gi/en zMo6wvj9+aqC
suUmaTP1jhIPlUBLyg87ojTdkBGVr+GnHYfoTVrcVRZ0uLSGkQ7fA/xR7p+1 JMIg8HLyQ0zR
zPKNwJlYn0P0/rBjas66gKgPpsq47dtRMxO3Mf0lq6vcw6c1dUwYr6jQUJUH 3/C1hUQPJRj9
4ECIGDsn95puT6OYsCuju9NPNTPD1Z7TFuHqst+al3Oogt8fE5DlrJGMOQsr 0QTgfkb42FNk
YwbIhRRmRVuMW95EoT0S3GmPAoFM3rQXzSwsL2hKORM31TlFS3oYSkpvAxdw b0PoTDFXXNea
lzw1lE9SkuJz7dccc44a5TXqalsDpzk1DW0/vwgOjHb2h48u8eTVn8Im/O7K vSRVSPeVRizn
BzMABRrH4p1aDJAuWWdUKIciVwXx4Pbi9Oz3lwfm3RE8q5px1sTde5PrqC6M Kk+Fwkp/Wg/d
qzkWyGS3LVFAFvxsS+mTOuRYa0gTy9j4+Q839FbKxgoDHMpC6dpI1fyeVk6d 3+l8cRG40LzI
m3RFTeF+adsbzbzDGnz0MDw2hCrsgaUBHgoGLtCYh8b6t19PlZTaUHZarvY0 hQxxj3hjtHcS
vn3V/OEVbW/NUUUdQurkjIfJQYAU59INxFTD/XW3eZ8zmhJNp5ydzpWRmEn0 ohzdhq/NrxX7
v5fUFWFuh7LW4OIHTNGwtSdjiqBAz0HCgwvoFmFixCir+w+h2qouv9MSa6O/ vsH5H6WGO9AN
o9fIg38J6Nx20eXPxOQnQsaf3Nq/mhDYziDPLw0u9kCQj5jaRXXpp5QwhlWu BQXOBawmHVWv
ly9G8UdhdVaGk8J7/Y8SIgnlfUA6pKUMfO48FWZuAT7FAt/ewpz96Ig276z8 SkRGbhMaY1aJ
xH8j419JCPT/uQFnoyYKo1JvXoExVIHM+spXQMyCznxPz6Z11+BhXNMSClAT t+7Fgof2hAJp
k/wOMyUf5ZpqhW+5fdiMKHzYvvkpgG+HSqNxZse2Gu/Ed4jI+OZnNgPF/dk1 wEM7bWMWToyn
j5LHSBtXkqdqu4F0E2yCGBWQdpGru4eOpnhfa9Z4mFVz6BSS8zPd7k7/rGnw rDm9FhS1Ze52
xOCe0OQ+lNqweOZzaCXrEoH9HeMNTQcuY2mWxGVAx3yDh8wShIDu7mrIdqHP bfpYe66ZMyFY
jjg3tHWRkQMweoACY6mXegYQMIwX4LReb7oU2RYv9A0xWBON7Qhh3JoFpYzd uF2Svh/YWGpW
IpjgDBXisG/sdN0WGX34vDolSeFuyZeFOv8mdjATI9CRyWcFcikR6aQWfL5W c1A+Wh3ivZcQ
jh9NF9Un8FoTS/BKoOhzOevQRu0ln5O+pyHuqPxjRK+VeoERPOnYTW/WD7tS 2hs4O2Jknx3S
xEei6pOj5YnMLKO+HPbZcyaGUGjG1CeZNlIG5QmaEGGM8QQnhBfz3ZBIa6ly 4FKbO1eeZnsD
AJ16KElKeUGPmWP+go4cndIzYmKix4FwdyWeN1N5Pi+7+U29583MBJ6ZvZa4 39V9mppEkqLd
kHYL/phTF770xpqOc4S3LVzOncnzhb+khAD1hzEHJzG7FAydrzGKFdXyFvbP pRPb0w7y3it6
uhv3lDsfqHSBzUX8BcpWokak5OAYjof4du/2x3pw5wd4wkOvQws6yrjk3iJc B9IT8xudMeu6
/71Tn14HGATvembU1UZbZthW9ZAdc0s7h3LgOjihbFXb2qkfLrws2Dnjwn9n 9rJSGQuVXCL/
mVNwk3hechXp3zvgjucremAQYuBiVlRH8zwqcx2ZYXSDUTyEQkAweyiRbYxY GR+riqNz1hjf
l0jXiaMt5p7Ob1git/fAYUuj4m8nu+XNgQdaHzx0oMD+hVUy+/0HHci3LIi9 nA1nCGyqexvc
bkGBW1z1TaM/+P8cvidUvu9v9yLBXkIA5ym7ruu95z2nUpKHbaZlfhzNZ6/m UDysRQXpNBMF
vj48OCpEnKaq9CPHbm+sjPW72RY6GQqCSW1nPH9hQVOEgW5iFaeKPoHv8DKr OzE5anOSxnJr
Q8+Y4z5vq4UtGw+aKnw432ly414mOhpPGqubsLGn45zXnx9esWPGK+rE1kU4 0gVdZl6UgtBe
JXgdZjM/S6Sp9VP7tPmcpwG4JS9OzzgvK/qiL9tgYJKW+t5Tu0dPyvMh4SOo +p13+W6adBAU
eDtpeHN4Xi62YVtTa784tMU23PwuH5khZa2hqe54+GuegmOGWBh7uqMJ0bhU f3VCr73tGe/R
kpNcG+l3rs9kLdqSn3tdKPqknL2Qiq6d8Gua5OWfFOpHmefP2nmw9n58KjDc RURDTM9gFTb8
PWbAEYI7Nv8djF1ysREg/Xl7dEUqreeVjvWnQX/QkoLD4ErWtndlaCiTUz6p LHKRqrMSZhVy
muaa5K5fqr//YLuq80IlgLXhpy+DHVqzU2q/EaHr7zrGyoueyZoTudDjYRg8 9kKLDoeKOXFD
ZbPEHMDYsOPjLZW8aJZ7FOPqfNlVOUH92e5tECdPwIH2q2xnmgKy4e9oeI8L I19u+YoaB5+C
MD0SDJL04JcP5mxLpJeVZPeJp/gaAlcCc6JYx+D34TzFTaNoDdi3XuOcTXkQ ajdOQpYvv8nf
SVo0V51pyyNOwSU7MtnTWZW3dW8msDToa5IPws38I1f3v+XumLE7GzenQihS atU5FhcM9B4S
ca0D0NhooiW7/AV3iIl6vHBbfO3e6H68p3vPCMOCj2BsJuAz+IYk4lr2/g0U EMekhALIuDD+
x2u5nz+jIWMg5UR5HHWdDfElAUGwYG5hwwq0Snsi8wDwgO/J5GFse8Kb6RI9 uzyrAfv/EPHn
kqKxd0ij06P/ytMp+n38f+79LHsOwQXhgX8gyECB9s7W+zCZ/6OomVi7i+u5 BjUUQKUMBv2E
y4YCK2sGEOnsP5esSjdsFLpljoTh4IguynNgFAocO7JDAVo1PaVufdqx6uIh aTC2pQJmDrZw
kdUpwbMiTb9ko2Ek9l9PcOdRI2dWq5vcHzxGlpY+3fJ/jRgpC9CTwTs4SPTS PX4Or+pvr4rx
e0ANczrMrER/LIECM8++QwHpxWkJ3Yf0+1hRc0i7OuUt36Gv0P/bwGNuV3Tr ngnWslJafyU2
JlqzeOV0j0zEx6UP32/GQWswZiWmDrqGcZh7qxqLklwpfqeG0PLrFPBIXATk EQgKkGRDGCjP
NmEEyA/Wi93F6sH6HaLfk3v7ocDnnvsbTVgHwvJOiv4sKntGpt7Zk9jgRABm L5kp7zHAEF6Z
e0XQdn8PFECADV2YeimeN8oVlj0t8x+eUPAnwZNZEUYUq0MbZuDOdci7EvAx jAVeT1L+Lle7
+s0+7YJg8z+puOgH74/8UXFQ4EnEzWkljNXBarKu+gexVqMyFREOW6dcrX9o TsTvcku1GS9x
DsmWpFifzVnLU7KtD+AmmkV9sNGSviGuQEUAeY+VjUpZ4/dHv6jzkQxmzIP7 38JX35VuUIag
gG42xF7nP1+QGOXff3gLo5MwfeAv2VIWLEUDPar1y0+u/RE4Mpt99m4q5P1B tvDXYWd1LRG+
xpZIF7exsJ45HfdZDLNLT9xtYc9ux1v1hknb51V+TneahZxz/d+pVkID2zdw tLwgmUULO7bW
q7VBmMrOm118mRiVPZSI8ZRN1F/g2kTcBbuxVYsV8g+/2T/YOHXHqtXogUoH Eq64daz57NE/
mNhzMOxX6To2sq9Kotye3+8qHVhDgZtrymvaRhiLL0qtyZ/hUSBZ1kzbspVm 5v28VeuZuGGm
isu3cfOJBW7AdS218fvd3PS2p4pC2YsGgwXdmC2v8mZamZj2S2vyigZn20c0 DMR3zRfkQhcH
ai7oe/Ks6jvs8cNdnYYE8SuPkAPqMLb35rKO4xI+ZbVM2LsmJz8xcsZDUKiu iltkXXsNBZbU
+qgTWCfWKwCszGxpQVNlH9mCMDtFi5r6RTZrOdHQvqOSchGN/Ifw06V1s7Cp o6dqPg0enCkU
QiR9IdrV/rseh2V0jOXPPq1OKMOHMyQLx/Z/jFRJUW2hqThh3SrMyQsRDUtL xB9UMegdExrh
YvY3eY3nm4PlefM1/JG7y8SkS+o+g1RLPrdtsY7eHl+lzoJgWK5ClPy7BOwo vLsvSFHHghJz
ZdZ8a6eXzCpInR06cgmPbXpv1qgiN5iIEag2yFb8UYtvEycIFeqFlLW/QRbE 2VLjWZdKVJ/4
TSOUcUalhJZj/awb9bAbm+7C1bHyShIp59nwDJaXHeQ7fOMLhwAAnH5teKmm W/nWmlYxrx3r
Z84FAr+NyeVaRbB2nsqacXW6MQ9txUlZyiqtIsUixGG2I5AkPSesigrmMV1Y wA0LLT9KD/CX
fh8Usa/ADPGLN7jGal3VnHNLXpO9N+ddnGh8R0EePLnytbLabbG+kZKzu43/ cemP1Ia2Ya3g
QjVFPilpzJf72+Nr9OfsTNHdOzpXxacvg4tT4L5Tb/KlmE9sUMQtayuI7hNM Rw8I3UQR8h3U
oekGtXf4v4yI9Xbt2ypSWF186n1UK28axmk7dEZespTrXJ3uJMoM6q59zzjh omKy6p3MLLjd
P+TqyFzcnRZ1oHJG8d6Ocz4abdJqYis6nxRHOlW2boQ5lZ7P4Aal7sFb6n4p VSEBIskKBfRH
wfxlZpX1XVAg8lv5gzP4AZXZqWIaInnZegHTvnO60v4xUtSo501D9Yvjg6Tv rxSK93p0z9dP
hsRkxyzSmN7o8yNpaZpyiEqQd0mmGQ/x9U4EUNHF1FVFHJ51e6f5mt81pNGr J3TcJtYHi1bO
NS+zfFiNel5uFFVPWfZIhg6TpmzsCXMqcwf8T51U0ldYBgMYNoRGdsnuB/Mp J6EX66U2mjva
bolbPv4dU+OD3VDga0flYbdjCpZjzM002oHhnfvsPN9ScpZKxFiNCAN58d70 aRea9KjOi+IK
WyI3nwUs7AV9n5aaafUw2fY65vK9we18ba646MqZUV3yb2mF4PXUt67hcges vAKPua3r1Nfo
CaYOJeezviyYhRh9WtAM6OFNL+5xShKZC0/0KRnJV3A0RwDNLw9NpB6uYtLR NZagqPZmZEqB
OSLhWWwWzCV2YjVAq5WOJtZ02gFK1uRdsyQ+pQ8/klaf9CNmi10tdUWbUwob oWzA1Xj4IKhM
u7SiWDYuEHiVpFuMHxjHWml0bB8kqPTBS7G8HOeb1DuNzs1c/AbXzeVLUSnl cKv0WUTeu0zL
klDdjW8cnMM731fnIQsZbPu0Hi8eKtWuV0oNIRaC2b+aE/VvohPaem3VlVNs h7QR+19nGgjQ
RpUYWfbYBiI7FmO5uAw3IlEYAeF+5uH5bu0zqRK9zHF1TKy+Q7Ysa3NWt1El 1ycf7DlQAtB1
Qz/zHW27Cf7kGTJXTu/S0LbLiZoNi+6ztLDVrK7ILkINbHP6QN72pb+47CQN eAvs/HdRtMwM
alAgYp799if4HLnUqm8SvH45AGmkfIDbNa8YNflDoG6RkMx9ABQ4KGm95Sy6 4K3w/+VYdMtD
YR7srAMKXOLbP9A2lBU1GBDDcOB2IIyUPFu+lXFWw/6Mus+Kn1r6vHAkH2/M Dpc0te3QGC/u
EAHPIT+fntRXGo46gU1Yp/sHfcjzoG2F5rMzjpYYl2EHwbMvr4gOZs+MJQJn T6NOvTAjbay0
a/JiyNjd3j7cp6nKYzbHCNdO2SBJMRwWU6QWXpJ8EIrF5EF1Ci6tDgmxpLJZ oWyiKaRNq+/Z
1M2dzJLlQfd+MVGdOK8O5t36f6h7y6i6mi1deBEgQHB3CRAguEvwBA3B3Qlu G3fbhADBNUBw
CBDc3d0tuENw3bjr3XnPOf2d973dp0ff/vqOcf/tWnvVXFW1as16nqqaTzEw 9RxVyDkYg9mM
ByCEgwZe9fB2DWQvXSY4kd1KbA9Nn9tV6Mq7MM4QmJI5jVGczlAACs+0DdMI K+q/kTKxW6gh
Uid2xoXLYATpBsEK0PtJXwKxOnihTMvNNKHwm5v3rFVE6cko6uw9I5QNEbxT KQGx9MJBEMfP
jUesXMatkx+Pi1x7lZti9hWPm6fuTznruvqivhorBkTaJnVuwArg9RPmjE4y epDg2+kMO+Kw
1EOMMT+wSkzTlUZ43JfkRmql1c1txQ/YYuwpDuzUEA3xYPt2MYheyjh/LSMp 05hbhBnZ0ENj
NfPk7/xuUehoAWZu2jtzj9KxvmOMeNdQVc+wUVjxifCMPa+VOhlVyOBNA0NS a3UT6E0HQ5CN
TXW12umh9capGG2E3gd4htTkhI9o6nZBAfONHtau0RY/aTLpZZzwryI++/nU EfLuiSjISaki
mFt8sgyhKwCKInE7mUY/V/dRBG8myQo5SY3JcLCF+wJo2WlTpeI0Jb5bP05e NeGH5luU7eV7
hWDGnXu2kw4ZxG72B0XwURcC77Gk4PDVjpwETRe6iLhacs1js5VtnvOts/UT F+I6mQgSamrK
W0cgkUwLSv+Sv8HTf+zQ+vIYL6tTF7Sg9H0kPoSuxNDvf3xmDPhe6Yyc3DXJ VAyi9hNmf01t
Gk/5BDhlAMDgw9mN8h8gVLhG+Po5FLW5VMQZp4ZscpkX/QELIZGPMK1PAOkf sPAOCgt9f4cf
WHi6XaLpc6iF/A3PPs5CYScxFHbO/9lUpC1Z++CW5Zjm3/DsAvk9LPiR/w88 ewlFkcDKExAx
Blmf5fMa1mJg+NMTzP9iWLDJE4ElsVDc6J1Qrl3Ar8mqOQX+l8bVpr+l5Nf0 MvwQD0Rxaf87
hv8AymBr8DEqFNFCyP9U4NpIg82zf90i5pcnByQtpsW4Ad6ORZoWVzz6luVg GppY2zkSMyDF
bPiyeL5ORXlWVgPqwsr/u/oVKAkPUFrYYIUqvEHF8+AQedNs8/eNcIH/JuZU mSi1nRPMDGJW
5mE32Y7svxNY4PHOrvk1SJzfR0BR6ATrq82xQBdyJP+OujHJ+BmbGSMbzYKZ GkMTwA72NzBA
44gxk31ziPcV0attQpriY4E8Ospmy1oJgo79RW537mLyvmYaC9PLqHpaxSSv TUI73DbYI+fL
q5J6lUgG9aPZTQWv/tnK/Ibe/F25cblPholBgfhRNdRBv/wJYVd+2KeEfQ7P tYj3cK9xM56k
+qrtrsxbVQ8qbuC+gflgxPByO6yVIjK+louBjzmnMomy6GOEijEPu4iPoT9p H5Kwa25rtdod
/Mz9Cfn1m9+wmC5XiR5J/5RkbTG5dosiEXJPTHLCJ001gTnli2CB+QxdQFWz 2sqcJacKJHHd
JFuVLtTn4x9IHoT7w2nTG8mp3phf9vuCQPSxzy8lCckzXPRL1dGH56VPwB/K FSaEE7JnrvSK
qXH+4yU2WnuH055BNlkfZOC7rJHM51KAWcDYWiByN1ZzszFdbVJMXYKgePxV /yM8HztGaj/w
MYiqhKOv8FLLvqo+afWImdk4DhPpG0WbUpeRZenVMN3E5R4PjwwHjCNWzx4C RYmdyuVdbzlk
oumsXbr6wVorrF7JFAd/5gg1/Eyn73Jczz84GWYj4OvDhh7SIgwBISxthFVB 0Q1n+csyZXsq
SQvaJJ7UEYjfc420b0YLtBHeTvSWI+yV7/y1FqGdruvn78HzdcUT0Cfeuj/P snW+Z916iml7
exl608xVFsjyr9fb/GDv9kuAh50d0dG+ZvuJk+3j7jdb88SDmsU2GAIcVJKU 2OEDEoj34WzU
HzkHMFPcfbEIvJpYCu1nBBHe9VLUgINoEh4xh9+K38lWdttMBGN2RCkg9IjS pmDYz5JJPq8K
PyyiMXsCOl6v2lZ7JzilQ7/SNP15R9vdtDRTD0etebVPueal/LOdlJyrYuHU p1JSOr+8Duyv
IuW1NsgPKuBRJlZ1pNgcKW4qUxd5dM7StWaOJ4vti5fBOboCdgu9QdmpqdIu Xunf0iTjgduk
/cIXA6gDsqWJo3I5fO/7NVM57d4hD52IEwmMtqipAo0g5PgLflUJeQMEy8HK 4/TA85sPNXrk
48XZ/A7HcxL+EIP9PtJE1S+ZCh4h2+stM8z3oIK3MVaRHy3y3r0IFS/H6wtE NP5Im3y3PljO
74lZm5RbZJm0lW7mam9bsrSoldPd3Dy86GJPTm/WEMIjI6ZiuKqao4a+hbGA w8Heh0D40wMu
6h1Hx2k3cRNLC40JXBaIIe6cXzNQ0lDSI/IADzy3Mrdi/PlASD360pbR3UeP +2Bhwoa394Oa
fsAhS4l1iexigqNILbz1IQvoPngr1BBrXLKaO/pltGRfvary59ThSISIzXSZ poY73Gx1qZMi
IusEbO9SljpIErxvP/GBmh2uMRwDhkv4Ocyk5u4bm5SoVxHpFpZRVNkMcPR+ XC4oq3a8KG1Y
CEowXHrCqOasu44W9uZJlhZnQjcgvCk4uUWH/jDs01JqF7K4wYX7d/VNMBAn jfsqKSUjwcGu
fYFa9vnvcGxmZsn4jAsaDGamqxXZtmTLoNY0QSJYqxwtrpHsYY93Jf02lNEf 9RmDWUEp+UZk
ByUuZ75oZRZvLBeaG3Yv/RBqtdXD3jZq4cIxGhvBA6YwHqi906GCtLITh8wl jFV3MhaHK95D
UR15E9zSg1HsvYxy8vkXJWgzva5aFmn9ToMQNXObI9OUntiBNZaaRUkiyc2u X2UYZS8gRMcZ
3By1yt1kFI3uTndMxHemrxeUuWfIzSqksqPFsFsorbIxeZcwXn0SQEOnoiDN we3cE2KtO26J
tLxySZiJEcdJwB90DmwMpOhF6Zim9TdmgDCO5c8NGvMpQeuoXbx4uvPTO34F MmGjPa5bfLB5
+gPUogfn/5UusdN4cwaWgrQbd3O753R3+WVLU2PMrQyBV7ebmphtPP6UDEYj sKGVAYBs43j4
DQ5n5clWUN9YlAgICmBTl+cm0+t0m4e097u/ilnSxRUzc3Q3UfdyN0DGBQ7p Ci7xha0niktq
RZadpGlAm2dGfMB95Kd699Uydr62wv+RGdK/omldVYcWDihkH0V+AmZVW88j tgrIsbBnAz3r
mH7UhJjNXykRZBLQOsKZ9ZIKqRiN5shrJG3fB9xzPQEfaZ+AcZmQTc5wvcN1 1fra6qZ6f9mc
xaHTptPlYZK9MfgVJJHooeTZKkxjE18qYo7lTVPRHYdhHEQyCyUuxjzCWUAz SJXkitoXwUFc
1DZfc2l5WbPdLtLRdKAWE72Z0ASlnsyfDF0uK4/3bDDxoFSA33FruXUWcoEq JJm2oh2/t8Rh
V7Cyi1rdCb8ZlVp4V0tglLSgYfJFb9rZ0zxNuuhCXNpInHFcu9/Kkhpw7KOP MXjWOzAvdJIz
gvemkb+OC5nYc0H9jOmQStPQC7New5iETBKhWV5P0btQ9sc1uUTMsnTM1oqI n6f3TIVITpfx
Fu+68mWgbkZDa19hVcpzR+35yAXUw2pXskIwStQ+t0v8Xsx9VHahZQWGP66h WPhVJ+AOYEnz
dfRqFuzmF85Wf50YJm2q1xxnam0J8yPipsbC+dyvw5OJ69L0BCg3NpbXNlZE 7EKZL6Q6rjb6
8ILQALPNelpHcHSYMpIvEM1BWmUEjd5TV1h98nxQxjfYjbuhKH8NedBkbqs1 /nnfE+DxzJrM
YvP2lFVmaxItC8o6hwkyJm3GZ98cofyCvCDj7aclgHXKY/d2/IlF2zJZdD4Z UMqMhSmwa4t3
WEqVQv9pMfYGkP6FrTNdmwOFaIg5KW8CvjLRNVcFTMt8abohO8Ua3BqAZa/B pwizQxBhoNxi
GIwLYRJpCv1uiadW1hTZnCbRFInFR70lX3mDYNd7eyPpUJCShEwWLm5nbzmB Tjqv3Um90tKc
hhwQfylpF4pTlFl8eaOQT1cUhnYljpA6qmBxJkn2ZTVhhquw78CWc8LR3lUo 49imjgEhvsWy
Yn2DfZXjDMT4jpVJPoXRNdQVdkXGuDQ5KEtal9VNnRFnG8r6Tm8V4RfxOXS6 kQ89NeGUUTCr
QxjW01oZ8ten60DG7yv3G1J4rva5Ir8UH340/MB4mt9g4q5Cv+HH9/ZZahd7 CopreSeOPEMv
FtX7hQ0TBeSaZxu3KXSE57DjSa4wF7SfhDc0wXdIluS3mlySSm7Yj+JQClsW n/kE5MSqEaRG
rTlVKYo74OGokYceOhcKv9jjuPZZ5ruAq43OQtlgjwp7R+kPZrsCdWDAXODK d8dahh7P6NTH
6B8Mv2cSWlOYxiczi1fUDJwxVu6DpTWnooXDIPJ9E8IwfFhNe1ySZZRr4Sh/ Sez9duIDa7et
BXyGe5hJZ+kg1Qc1tQTWPNG4gfvSZAxLMsq6+OGe+nJnVJu7Dyp40dFwmFyD CHrsps+AzGA6
GMLwoFe+gn9hMfYej/munqtLosxpfLqcLBhtEwRR/DfYvS/KKew0JTSYcdLs WDNMriOudGO7
fAQnaKS7i1u/bMYdfQBedfEzJ9F9IdAhTnkOF3sp8XgGAi5DGCIj+gV4Vgfn VsfOi58duhv6
g40kKgll3nwHtHgThhg31d3ocj5zq9uV+Awqts44e2OaTbJkvTELNql8OJrT 0mQzOGX92kUk
2JZIdcMWYIi4zAOgK3xvKhWbrgajXuPLJEOilwKPv86HKfQjaqxauWWcTrms BlHqpzuSRMfN
Cmn99Dbqmo53vdzybHSfXpfVdnc2qYq3315yV7KJmPO70RaB5deIpSH+VAU7 Rpf3KzyzNoQ2
SXoJg0GGQmFE5K7XHJa2FEAXoX//XwocHvxzfGNB8fb9l4PW/WnwAxpRtY6q EM+Dk7iTqDiO
ii/UhcNEr2leyICwLDi/1S6iN6mYjPFXME8vdk6gRkhpImK2EntblOwl0Ejb XFyIJFk2KdpW
67OVmminII6ISJ22MpTNVYcKYb0/T3qdayBQckmO0/+mx7Zaxnz1LHMiRHNx kb9hSa5AIzsv
fS9+AdWxnphvRKDDuGniXgQecqtjdeRM2lItWGVo4Uddvlg6hyNRpw4vE6eO WkfiUJDpTXl5
OypbY5W8X8dkoN/MeAqneEEb4uftKF0TsSwTrjRAXQ+K4kxA/K52riQ/5BOn MySZ/g4hCDT+
wGleHVRt5FnQwNQBqWHl0Kl6xeOzT+OINOhz7Cd/W6R8viSsWVdfXqOrru3N rX2BzVvTUE3f
ala/jKwjTb2gcUORHic6r/ClnyyAuzBXW7/dSPChSD12u782xkSTuvdKJSW9 o3h8i3BodyZp
I42hoZZBYP79YVetAuJ7r+Fwf5jWrcUsQcV3pHXq9bt533PK/rFIRGeVfgpM Ql+E/gMwPWz0
pxTonevpg+gBjqK4U8wfG/A7tK3S6Ce1Dq08IUSIVM31tRF8nLvGBuUfTvw0 5DJisAURtA7/
d90TSzaluG/JTA+1PeTnuL+13JR5ngDqscsVAvBP9d+Kbx9W7mPVXiXRYQiM Z1tqKnCUAZUY
BXyH0gDaRsh/cHn3kvMO20X9zjZMeIcB6mB+/bB9lM6CtLA+ARm/AxL8Eltv aDLHuQoFQSxE
Y+ncrg5zIyV1DNRmCHuI7XAuVJl9z78Ua15/kQpVmZibnzZ1Dk91iX9xkNhr 8H7DLAUzCh2n
OU6o3UX2z4WUXPD6+ASI6qI/AfAc4FNZ7YKGgHstUIU8eyODPApAAXcYIx4u L1ixLjSXNTtx
gG/o/a/rvJN78HGWeSAddPLlAd5J+B5n+Ano5/xLpqkg05AtxG0/lXhCnDdS YYSav5UrMyLO
33Gqs0oKYGWX9WWOixkMDEiIwjnDuf7xXBNwzXXno18D+eML0ydgI0loYR39 9sUO+Po1lBzF
WC7heBK4IFfk/qU25H8qBpdNiGAYP/yc8l8atcSNpdt2TZCsuxqRqmpyuzJi p8v/26aEKv86
bQyMAaE8nRQCRRa7Ov4P7lzQajiVXHqnVofurHZHsKMt14+dHDHkZqTkPVYJ RGpWiijHVIKH
qA8X8wywHVoPI80/Fonv8CtaK+u4Z9jYdPBmSwhdKgFCUjQe0uzo+J71Vp1w jbJ/Z2ro3/YM
n8mBDmmjFTUOgn2sb/t3vAsz/j7JEDNDzaaxh/VMJZuuLWIWa1qVtJqe/ha7 t6gohmAKlDhT
EEgd2cnFO0nwBAwStJ4cnRTwcLyap8a7zKfm3kZuWF1ToTBCqiL7THHeY78H z+9S73fdNiZm
FF27ykz27gUENmZwRIPsYZSEaD03RCnhdVNeVYlN6Dh4Mwx8fXU90T0N3vwK Lr2e+XodMm5v
sobKFYuX5FyTmd9zQ9yfho/UOCUz6MEKUA18uBicn2x6uSGdrUU3BjFJV0JH mbdJuLRl1oCU
6PE4nxEPza9qwH5qR6CY0fy098wOvBnj07oujwX7BDDGXjwBRKter80EW0O5 CpNn7xvv9on5
C7P7hLQrFwMiqT6X41ItsjWaHmbPWFd9wzrSv9lIT4Rm4Sm9P5UfegLC2UPU CR72nwCB2DPh
dQmotTTpm/STH4ribT7/SGR5PAGj1Pej1xN0338J/yMx1gzejvExu7f4qmhH /vffltlo4/0o
EQ
Re: [ATL] Multiple metamodels for a single source file. possible? [message #82081 is a reply to message #82045] Fri, 23 May 2008 08:56 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: Hugo.Bruneliere.univ-nantes.fr

Hi Aamir,

user@domain.invalid a écrit :
> Hello All,
>
> I have a project and for that i try to experiment a problem with the
> basic Families2Persons example of ATL. But the difference is that in the
> original F2P, the Models themselves are mentioned in the form of
> '.ecore' xmi files but i want to use the papyrus uml class diagrams to
> implement them. For the output, I don't take any trouble and keep it
> restricted to the same Persons Metamodel (Persons.ecore).
>
> So translating the metamodel concepts to the profile, I create the
> profile having two stereotypes 'Family' & 'Member'(see the figure
> Profile). the Model using this profile(see fig Model) applies the
> stereotype to the 5 classes. Now i wanted to use the resulting
> 'sFamilies.uml' model as the input to the ATL and at the output the data
> is as the simple sPerons.ecore xmi format.
>
> The confusing thing for me is, do we consider the uml EMF as the
> metamodel of sFamilies.uml or the Families.ecore. To me it seems that
> the two metamodels are sort of Nested and UML metamodel comes first. How
> shall we have the start of the ATL transformation code (header)? how can
> i utilize the Families.ecore metamodel. plz see the attached files.

The main point in MDE is that a model always conforms to one (and only
one) metamodel.
* sFamilies.xmi is a model which conforms to the Families.ecore
metamodel
* sFamilies.uml is a model which conforms to the UML metamodel

If you want to use UML (what is not necessary here in my opinion), the
best way is to perform your full operation in two distinct steps:

* Transform your sFamilies.uml UML model (which conforms to the UML
metamodel) into a sFamilies.xmi Families model (which conforms to the
Families.ecore metamodel) by defining your own ATL transformation.
* Transform the generated sFamilies.xmi Families model into a
sPersons.xmi Persons model (which conforms to the Persons.ecore
metamodel) by reusing the original F2P.atl transformation.

>
> Regards.
>
> -aamir mehmood-

Best regards,

Hugo

--
--------------------------------------------------------
Hugo Bruneliere - R&D Engineer
ATLAS Group (INRIA & LINA) - University of Nantes
2, rue de la Houssiniere
44322 Nantes Cedex 3 - France
office +33 2 51 12 58 10 /\ cell.+33 6 07 42 45 30
EMail: Hugo.Bruneliere@univ-nantes.fr
http://www.sciences.univ-nantes.fr/lina/atl/
--------------------------------------------------------
Re: [ATL] Multiple metamodels for a single source file. possible? [message #82096 is a reply to message #82045] Fri, 23 May 2008 09:10 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: amehmood.sophia.inria.fr

Plz Plz Plz Group mates....................Isn't there anyone to help
me..... Plz its important for me. kindly help me out of this problem.

Thankx alot in anticipation,

-aamir-
Re: [ATL] Multiple metamodels for a single source file. possible? [message #82111 is a reply to message #82081] Fri, 23 May 2008 12:49 Go to previous message
Eclipse UserFriend
Originally posted by: amehmood.sophia.inria.fr

Thankx alot Hugo.

Yes you r right that there is no need to use the UML modeling tools in
this case but in my own project, we wanted to use the power of UML to draw
and manage Models and then we can generate the output files in xmi format
using ATL transformation.

Now as per ur suggestion, when i try to use the eclipse 'EMF project' to
generate the .ecore file from the .uml file, i loose the information given
through the applied stereotypes! I mean the ecore file contains no info at
all about the stereotypes used (in this case <<Family>> & <<Member>>).

If I try to perform my own ATL transformation for the .ecore files, shall
I be able to preserve the stereotypes info? Have u got any example of such
stereotypes?

I know these question may not directly target the ATL but its the
continuation of the topic, so plz pardon me for it.

Thankx again Hugo n waiting for ur reply,

-aamir-




Hugo Bruneliere wrote:

> Hi Aamir,

> user@domain.invalid a écrit :
>> Hello All,
>>
>> I have a project and for that i try to experiment a problem with the
>> basic Families2Persons example of ATL. But the difference is that in the
>> original F2P, the Models themselves are mentioned in the form of
>> '.ecore' xmi files but i want to use the papyrus uml class diagrams to
>> implement them. For the output, I don't take any trouble and keep it
>> restricted to the same Persons Metamodel (Persons.ecore).
>>
>> So translating the metamodel concepts to the profile, I create the
>> profile having two stereotypes 'Family' & 'Member'(see the figure
>> Profile). the Model using this profile(see fig Model) applies the
>> stereotype to the 5 classes. Now i wanted to use the resulting
>> 'sFamilies.uml' model as the input to the ATL and at the output the data
>> is as the simple sPerons.ecore xmi format.
>>
>> The confusing thing for me is, do we consider the uml EMF as the
>> metamodel of sFamilies.uml or the Families.ecore. To me it seems that
>> the two metamodels are sort of Nested and UML metamodel comes first. How
>> shall we have the start of the ATL transformation code (header)? how can
>> i utilize the Families.ecore metamodel. plz see the attached files.

> The main point in MDE is that a model always conforms to one (and only
> one) metamodel.
> * sFamilies.xmi is a model which conforms to the Families.ecore
> metamodel
> * sFamilies.uml is a model which conforms to the UML metamodel

> If you want to use UML (what is not necessary here in my opinion), the
> best way is to perform your full operation in two distinct steps:

> * Transform your sFamilies.uml UML model (which conforms to the UML
> metamodel) into a sFamilies.xmi Families model (which conforms to the
> Families.ecore metamodel) by defining your own ATL transformation.
> * Transform the generated sFamilies.xmi Families model into a
> sPersons.xmi Persons model (which conforms to the Persons.ecore
> metamodel) by reusing the original F2P.atl transformation.

>>
>> Regards.
>>
>> -aamir mehmood-

> Best regards,

> Hugo
Previous Topic:[ATL] identity of EClass instances in ASMEMFModel.loadASMEMFModel?
Next Topic:[ATL] Re: Two metamodels into one
Goto Forum:
  


Current Time: Wed Sep 18 05:01:22 GMT 2019

Powered by FUDForum. Page generated in 0.02812 seconds
.:: Contact :: Home ::.

Powered by: FUDforum 3.0.2.
Copyright ©2001-2010 FUDforum Bulletin Board Software

Back to the top