Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Eclipse Projects » JFace » [Databinding] Binding checkbox to boolean property
[Databinding] Binding checkbox to boolean property [message #468042] Mon, 03 August 2009 14:13 Go to next message
Ben Vitale is currently offline Ben Vitale
Messages: 247
Registered: July 2009
Senior Member
I've got a BeanSet wrapper object which holds a Set of objects, lets call them Items. Each Item has a String name and a boolean enablement property. I want to have a CheckboxTableViewer with the name as one column and the check states bound to the boolean property of each item.

I see how to observe the viewer checked state, but what is the best way to create an IObservableSet that only contains the Items that have the boolean set to true?

I've explored using a ComputedSet, which might get the job done for model-to-target, but it won't sync the other way.

Thanks
Ben

[Updated on: Mon, 03 August 2009 14:15]

Report message to a moderator

Re: [Databinding] Binding checkbox to boolean property [message #478998 is a reply to message #468042] Fri, 07 August 2009 17:59 Go to previous messageGo to next message
Will Horn is currently offline Will Horn
Messages: 265
Registered: July 2009
Senior Member
Interesting use case. It seems like you would need a way to bind the
individual TableItem checked state to your Item enablement property, which
doesn't exist.

I would just add an ICheckStateListener to the viewer and update the Item
manually.

-Will

"Ben Vitale" <bvitale3002@yahoo.com> wrote in message
news:h579d9$t2u$1@build.eclipse.org...
> I've got a BeanSet wrapper object which holds a Set of objects, lets call
> them Items. Each Item has a String name and a boolean enablement property.
> I want to have a CheckboxTableViewer with the name as one column and the
> check states bound to the boolean property of each item.
>
> I see how to observe the viewer checked state, but what is the best way to
> create an IObservableSet that only contains the Items that have the
> boolean set to true?
>
> Thanks
> Ben
Re: [Databinding] Binding checkbox to boolean property [message #479168 is a reply to message #478998] Mon, 10 August 2009 01:02 Go to previous messageGo to next message
Matthew Hall is currently offline Matthew Hall
Messages: 368
Registered: July 2009
Senior Member
If you'd like to file a bug requesting support for Item.enabled property
support, I will add this to my dashboard. I expect we'll be able to add
support through the existing WidgetProperties.enabled() method.

Matthew

Will Horn wrote:
> Interesting use case. It seems like you would need a way to bind the
> individual TableItem checked state to your Item enablement property,
> which doesn't exist.
>
> I would just add an ICheckStateListener to the viewer and update the
> Item manually.
>
> -Will
>
> "Ben Vitale" <bvitale3002@yahoo.com> wrote in message
> news:h579d9$t2u$1@build.eclipse.org...
>> I've got a BeanSet wrapper object which holds a Set of objects, lets
>> call them Items. Each Item has a String name and a boolean enablement
>> property. I want to have a CheckboxTableViewer with the name as one
>> column and the check states bound to the boolean property of each item.
>>
>> I see how to observe the viewer checked state, but what is the best
>> way to create an IObservableSet that only contains the Items that have
>> the boolean set to true?
>>
>> Thanks
>> Ben
>
Re: [Databinding] Binding checkbox to boolean property [message #481664 is a reply to message #479168] Sat, 22 August 2009 09:49 Go to previous messageGo to next message
Ben Vitale is currently offline Ben Vitale
Messages: 247
Registered: July 2009
Senior Member
Matthew Hall wrote on Mon, 10 August 2009 01:02
I expect we'll be able to add
support through the existing WidgetProperties.enabled() method.



Hi Matthew

Can you elaborate a bit, maybe with a snippet? Would that be used to observe the model or the widget?

I think I can already observe the checked state of the viewer as a Set. I'm struggling on the model side. My implementation right now is a subclass of SimpleSetProperty. It provides an observable set that contains the model elements with the boolean attribute set to true. It also takes care of firing events when the set contents change, which requires monitoring individual set elements for changes in their boolean attribute.

Once I have these two sets, I can bind them together and everything's sync'ed. It's working at the moment, but feels clunky. I'm happy to write a Bugzilla but I'm not entirely clear on what you're proposing?

Thanks!
Ben
Re: [Databinding] Binding checkbox to boolean property [message #489344 is a reply to message #468042] Fri, 02 October 2009 10:10 Go to previous messageGo to next message
Ben Vitale is currently offline Ben Vitale
Messages: 247
Registered: July 2009
Senior Member
<ping>
Re: [Databinding] Binding checkbox to boolean property [message #489432 is a reply to message #489344] Fri, 02 October 2009 19:19 Go to previous messageGo to next message
Matthew Hall is currently offline Matthew Hall
Messages: 368
Registered: July 2009
Senior Member
Ben Vitale wrote:
> <ping>

Ben, this is a new use case so we don't have anything yet to accomodate
you. If I understand correctly, you want to map a boolean property on
one side to inclusion in a set on the other side. This could be seen as
a case for filtered sets / lists (see bug 167436 [1]) but the problem is
that a filtered set / list would be unmodifiable, unless we built in
some API for coercing objects so that they pass the filter.

My hunch is that it would be better to introduce some kind of API for
observing the check state of a Checkbox<Table|Tree>Viewer as an
IObservableMap<known-element,check-state> as an alternative to the
present API that gives you an
IObservableSet<known-elements-that-are-checked>. However even if we had
this API we are still missing map-to-map bindings to make this useful.
*sigh*

If you wouldn't mind filing a bug for these two items (observe checked
elements as IObservableMap; map-to-map bindings) we can continue the
conversation there.

Matthew

[1] https://bugs.eclipse.org/bugs/show_bug.cgi?id=167436
Re: [Databinding] Binding checkbox to boolean property [message #489519 is a reply to message #468042] Sun, 04 October 2009 08:06 Go to previous messageGo to next message
Ben Vitale is currently offline Ben Vitale
Messages: 247
Registered: July 2009
Senior Member
Thanks. I've filed:

https://bugs.eclipse.org/bugs/show_bug.cgi?id=291291
https://bugs.eclipse.org/bugs/show_bug.cgi?id=291292
Re: [Databinding] Binding checkbox to boolean property [message #489587 is a reply to message #468042] Mon, 05 October 2009 02:59 Go to previous message
Remo Loetscher is currently offline Remo Loetscher
Messages: 18
Registered: July 2009
Junior Member
This is a multi-part message in MIME format.
--------------050703090906060703080803
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit

Hi Ben,

The RCPForms UI framework provides easy-to-use support for binding
checked states of Checkboxtables to the data model.
It's done using two separate lists: one holds the viewers input
(complete list), the other holds the selected elements. Although this
generic implementation has no "native" support for binding a boolean
property to the data model, it uses WritableList and therefore this
feature could be added without problems.

Pleas have a look ath the table sample (see attached screenshot)
http://rcpforms.svn.sourceforge.net/viewvc/rcpforms/trunk/ne t.sf.rcpforms.examples/src/net/sf/rcpforms/examples/complete /SandboxTablePart.java
which shows you how to use the RCPForms-Table-API.

You will find the project on Sourceforge
(http://sourceforge.net/projects/rcpforms/) and the wiki on
http://sourceforge.net/apps/trac/rcpforms/wiki.

Note: if you need Eclipse 3.5.1 support you have to download the SDK
nightly build (v1.1) from http://rcpforms.pluginbuilder.org/nightly/.
The current release (1.0.4) supports only Eclipse versions up to 3.4.x.

hth,

Remo

Ben Vitale wrote:
> I've got a BeanSet wrapper object which holds a Set of objects, lets
> call them Items. Each Item has a String name and a boolean enablement
> property. I want to have a CheckboxTableViewer with the name as one
> column and the check states bound to the boolean property of each item.
>
> I see how to observe the viewer checked state, but what is the best way
> to create an IObservableSet that only contains the Items that have the
> boolean set to true?
>
> Thanks
> Ben


--------------050703090906060703080803
Content-Type: image/png;
name="RCPFormsTableSample.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="RCPFormsTableSample.png"

iVBORw0KGgoAAAANSUhEUgAAAnUAAAJQCAIAAABn9AWGAAAAAXNSR0IArs4c 6QAAAARnQU1B
AACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgA ABdwnLpRPAAA
/45JREFUeF7s/QecHrd1Lwzz+/3e+933vcn33hvHllhz703sxNcSO6nQjJOb 2CrsvYiUSIpF
lGXHiiVbkp3cxLaaJYplSZHcZe+URErsXHZRlFXYlsu2JMVlXfYu9iZZ3wEw g8EAmHkwZeeZ
efZA0MPZGQBzzh9n8J8DYID/z2effXbx4sXjx4+fPHny0KFDn3zyyR//+Mev aaiFARFABBAB
RAARQARyIfCf/tN/euSRR/7kT/7kz/7sz/7bf/tvf/qnf9qvX79ay5cvHz58 +NNPP92xY8e5
c+feuXPnNgYbgVtpDTeTCjciB39JIxePBbgQuJ6mkK+6Serh8LtPWlsOS65w bfyXX345ZMgQ
+I0lFBcXx1IOFFL8zNC4igpRzuNtHoRcC1atGfrsc//9v//3F1544V//9V9H jBhBfNQJEyb8
+Mc//vWvfw3+6/79+z/++OM5Qpg9ew6L7pOzZ8+aPcsVZ0GYSX7ogRBmCGH6 tBnTnDh92jQr
Tp06DSILU+0wRQmT7TDJI0wUAugFocQdoEZZGO8O44Qw1h3eomEMDaPdoaio aJQdRroDvLLw
8KYdhtHwhh1et8Pvf//71+zwqh1eeeWVl19++SU7/I6G3wrhNzT8Ow3/h4Z/ owGqFgJU6K9o
eJEGqHIIz9PwSxp+QcNzNDxLw7/Q8AwNP/vZz/6Zhp/S8BMa4CUMAlgLhKeE MHToUPiL/UJg
CSBAYpaRFcIKZCXDr3QLfhfxXvx2UBqUL4YnzQI0Bz5hsBIGeYSB7vCERxjg Dv2FAC+zXuFx
d3jMI/TVhT4e4VHv0Nsg9IoQWPHs/lw6JjtoxnRlUAA8DDCAEwBm2EOdsCpj NcwqXbQ3Zofc
uriBiWbGbYzZMwRm3hB+TgOzeQjsEWCPAwT2dLAnhT017AliTxMEeLIgsKeM PXHs6WNP4n/Q
wJ5N/rCyh5c9yvBQQ4CnmwX2uLOnH9oBCLxZYO0EazQgsFaEtyrQfLPAGh7e EEGjxILUWLEW
DAJr0CCI7ZzYAMKx2DryNhMOKisr//7v//7o0aNlvmGbQYC+UoDozJkzUtry 4OHw4cNjfzzg
6KZP9syZCvHzuVP303hw7tRDJE6povH43CknIb4z+fQ7k8+8M/Gsd4SrkAZS QvoTNCNkPzp3
ChQFBR6wy4cbwe2OfPRBnwf/N6izasNHf9i9Z8zb87/XohUYGJgK4VdQskOH jqdOnfrkk09d
LDqHMussi19nzZoza/Yc+IWT5HjW7JkzZ82YAVQ6a8ZM8utEgWJnzJgJcfp0 RqvTp06dPmXK
9KlTyC85mDptyhQS4TyjWHLGgF8Zz4okqzIr41eRYkVDkSiWmZeWWTm5ihTL jRjMWmJW+JPZ
PTwJnFnhgD8n7LERyZU9V+wZY88be/a8yJU9vRDYw6wlV8avOcmVNTGsxeHM akiurOFjLaD4
K7aGItEyihV/OX/nJFfG3yH4lbOwOctWH8UCnRhSLCMhiWe1/Aong1KsAb32 jkCvJKtIsZxl
OcUyltVSLGNZkWJ5pXOKZa9u5hQL9qylWM6ycVGsyrKxUCxnWYlioYURKZaz rDnFiiwrUayW
ZYFff/CDH+TkVyDfnAzrxa8sYyCSBX5968l+Rz/7Q8X0kj0zJkDcN2PC/pkQ Sw7OLDk0c/yR
meOraDwxc/xJGk/PzhFZMoiQBTIepYVAUQdmlkCxn9NbsHsd+mB1rx8SfmX+ 4eKPPvndOwvq
168PDQ7hV7By8DDBc6UMOtemT0aic2bOtKLorc6cOXvWTItfgWKnzyBECyzL iJZx6kz6O2P6
DEauU6fSSGiVEOrkyU5kZ5Q4dfLkKRCn0F+IkyYBoTpx4kRKrxMnwcGECRN5 LCmZWFICbiuJ
xcU8lhQXl4wfD24ri+PhFU2yJy9yFfmVvRJy89X6r/y9UvRfRXL1YlZGrvzF lr3nMooVPVeR
WdkrM3uJFj1XyXn1d1sZuTLPVXUrJc+VtXG8yRN9SO5waN0OaBO5Lys5HOw8 D7zp5H6wdFPO
62YerJXKnF+ZT6uyrOTCsj9VP1ZyYdmfoiNrzrKqH+tFsey8RLQRXVjgyNAs K1I4FwPEU71Y
hgxzYb28WIli+UubD8WK/SXMqiWKlRxZH4oVHdmcXmwgR9bHi/VyZA0pFt77 tSyrerGBKJbx
65EjR/z9V37Vh2WBkKDJUv3X114v6t5rqE+EBBL7Ar+OGdjn8CcbdkwaDbFi 8pg9k8fsmzLm
8ylj9k8Zc3DKmENTxxyZOqaKxhNTx5ycOqboly/yW4z+5Yunp46GX34GrkIa SHmcZjk6lZQA
EYqCAqHYffQWcKOdk8ccWlva8x//jvMr6YLdsrPjv/wSrN3iVxhznTFjDouE UOF3xuwZM2ZP
n66JcH7GdEKo06aROH36rGnTya8dZ06bPnPaNPBZ4Zdw6pQpMyZPhjidxYkT p02iEQ7I8SRX
nDx56iSIkyACoZI4cSKJEyZMFiIQKoklJSwCoU4sKZ5YPH7i+HETSBwPsWT8 uJJxNI4dW8zi
W2/B7/i33oI4jsaxvKvE7gSGfmDpnNUzLHYOi86r2D/MmZU5ryxwz5V3CzPn lfmsas8we+Qk
cuX8qpIr6xbmfcJe3cJefcKcXDm/8m5hrz5hkd4YaTFvg9ES/1Pt3xPdDrFz z4dZxY5oyX/V
crwP4wblV5VitfyqUqyWX1WK9WJZsavYq6MYzhv6sj4Uyy5Vqy+rsmxoihU7 isUBiECOrH9f
MaPYcH3FYkdxIIoN0VfMe8WS7ytm/ApcslEJmwIG8OigsYJ5tVI+IDn/EVBI sNkdQKqift0O
blhXNvbN8rFv7hj7xo5xb1SMH7Zn/LB944ftp/EQjUfHD6saP+z4+GFQCJvD CwGOi577pXQG
0kBKiEdoxoN2OVAgFLt7/LCdEMcN2z5u+P6VS7r/fSuRXycvW9Fq9NROnToR fq1X73/AMP30
6XNYJCwLv4RZ50ybNnvq1Fk8wp8W41Jmpednwu8U8ks4lf5pxWlTZ1JmJZw6 aSLQKvmdMGFa
ScnUCSVTS4pJnDBBiBOnTiS0CnRrcSqn1ZKSycXFECexCJxqH1NOZXHcxLFj J4wdC2xK4jj7
gDPrmDHjIQrkOo5QKWVTyqlj7cEJF+ny1z21c1g78sp7hjm5Mn4VyZV3Dkt9 wtx59SJX6Gvi
fcLaYVf/MVd1wJW5reKYK+8ZDkSuWm+P061ItOIALaNYTrRebqvWeQ3XV5ye sVifcVnDsVgv
itX2FUd0ZEN7sSwjZ1lxRJaNxfp0FGvHYv1Zlr+osYHYQMOx1dpXnPxwbIi+ YpPhWMavQI0f
6cIfgoS9e/dCx8CxY8dgxo8YTPiVp4evXSDs27evqHenA+tWbRnxu60jfldG 444Rv9s58qWK
kS/tGfnS5yNf2j/ypQNFLx0qeulI0UtHi14a+czP4UZf2UE6hqtVNCWkP1j0 0n6II1/aR4va
PfIlKHbHyJe20VgGhS9b0PX7LUR+BRe2+fy19957L+HXunX/4u7du1OnApWS SDl19pQps373
yuuGcfSY8UClzE+dMnnGpEkkTp40AziVOKkTGK1asZgyK0TroGRKCY2Ua5mr OqWkGM5MHl88
efz4yePHTR43dtK4sRPhdyyJcEAiHJD41sS3xkx4a0zJmNElo2ksGlVcVFQ8 ZnTx6DH0YEzx
6NHji4rG89/Ro8eNHg1s+taY0RBdBDp6tOW9sn8kcmUurOS8ioOvUs+wOK1J cl65/8oHXCVy
ZT3D4pwmreeqndOkHXOVpjJJbqvaM6ydzaT1XDm5qu4dbyKZXyv1G0u9fOLk KXX+lJfzWt19
xdU6FstYVh2RlShWOxYruraiL5vCsdjQFMvHYrUznrgXm3M4Nsa+4kAznnI6 skFnPEG7IU56
CtpXnHPGU86+Ysavu3fvXiGEle6wyixs374d3uwPHjwIyVcLgfOr2kXM/Fo4 L6Zfs2bNjh07
3uz80Ocrl3382xc+/e0Ln730wsaXXtjy0gtbX3ph20svbH/phV0vP7/75ef3 vvL8vld+WfnK
Lw/QOPzpn0JR0HcrBjgD5w/SBJAS0kPc8wrJvvPl56EoKBCKhcLhFhA//d0L u9+b26l5Q4lf
//6D7ffccw/h1zp1Gty5c3fK5FmTJ82aNGnW5MmzJk2cNWnCzM82bdHGTZu3 bt5atmlL2cbN
W1kCoGEgP+DUiRNJnACxZEZJyfSS4mnFNI4fTw/GTx0/bir8kgMrThk/fsq4 ceS3uAROTiku
nsJp9a23JrE4ZvREGicUFU0gB2MmjB5NIpwZU1RSBHFUyahRxSNHFI+w4viR I0kcwX5HjBs+
Yhz8Qhw1atzIUWNHjnxr1Ki3Ro4cXTSqaNTIIph858y3s2bYES/WxHnl85t8 yFWcNswGX3nn
sDibSeoWFoddJXL1n9CUc6qwIbmK84S9mFUiVzZ+xockOeN6zQsVZ6yIE4+l ycn+5MpmVwUK
QfuK4x2LlfqKzWc8RZlXHNGFjTIWK/KrOK/YZCw256TioH3FbCw26HCs4bxi dVJxToqNOK84
Yl+x2MSp84rVGU+MX2F4db47vOcO7xsE6GCGxxy8WJZ2gR2A4WBQFgIc8JNw 4HUeLkEP8+sP
fb9i8Xvrnn0K4vpfPLXhF099/MunPvnl0E9/OXTzL4dufX5I+fNDdjw/ZNfz Q/Y8P2QvjZ8/
P2TY4CG8WHZHOAPnWQJICekhQt5tzw+BQqAoKBCK/fgXT330i6c+/MVTHzz7 VPmsyW3v/47E
r60/3Pmtb32L8Gvt2sCvd4BZJ0ycNWHCrIkTZ5UUQ5x54/Zdwwj8CpwHzFpC aHUGIdRxhFDH
jSMHQK7jxgGzst+p8EsOxhNOHQ/MOm7K2LE0jpsMv8C148ZPeeutyUCro8dM Gl1EyLVoFGHW
olETR8GBFTmtlowaWQLMCnH4m+PfHDb+zTfHDxs2fsTw8cOHw8G44cPHvQnx TfILxyNGjKVx
9MiRY0YSZiXz2tkvnaxURJxUexK7aHz81c/rmxxxzFUcdlU/yJFGXrUTmnzI lX2N4zWhyZ9c
2ac4fDaT/4Qm7kQauq2MVtlEFXEMUp23Irqz0gcYJgOu0X3ZoPyahrFYn3HZ ghyL5R/t+FMs
GENQisVPd3I6sl59xdAzDPwKSyaInjd0tj319LP+k5Iggfg9EvgVQKmdO3eG 3l3+RSL7gELk
Uf7VonSeN6HsYMGChf/2l/9t04Qxs/+h8Zx/aDz3Hxq/+w+N3/vHxu//Y6PF /9Ro+T81XPVP
96374X3rf3jfhh/e9/EP7/v0h/dtfJDElzt3lPj1lc4d2aXPaMqPaBbIu+aH 9638p/ugKChw
wT82eu9/N373fzeeC/EfGn/48r/93Z//F4lfH1i/55vf/Cbj1/q3b1N+nTBr QslMiMXFM4vH
zwBPfO26HT3/Y37vl97t8/t3Hhsxp/9bM0+dPHn71k0ef/CT6XAs8Ot0Rqss jh07bdzYqRDH
wq/DrMCyU6gLS/l1PJArMOtkyq/QFUx+x4yZ9NboiaNHA6ECuU4cOWICiSMn jBgBVFoycmTJ
CIgjIFoOK3Dqm8PGDXtj3Bskjn3j9bFAtECubwyDAzg/dhgcvAnxLSDX4SPG DB8O/Fo0fPgo
+vEY8CsbSyX8Cl3E/Csx9ZtXceaw1wev0jc50teu/nOa1A9ycnYLs6/x1E9d +YQmPmuDf4qj
HXD1+c6VO4h8NpPqtnJylZwz9ienW/M5ojl91uqb7sTnaokfxybQUaz2FWs7 itXvdgpyLJZP
Kma9IOyjHW1HsUixOfuK2fQ9TrF5/HSHfyAb5evYhD/dYfy6aPFi+OiXR/j0 V5wcxOcNiQeQ
AL4KZpGFd959t0OHDjCMy782ZIBAyioaVMLm53/7W1gJwInvzpv36/p/snHc iBl/+12Is/72
b+a0+pt3v/8387//1+9//68Xt/7O8r/79qoffHvtD769/gff/ugH3/74B9/+ 9O//6uUObfm9
WMnspi93aPfp33/7E5rywx98+4MffHv1D7698u++vbz1t5d8/zsLvv/X877/ 1++0+u6cVt+d
3eq7M//2u+t/++L3/+t/lsdfP9xn8eu999aDtTygc3gi8OuEmRMnzCwpBh90 xleUX58Zt+zZ
iUt/MW3R87MX/Ord+f78CuQKfcLgsIKfSl1V4rPaDivtHKb9w8CpJTQWE/+V kiswq8WvZJB1
zBgYVZ0E/Erc1qIJo0aSCLQKEbxV4rCOHD8K+n5HwC94ruCtjhsOHiqlWKBV m03HvvHGW4xW
h5EDEocPf4vya9GIEcCvI+n3Y+RzVWc6wGgYZJUGZa23PfWzHE6x6gevPl+7 SktJ8AnD2q9d
Ob/yRSRCjLnyFSRyfoqjXUECXEzu8InfrogfqHAG9RpT5DN61PUExA972Lez ocm1WvuKE6BY
w75iw3nFGR2LlT6NZYMO/hQrDi5oKVa7BkW4vmJxAQrtGhReC1CE6ysWF6Dw X4Mi6HCstAaF
SV8x49fFi5f++7//9j/+43c8Ai0d8A2Q4Le/fVmM8+a917FT5z98/MnvfveK GE2Kevnl18Q4
f/77v/of/3XjhNEz/nfjWf/YeM4/Nn77Hxu/+0+N3/+nhouIx9mQuLA/arj2 Rw0/eKjRRw81
/Pjhhi93IZ4rF1k6hqufPNzwo4cbfvhQI8iy9sFGqx5sVPrDRkt+2GjRDxu9 /8NG837YZO4/
kTj7n5pseO3/fP8bsv/a5KP9f/7nf878V8avMyZOmDFhAvktLp5ePH76lWs3 gF9/M2dV59cn
tRs2pmPRqK7j32T8egvizRtw0LX4Tea/ji4qhhlMbMoSjK2Sbl7S8QusCQfU YS0Gn5VNXKKz
mUomk1nB4ycVjwdyJfOVxo+DoVYyXwn+fIuOrdI+YdoPPLIYeJRSKfwSWiWR HIxjccSb4wjF
DiN+KlApicNIJPxKfse88cboN98cM2wYMCtxXt8cNmokdV5H0O+zgWU5vxIu dY+7ij3DYuew
18grdA5ryVX7QY751zghFpFQPVepZzjn8kyM51S3FZhGJVfOoIwktL6XuqSA 5JdI06BCEG2g
gViW2Ku7WF3dKfbvYg3HYlU8o4zFct5VB2VNPtepjrFY8bsddVKxT7cHH19g b2bV1Fcc5dOd
JJd5ijgcKzZ+2mWe7P7hlb976bXf/u5V+GUR+AlGUn0C8QtfeV2M7723sEuX bh9//CmcfOXV
N3g0KerV14aJccGCxb/6qz/fNGXcnLbfh/hO2++/2/b777cncXH77y/v2GpF x79d0/Fv13X+
2w+7/O2GLi0/7vqAeBciW4+u0plPuj7wEYmtPujSal2nVqs7tSrt1Gp5x+8v 6dB6QYfW77dr
Pa9d63fbtZ7brvVHw1/6u2/+v5L/2vAPlRa/1qlTF/iVfKg6afpkGidOmArx KuXXNq+NbT9i
dOe3RnYrGdZz6mvAr7B+Je8ffrr0GcavY8eMnzQRPryZMhGIE76lGUe4Eyiz ZPykEviipnjy
BPqtKvySFSEmwKIQk+F3QslEiPCNTfG4CcXjJ4yD33Hkdyx8qPpW8VtjiseQ mcDji0aNHz1q
HMwBtg7geNRYiKNGji2CmUoj3hoJcfiYEcCdb9JIeHT08DeBU+G36M03i4YN K4IDiCOAVoeP
Gv6mtcQSUCs5Gj6C9xFL9CqRqzT4qi4lof3gVf3aVZzWZPipq3bMFd6UfVZo Ut3W0J/ieLmt
fKhVclulKa98YTzt9xjcNeEL94gzjUNQbNBPY73WeNLyq/lYrPRpbIzfxUYf i/Wh2Hx9Fxs7
xQbtK/b6Ojbrn+5EX+aJD8cCv/7TP/1Taemq14eNevX3wyG+9voIiD/+6fP+ 469P//MLkEWM
Cxct69at12efbX7jzSI4D78sQkr/on7ysxeHDR8txkWLl//b39TbMnvyuz0f gvhe74fe7/3Q
4kcfWtrnoeV9HlrZ56FVjz207rGH1vd7aEO/Bz/p9yOIL/ftze/ySt/em/s/ CL/imU/7Pwjx
o/4PQfyg38PrHn94dd+HV/Z9uLTvw0sg9nl4waMPvw+xb7uPx4/4h3v/XOHX w5xf6wBlTp86
fRosUghrFsIXq4Rlp129fhP4teOooi7jhnef+Ebv6a/0nfNb4Nc7tx1+ZURL 5w+Pmzxp6uSJ
UyYT4iRrQZDfksmTJkyCCFQKtAoHkyeSFZgIu8JSTGThJbL80oSSCROKSSwh yy2VFMOiEGOL
x48rht+xb42HFSGAvGkc99aYcWNhXQg4GA1x7BiIRRDfGk1j0cgxLI4aMaZo 1JhRI0ePHDF6
FExlGlE0cjidJzyiqGgkHIwCTiWzmmjXMF+9k81vAu+V+68quTJ+Vb/JEb92 VT945XOG1RUQ
DcmVz2kS15FQF2nyWUTC6ztXPuwqLSzsNafJpE9YJVfGrz4sKzoo6sc8oSk2 qC+rdWRVljXs
KObTp6U1nnzWKDb/LpZTrOEaT9XRV8yc3dBfx3p9F+v1aaxkJF5jsTn7isWv Y/HTHcPFitmn
O8Cv7du3X7FyzfjiKSNGjtPGkaPG8ziqqFiMRfD9pB2XLlvVq/djmzdvE0+q x6PhaxHfOOat
ictL1/zb/f+z/N3Zi4b0XAzxyZ5Ln+y5/MmeK5/queqpnmt/3GP90z02PN3j 4592/+Sfu2/8
WfdNNJY908Mrbn2mx2YaP/0ZiR//pOdHP+n54U96rnu65+of91o5tFfp0F7L hvZaAgfPDPpo
+sSO3/4LiV+/93GVxa9169SB9SVgGcPp06YDyxKiJSxr8Sv0APec/PtHZ778 +Nz/eGL+r0n/
MO0ZFiPw6/ix46aStQynTraXMASinTTRWiMYaJUtb0gWZKILBwMPk0jcWEKx bHlDSrQlsJJh
8fiSEljFcByNcDB2PIvjyO+4cW9ZceyYsSwSSoRYNGY08CPhWnYAn9+Q71VH w9Rg+AIHuBOO
SSQUOXrUKPp1Dp02TE4Sx5URqj2F2PpTXa2J8av/BzleiwyrH+TwFRDFRZrY wsJB1+7Xrtov
jrn6L9wvruQgdpxygmHdwtqpTFKfMGv0+bxW7pqwA04JbKRNXCHPa+3ZcBQb C7+K3eMiFFqW
DbfGk7R6otcYtrbjPY9jsWJnckSWzbkZgPl0J2mTCa9Vw9Q1KAINx9bMZZ5g 3STmza9c9cGU
aXOLS6aNhXFAGsfBsKAdx8MsHDsWl0zXxlWrP3jssSfKtu1kV0smzIDID9if LE6YONM/rln7
4W+a//WORe8u//mQFc8OWfns4FXPDl777MB1vxz44S8Hbnh+4CfPD/zsxYGb fjVwy68Hlv36
CYjbfz1gB407//UJbdz2r09s+9eBW/914OZ/HbTpV4M+fYHEj14YtOH5QR/8 ctDa5watfmHo
B//+7KaJY6a++fq/dmkv8+unxyx+rVe3DmwjNWsmrHk4HdYLngl73JA4lfmv vaa92nf27/q9
838Gvv+rIYt/Cfy6xQ63bt68fPmLLy5dBH4tLh47berkqUDLwLFWnDR1ihWn TZkEceqUiTxO
mzIR4tTJE6ZMngBOLvF2J9Lu4wnFtNe4mCx4WDKexRLoO6Y9yMXg28Kyh+PH wi+wLvFwx781
fhw4ucy9JV4tcWzt37eoe0ucWYijR71FI3VywcOFr19HAreOHk1I2KJVSq/M hZWmsEurNWkX
GVYX8ReXQuTOq/RBDl9Kgi0FLk5o8toYx2vtfmmFJnXtQ/+F+/nEIpVcOZeo 5Mqn5EgelUiu
zHkS13kXiZazLF9+ls8UjdhRHJRfo4/FcqAkovV3YaXZYf78mrax2IherLQZ gLjfjnaBJ6/P
vbT77VTTcGyMu+6wSU9Z2XXn3XffhTWa/vEf/xGmbqxes3bL1vLPNm7Rxo2b tnrFTZvLWBw0
eOiJE6f4n1EOXm99/+EtG3e8O2PXuzN2vzu9gsa986fvmz/98/dIPPj+NIiH 3592hMajC51Y
tWi6Ji6YfnTB9CMLph+i8eCC6fvfn7H/vRmfvzdjD8R5M/YsmPvR3BkTX/ld x/v/BvZQh2+W
YGMaaw+4adP+18YT3/jGN+j6iMCv16/PnjVjFkRg2ZnTZ9J4/catmbMWAMWK UeTX69euwcbs
Fy9cAH4FCiSb40D/MullZgdTpkGcyuJkK06hB+SXMu5koFjapwyuLrAsjXR4 toRFMjwLv7C+
MDAu70QuAbolpEsi4VpgWcq1496CCHRLOpHBq30LIulEJgs1sR5kcGyZkwsU S2iVROq+its5
yczK12xSt8qRdqDzmdbE5wx7fe0qkStzXn3mNIl74/At58TN5oKSK/vwNOen OEAb4oL1Erly
X0pLrnxgT9q2jA/KMh9FnCyq7lMWzpGNPq/YayxWO+OJsawPxXqNxRruBGD4 3Y7hd7H5HYsV
11CUFlDMuYai+GksH1bgFuLjyJqspIif7vD+PHFju9mzZ8N6DtBVBvuF/93f /R1MJzYMsLGd
FB588CHz+NBDD/vEJ75Tp/Nf1unyV3Uhdv123a7fqdf9O/W7/3WDHn/ToOd3 /6Ln9/5Hr+/9
Ze/7/rL3/X/Vp+Ff9W347b6NvkPjXz/W6K/hV4p9Gv01xN6NvtOr4Xd63v/t Hvf9Vffv/WW3
7/1l1+/+jy5/8987/fVfdPxOfYiDm3xnWM/2sIfBwoUL+baqjGK/u+mMxa/1 69WFLZnnzJk5
Z5YTYX+cS1dufv3V7a+/vvPl7etff3Xr66+/guM/3r0BM4dv3rhx9eqVLy5/ Af7r1SuXgV8n
Thg/c/pUHmdMn8LjdDieBnHydB5hjNeKk4BouZsL3q3Vbzxp4hTCtSXg1LI4 aVIxiRNJZFwL
dyQRuLZkHIvgQxOiLX7LcmoJ146BOG7saIiEa98qGju26K23isCvpZH2KVNX 1fZXKbna84el
rXKkD169vslRe4bFYVdxHUSxZ1j8zlXqHA6xdr/PCk0+m7nyhsnwO1dtnzDv FhYH/Pg8Va9t
yySKFR3ZuCg2qC9rOBbr02Os7SsO4chG+S5W+2ls0LFYw20AojiyJmOxvJ9D /MRLu/pEIIqN
/dMdn+1jC+PTnXnz5sESTjAW6xVgmSeT4P9JT7irsOBi9QXoBIYglV9aWsrJ lR1Qfj1v82v9
uteuXZs7Z6YUfwMTr3VLEL/2xvDfDxv1knDp96+/AVw4a+Y0iDNJnCrGGTOm iHH69MlOnDZp
+rRJ03gEp3bqxKkQSU/yhCkQaQcyjSUQJ08qZtHm2vETJ1KWnTB+woRxJJaM KykZC5GwLIvj
Kd2OHwMRnFqBa6l3Cwv802X+2apNtHeYsKu0D51X5zBQrLR3OnNhpUUQpV1d xXUQxRWGGa1q
h129FpHw3yxd3c+VfZBjsraw4XeuJn3CErnm3FOFb7stffIYsa9YdHxNuDZV azzl97tY8TMe
kw94EhiLzbmlnbQuGH66U92f7hju0A6za0qEwHfplg7onBwSxI292bG47bf2 mO0Org1TcgWJ
KbV/kh3ocoX/teUC59d6V69efXvu7LkQ57A4C+IM8DqnwEQkMVr+Je3OpROC aZw8eSL0J0P3
MutYduKMaTNnTINyrDh9KgzrWnOo2DQqO9o9yVY3Mh3BJX6tIIDTgexMSrb7 kO35x2RaFInF
4MvSAVoa2eQoMicK+BXc2XEwEY7NjCJrDLM9dIBTbZJ1+odZv7G6T460SQ7v FlaXQhTX92Ke
K5swnHP5fm3PsHa/dEaxas+wF7mK/qvPCohSD2fOOU3SbCY+4Kp+7MEbX9Vl 4ROMOcVKjmxc
FGvCrz5jsdoZT+E6ikV31mdesRe/JjYW6/OSpDJuaH71GYs17CvWjtyLy1yr I7Kp7StOYNed
GD/dgdnFPhQLW24Ds/IgUiwce7FsaIoF3g3Nsrmo0/JQ/Vn2u1svOfx65cqV t9+e8/bbQLFz
CMuSOMs+mD1nziwhziTHs2fNmjWTjNfCNuvkgB3D8K1DsfY4LpArmTYFv4xl gXGdmcqUbgm5
2hFmSPFIyNVmWaBwmHZMRmpJJIzOqH0idBfTYVpKseDFwlc+dPIxo9jicdbM Y0q0fNoxDNDa
/Gpt/MoX8/daTUJdqknagc5rnWGxczjo1zjqxq7i8sKq88rWFtZulu61lITP nCbxUxz/71zB
i/UfcOVNsNryij3GfNKT2BPIKTaujuLoY7GiayuNyxp+uiP1EvM//T/dMfRi tfvtZHQsVpwT
F4JipY5i/HQHmqm4lnkSN8rmH8iqWwIAs/IQI8VWqyMbnWK/W3bZ4tcG9etf vnz57bfnQqQB
KNYV51gBiNaKs2fPAoYVImFZQrQzeSRcy+JMiDN4nA4fApFvgcjHQDROsyIZ FIaeaydOmTqF
RPjoh0Ua4K2EfkHLAvm2h8yHgr4E2psALEsifOFDI5kARb/vIR/6jB/HIrAs GAP5lsve6JX1
D1vBsGdYJVfGr6xn2Gv7Oea28o3n+Ac5Pl/jSD3DwK9AqyyoX7uqn+KwCcPm awvzpXe5/you
1u+ziAS0fdppMjk/4TD0YqXvdsRVe0LMeDL0X73WnfDhV7FfXeRak7FYaV8E 7aRir13ZDR1Z
L5YVq0/qewi9xlPoT2PVEQTGsib77ag7NRlSLN+HWDscK20JwL4mZ4E9dGxx 7yjLPNWQHdpD
UGxq+4p9XNjvbrtq82uDBl988cXbNDCClYLNr/K/MJFMDeDYSmGmEGYIgZCs O/DJzfwA3iPE
DnPR5RdI1uqiFzsZWP8Dq0vxBQqO4Q1L3B1C3eRV/eCVzRzWfvAqzhlWyZWN vIpzhlVyVVcY
lvbGkdbul8hV7Bn2WUTCa790r+9cxRUQxUmtPnOa1HbZx20VHVkTisWxWOkb Wa0v67Ouk9d+
sT57x/psaZevNZ7CUaw6Flt9w7E19tMdce9Y/75ikWINh2N5257C4Vits/u9 7dcdfr106VII
fgW+lfjVh1kZyYr8Csf+FCvKzVnWcmOFcW2OOK8DkVxFihX7LhjF8i4Odasc PuzKDgxXk5AW
GZbWQRRX8Nd+kAPf5IjkCjOHvchV+tTVp2dYcl69dnWVHC+xc9hrYWGvr3Gk 6aaGo3HmHcUx
LvBk3lfsM90ptfvt+Cw9YT6vOOLGsYa175XMa16x9tNYaUs7aSxWWqk43r5i 5sVW60qK0Msl
jsiG23Un7zu0V0dfcc4ZTwkMx0os+73ymw6/wlesjF95MHFhg5Kryq8SxYr+ qySuyK8Smoxf
JXLlziv3X83JVfJf+cir9LUrG8bgw67cefXaHsdnTpO0TpP0QQ6sMKzd1dXn a1eY3KTtFoZO
MD7XQ10BUZzTJI0Imi8iAV5szj5h/8aUfwSZzHSn6usrrtaxWK81KLSfxuZx jaeI/CruzS59
HRuIYrWrT3hRrH9fcaBlnth7MN+ePbFPd6DPDF7ueVvE3vt5G8W+IWR9b3EN x5Iponao7uHY
hOcVGw7Hism+t/22w69nz56VmHXHjh377OC/MQK7uscsVAQJu5WwSxd2egRQ QQrb3aFcF+Bj
YTHAZ15S2KoEvqAVHMD6YSzAJ9hq2EgDLPbBw6d2gH2GxfCxEGDBFBZgr0Qx bKDhQyGsF8IH
QlgnhLXusEYIq+2wyiOspGGFEuALMDXAgiZBg1oIuxW7LxeKickFlzSq7j9F xEyOOar+B16Y
+59nyJgEtdZ8zmgrNOLJoMbA02vvy4XnuktAiWjnNBXxAeHH4hPEj8VHTDwW H0M4Zs8mD9KT
y/7kzzUciM87HEutAfzJGwo4EBsQOGatCgvaZoc3SnAgNlZwrLZm7IzU6Emt IvypbTzFk1Jj
K/6ptsz8jFdjbnheSxCGJ1W6MT8DcEkcfP/OLx1+PX36tNg/DNqCr9YSQ0Eg 8LdxhIJAApVA
BBABRCB+BKAzQKLY+3f90eHXEydOiJObwHEFEbTb0ONJRAARQAQQAUQAEeAI AF2Csyu6sDK/
igOuyK9oOogAIoAIIAKIgAkCuflV7B9m/PrHP36NERFABBABRAARQAR8EDDl V9ZLzPj1q6/+
iBERQAQQAUQAEUAEfBAIw69ffvVHjIgAIoAIIAKIACLgg0AYfr375VcYEQFE ABFABBABRMAH
gQD8Cl3ErH/4zt2vMCICiAAigAggAoiADwJh+PX23a8wIgKIACKACCACiIAP Aqb8yr7SYf7r
rTtfYkQEEAFEABFABBABHwQYv7JFfNlXsM73r/XrN9CuL3Hz9pcYEQFEABFA BBABRMAHAZFf
GcU6/FqvXn3g1zmw5Svs+zqHxL1797Vo0fLG7btesU6H30jRJ3HES+xGrBDx OGKxYoGqOoY3
8k9mWIiPJFF0DHT3KDfCvIgAIoAI1GQEJH4FinX4tW7d+sePn5g1c+5MGmfN mrtnz97mzVte
v3VXG1nDLV5Sz3jlDXFeLDyxGxnK6S9PIGljRzXQ3Q31xWSIACKACCACEgJ+ /FqnTv1jx07M
mDEXIvDrjBlzKir2NmvW4vrNu2q0Wm3lktd5bSGBToolV99dQKQQhftnCVSg NnGgEiRUo+QN
VEGYGBFABBCBmoyAH7/WvrdeVdXxqVNmszht2pzdu/c2btzi2s07amSttvaS eFLtceVXfS7l
TBM0r1SgKqH/GXY1tC4qVmJREoZaYMWTgcSQEuesL0yACCACiAAiEA4BP369 51v1qo4enzRx
NomTZk2ePGvXrj0NGza/euOONrK22+sqnFcTiGd4089KCJGY390kL5dTlUFS QauXyS285JHy
+gvgf/dAYngB61NleAkRQAQQAUQgHAJ+/Pqtb9Y9evT4xAmzJpbMmgC/E2ft 3Lnn/vuaX7l+
2yuqvpRPYrjE0rM04rF6Jpmr6l20gmmVCqeLv145YVEl8RfDXB3/isOriAAi gAggAv4IAL/C
Lu7s+xwWnPlN3/xm3SNHjpcUzyweP7O4eGZJycwdO/bc971ml6/fNoysrfdJ LCZQEydzFcQT
XwtUaXNqwbKEk9Zfa0k2LmdoSCU5DesRkyECiAAigAgERYDx62QaNPwK/uuE khklxTMmFM+c
MGEm+K/33dfsi2u3zCOjBJ5edXD5VSklZBHPVN9VJptaviSzqnIsumgLURHz ATyQGP6amlcr
pkQEEAFEABHwR0DkV0axov9a5+jRYxOKZxQXU4qdMGPnjor7vtf00tVb5pG1 /iy9eKyeyddV
LpgqgJfYMeridVOOsH+CoKBpJTevTUyJCCACiAAiYIiAxK9AsQ6/3vOt2sCv EydM43Hnzor7
72ty8eotNbKG3v+8mkY8k4arWi0MT4bTxV9rwNMLWAZ1UNByFqitXDyJCCAC iAAiEBQBP369
997aVVXHpk6eNmUSjZOn7d5V0ahRkwtXbmoja+vFS9IZ/wSBsvNOUXY77Z9e kvhIpcrAC5dU
NtGFo+GPg3g1JwghxMiZxatC8TwigAggAohAaAT8+LV27drHqo5Nmzpt2hQa p06v2F3RpHGT
85dvekXOc/xASqkmYGcgGT/gWbzOiIWwxDnvK6XJeQtRbFUMr5tKuqhyihnV W2hv5HV3SQUt
Av6S+9QjXkIEEAFEABGIiIAfv9atU/vYsWMzp0/jsaKiolnTJucu38CICCAC iAAigAggAj4I
+PFrvbp1jgO/zpxO4oxpM2dM31NR0bxZ07Nf3MCICCACiAAigAggAj4IMH6d RAP7SkfYn65e
3ePHj82eNYPHvXsqWjRvevbSDYyIACKACCACiAAi4IOAyK+MYsX9X+ueOHF8 zpwZPO7dW9Gy
RbMzl65jRAQQAUQAEUAEEAEfBCR+BYoV+bUe5ddZVpw9c+/ePS1bND998TpG RAARQAQQAUQA
EfBBwJBfZzKKJfzasvmpC9cwIgKIACKACCACiIAPAn782qB+/RMnTsyZM5vH vXv3tmzZ4uT5
axgRAUQAEUAEEAFEwAcBX35t0IDyqxVmz55N+bXlifPXMCICiAAigAggAoiA DwK5+XWuEPbt
2wcZjp+7ihERQAQQAUQAEUAEfBDw+/61AfVfVX49dvYqRkQAEUAEEAFEABHw QYD7r+zjV9f3
OV78+jUGRAARQAQQAUQAEfBFwG99CZVf2fjris2HMCICiAAigAggAoiADwJ+ 60tI/ArTnBi/
4isLIoAIIAKIACKACPgjkHt+09tvv82HYNn8JsQUEUAEEAFEABFABEz4lQ++ 4vgrGgwigAgg
AogAIhADAji/KQYQsQhEABFABBABREBCIMD8Jhx/RetBBBABRAARQAQMETCd 38TWcML5TYaw
YjJEABFABBCBGo5AmPUlajhkqD4igAggAogAIpATAeTXnBBhAkQAEUAEEAFE IDACfuOv9evr
10dUb3Lny6/W76jCD40RAUQAEUAEEIGahgDQH5Cgyox+46+MX+fMmcuj9vtX KHfTvlNffvXH
wOSOGRABRAARQAQQgYwjAPQHJKhSrF//cL169U8cd/h19uy5e/fua9FCXl9i 1ZbDt6DgP/7x
yOnLGBEBRAARQAQQgRqFANAfkCBQofSe4MevdevUP378xMwZc0icCXHunj37 mjeX+XXdtiNQ
aNXZK6Fjg2/9/yAv/iaPQOgqw4yIACKACCACHAEgQUaFYuD8OmnSJHn/nDq1 6x87dmLG9DnT
ps2ePh3inIqKvc2atZCK+HBHFZw5du5quFj/m38aLiPmQgQQAUQAEUAE0oAA kCCjQolfd+/e
PWXKFEaucHD/rj9+4xvfgDS1at9bD/h16tQ5U6fMmULj7t17mzSR+fUPu45B 6hPnr2LMEAJ1
//xPMyQtiooIIAKIQJoRABJkVKj6r0CrLLjWH77nW/Wqjh6fNHH2xAmzJk6c NWHC7F079zZq
JPPrZxUnoMSTF66Fi3W+8Scn17xTp8Nv7PjOO6GK2jjjLSjhqTXXWGk/mnE0 nDx2rqNv/ISL
ZB/8ZM1GVTbt7cxliEN3IrP5HUPBGw3MkLaBN0UEEAFEIBMIAAkyKtT2D3OK dfzXb32z7tGj
xyeWzJoAsXgm/O7cuafh/c2lIjbvOwlnTl+8HjJWrP0RkOtr5Sz7vNfemReq qM0zCb/+eO31
02spv86sCimP++6sWL/StLczlCGi7vQuRGWQ2fCOtnb3/tl/iQUfLAQRQAQQ AUQASJBRobZ/
GPh1Kg0yvwKtlhTTSPn1/vtkft1WeRpKPHPperjYst8/A0k8OLMqXHaei/Pr Gco00QtkJbNi
/UrT3s5MhtyF+6I6//fEsQZ+jQgdZkcEEAFEABGIggCQIKNCL35lLqziv04A Zp0J5Mr81/sV
/3XHwTNQ4rkvbohR6O919bJKycif66zO4QdnHXOu7ln7IO8x/unarTzZT9+y zrOTX9zYOovw
H49Pr7MKfPD370gp+Y0IX9J7WXl/Xy4di0KyNI5sHoLJt6NKWbnULBwrre5w VZtFOAklv0fJ
1YqggnhHu1hHBnZGQK/5f/1/NHXhrkRMgAggAogAImCCAJAgo0ItvzLnVeO/ TiyZXULjhJLZ
O3fuVf3X3YfPQYnnL9+Uokqxaho48+f/7/9dNmssTwzM4Ur2gUVU5+lBnZ+u K7t8k6V/+oOb
1snfb4cs71O+cU4KKUmZLDtN6WS/fGz4TyHX2OF7tz9tFy4JyRLLUoGy3oLx 29FctGR63/N7
1xHKZ8d21Omuy8LyUqV4XkdlVR5JUy16SpVpKwhPIgKIACKACPgjACTIqNC0 f/iee+pVVZ2Y
MnnO5EmzIU6aNHvXrr2NGsr9w/uqLkCJF6/cVKNIsdoE4sny2Yxlx47cR4va t+4h2z97aPax
i4whXt8Ol1hKOLnwdcKpP/mApGcnyTFNSbLwQl7fLqa0SqZFCXex7+tWhN/L EVUnmHQ7RwYm
thjZfXV3sXTXZdGIceWmSylba72mCnqrH6ufs0YwASKACCACiIAJAkCCjAp9 +odd/iv7Pmca
fJ9DPtGZDQfwfU7jxvL84coTl6DES1dvaSOjFq+rcP6//el/5lfL51CO/PDW IkqcD805cenD
d8WDOq/vgMQsGVxlySA9P0mOeRYQaf8HhKRf3yGm5CfJfVkCxuv7NSrwezEh vQQjogq34zJI
2X1w4Lprs/CrYgkupWyt9ZrSqxJ6PsLgJUQAEUAEEAFzBIAEGRWq/Mo7h938 WpvwK6wvMX3a
XBKnz4X1JdTvXw+fugwlXr5+O1zcMffdUZUs78lR/0x4blQlP7i9Yy6l0rkn L2+gDPHGTkjJ
TzpXrby/+emG21bKf/5gh52SnyTliCf5HTdQlqVZJC2EW4gSKoJ53a6S8fe7 i1nJGz6wlSV/
6nS/fVmbhZ10S8hkI9qRkumLiA2UrKmC3uo+dcLVF+ZCBBABRAARkBAAEmRU aMqvdeuS9RFn
z3571qy5syHS9YfV9ZtggSgo8cqN2+Fiwz4/FbpPxxZV0nIYHwBh/LPFr9aZ N3bC1Z026cLx
4jdcva9ANjyvVSzNIpbJeIjnZcesTOBvSQvxXn6C8R5gVoLNduTY4kvLS7YU pCJZN7UdaOeS
Notwksl85cbOn7K8cFPxjjZ6XFMv9MJVGeZCBBABRAAREBEAEmRU6MOv06ZN c+YPA7/S/XPe
5hH4VV1/+MT5a1DitZt3MGYIgT/5v/9ThqRFUREBRAARSDMCQIKMCiV+raio AFrlweHX+vUJ
v86d+w6Nb0OE/enU/XPOXLwOJV6/dTdc/C//+f8KlxFzIQKIACKACCACaUAA SJBRoeq/6vm1
QYMGJ0+efPfdd9+hAQ60+7/CrGUo8ebtu6Hj//3//b8gL/4mj0DoKsOMiAAi gAggAhwBIEFG
hVr/dbodHP+V8yswKwuff/45bLgjFfHFtVtwBna/w4gIIAKIACKACNRABIAE GRWq/MrJdcaM
GYH59eqNO1DinbtfYUQEEAFEABFABGogAkCCjAp9+BWIVs+vrH9Y67/euHUX Srz75VcYEQFE
ABFABBCBGogAkCCjQq/5TUCuGv913rx5vH9YO/4KrypQ4ldf/REjIoAIIAKI ACJQAxFgnbiB
+4eBX1nw8l+/+uMfoVD4wYgIIAKIACKACNRABIiTSalQ2z8MnisLcv8wJ1cv fpVKxD8RAUQA
EUAEEAFEAKYDw/evnFw9+ZWxrHb8FUFEBBABRAARQAQQAa3/OlMIsv86nwbk VzQdRAARQAQQ
AUTAHAHwX/fs2ePJr6dOnXrvvfcYxULYv3+/+v2r+c0wJSKACCACiAAiUEMQ kPh11qxZLv8V
+JWTKxxg/3ANMQtUExFABBABRCAiAoxfgVZ5kPkV/FcW0H+NiDVmRwQQAUQA Eag5CHB+nW0H
mV/fp4FRLPYP1xzLQE0RAUQAEUAEoiAA/Lp3717GrXNoEPbPadAA+ocXLFjA KRb5NQrWmBcR
QAQQAUSg5iBA/Ne9e2fZzuucuXPF/ekIvzJyZWF/ZWULZX3/mgMWaooIIAKI ACKACBgiAHQJ
/Aq+K4my/1qf8qvtv1r82kLeP8fwTpgMEUAEEAFEABGoOQjAdumUX+cyfp09 h/ivf/aNbwAC
terZ/Pre+wvee4/E/fsrmyO/1hzrQE0RAUQAEUAEwiIAdEn7h+fOmj2H/lJ+ /TPGr/WI//re
ewvnk7gA4uf7K5s1R/81LNiYDxFABBABRKDGICDwK7iwc2fPedvh17r16p8k 378unDd/4bvz
3393/oLPP69s0hT5tcZYByqKCCACiAAiEBYByq/7Zs2ZS+Lct2fPFfi1Tp36 J0+eehfIdd6C
d94lcd/nlY2btAh7L8yHCCACiAAigAjUFASaUX4Ft9WKc99x/Nd7a9c/ceLU O+8sePvtBXNo
3LuvsmEj5NeaYhyoJyKACCACiEBoBIBf9xJ+fQfinLkkOvx6z731gF/nvL1w ztyFs+dAXLB3
b+V99yO/hkYbMyICiAAigAjUFAQIv+7bN3vuOyzOeftd4Nf/xuY3fese4NfT c+fa/Dp34Z69
ld+7r3lNwQb1RAQQAUQAEUAEwiJA+fXz2W+/O+fteSw6/Prn36x7/Pjp2bMX zpq1YMas92fM
WlCxp/K732sW9l6YDxFABBABRAARqCkIMH6d+w5hVviF6PDrN/4c+PXULItf gWIJv/7N/0J+
rSnGYajnW2+99eKLL/48rQFkAwkNdRGTpVyvKHgjJlHQ88qLqHJkQkMR4jlN cxbg132UX+e+
O3/uO/Pffne+zK/Ef52zEFh25hzSP/xd5Nc012fisr0xbNjo0aNPnz79ZVoD yAYSgpyBsEm/
XlHwRkyioOeVF1HlyISDItATmonEjF+BVkmc9x5EiV9Pz5mzaDbEueR3z94D yK+ZqNfEhHz+
+efPnj17586dK2kNIBtICHIGwiT9ekXBGzGJgp5XXkSVIxMOikBPaCYSE379 fD+Q6zvz3mPR
xa8wv2nO3MU87t134H99D+c3ZaJmExISeoTgpbU6WqsYywQJQc5AiGRCrygQ ISZR0PPKi6hy
ZEJAEegJzURixq+cXGGZJodfv/nNusCv77yz5J13F7/zzmL43ff5wfvuR37N RM0mJCTw0N27
dy+nO4CEIfg1/XpFQR0xiYKeV15ElSMTAoqE2qwEb0P5tfKd+e9DpGsgCvwK 3+ecPHVm/ntL
Ic6jcf/+g/fj+hIJVk/6b8X49Yt0hxCPeib0ioI6YhIFPa+8iCpHJgQU6W/u gkoI/AqL9sPS
wvPes6Ljv95bu96pU2cWLFz2vh0rKw82aozrSwQFuZDTMx66lO4Q4lHPhF5R UEdMoqDnlRdR
5ciEgKLwGkrGr/PeXzDv/YXzaXTWb6pdp/7p02cWL1m+ePHyRYtLFy1efuDA oSZNkV8LzwzC
axSQh+Y9Uavla9uk1kk5ue21lppk4dvDEI96QL3Cy2aas8Ax0RqGKTZ2ulgK YYWZGaoiYJ4s
LUbFuUpRywwBRfhmKK05YX3//ZWV772/8L0FLC5y+LVO3fqnz5xZsrR0ydLl i5eWLl66/MDB
Q02bIb+mtTLzIRfwEMwVvGAa3h1Qq+WrW6XU2pMsjc8l01tCOpAwxPhrEL0C CBM5aXowiUeS
+Co6kDz+iYMaqlWrebK0QIobGmDUpzIEFPlowKr3noxf31+w6P2FixYsJL/O /uqwP92ZM2eX
la5YthxiKcRDhw43x/1fq7dGMlY649fzpuGd/rVavrJZSq09ydL4XDK9JaQL 8agH1CuAMJGT
pgeTeCSJr6IDyeOfOKihWrWaJ0sLpLihAUZ9KkNAkbG2z0DcFi1aVlYeAGYl cdGihYsWO/xa
v34D+HCwdMVKEkshrjh8+DBkMCgWk9QUBBgPnRMCPJdW6P+OdXrTKy3pqZav vEL4dRM9rT1p
ZaDP9ianpFqsKDtLLetvmuwdq3BIwq/b97CKC/GoK3qRe/XvD3pQUUJI4mRx iuAInWMaa0rm
yKYNE5/asarHs5Y1Vc/1V7HlCMig62vBbV22qUjIysIrRusyLduccguZsKWp gmmePgUm9YTz
+OqeSneZOaEL/9AVXqPJ+HXhwsXArBAXLVb4deXKVStXrlxBI+HXlsivhWcG 4TUCHrpx48ZB
TZjSp1azf/8ALsBBrT5TSIoP/r1ZLb+TvBQxLyuElWMfT+lDj0jJQnn2ZeeG VoEgYYj+Ybde
pFDn9oElEWQiKNjiM1yoJvRQ1THlmIi1Y9UyreagVa+rcauWbQRsjIS/VXvg 95UuOTJpsjvW
6zJaSwmXOl7l58PSNIKp1uKruISw/lH1t0D1angowjdDac0JdHngwAGgVRqW LF6yBPzXb3yD
7p8D/iu8iqxevXrVKhKBaA8fPtIS+TWtdZkXuRi/Voph8qO2A9v039ZWVq79 t6b0XxrgmvdJ
pxA7GU8Pl6Acu1zy76OTndLEkuVj8ndofhXU4iKFkoQITyTmKNA/oEx2cvKj DCKNjlyE9GOi
KBig6gXDkGvZRoCC45iSjz2ol9z4u0yRV4l1X3YHobqdesotZLKWxg1IkFZ9 +gTDI7r62Ji2
vhgY3uAoV636CgFFXlqwar0p0CW8bixZshQiCyq/rlm9GiIJR44gv1ZrdWSv cMav+3lYA41g
78nkTzhq+m9rnH9pksm9oYX0OumUYifj6Vl5Vsk8HU8mlCzexU4Y4lGX9Yoo iVt4kFvEyEZK
q6OqrKB1WjGxFHQUy1n1gmHIteyYhWUFtWgKH93VS/5AqUYrVrdzp9xCJmtp XG5VMOHpk/DU
QGEj7FVf0hOtfxZcmaHEEFBkr/nLJTHl10NLly7jweHXBg2I/7p27do1dkB+ zYVnjbsOPHT9
+vV9PEwEAv3XVfDnqn9tah3BqVq9J5IU5JzfSbUUXhxcIuWwsu0gXeUXxfMk LUgYon/YpRe5
u1h+UEkcECgKDA+KSNPevZvaf2p0zBImlhqOguZVz+FVa1mocI4ZMQMfe1Av OeaoMR4Po7Xq
26UOO+cpZCKWZtueKphGEa3ikvWKNqY8qnpw7GdBc9UqLQQUhdd6Ar8eOnQI yHW5HWR+Xbdu
HVAsY9mjR49i/3DhGUEUjRi/7nHCyl+zbtymvXo1bfrrlfTChF6se6npr3/d C358TlrlQAYr
mZW11wRyxS6blEXOOMm8j0m+EI+6opd4r1CSOMLbCHCVmHYsyDryCynExK5Y uXYEBU2rXoDX
CwG7KFb3OexBU4icXzAt1WiJPGDBzG7t++UWMhlL8xZM9/Txx48r4mlj2kdV U6YvdJbFhoAi
SkOUzryMXxm3ltLg4leYyg38ykNVVRXyazorMl9SKTwkUG1qDkM86pnQKwrA SWNCWmnxPYIT
pHIyilb5zlv9qLrf8/Ktr8/9Q0CRr0as+u4LdAmTgoFWV9AAM4Vlfl2/fv0H dkB+rb6ayGjJ
wEPXrl3bne4AEoboH06/XlFQTxiT4p61ajV5sdQtsfZkFKXynrf6UQXMFBzz rrZOgBBQZLQN
9BGb8SvQKoRVNMj8+iENwLIQkF8LzwIiasT4dWe6Q4hHPRN6RUE9EUyWvdCE zwbuMd4SV3sy
iiopylv9qI7vUavJC8tSpLKXKCGgiNgWpTA78CtMWmLMyuYIy/y6wQ7AsseO HcP+4RTWYh5F
Ah66evXqjnQHkDCE/5p+vaKgjphEQc8rL6LKkQkBRR7bsWq6NeNXPkEYDlz8 CktVfiQE5Ndq
qobsFvv8889DrwaM05enNYBsICHIGQjk9OsVBW/EJAp6XnkRVY5MOCgCPaGZ SAz8CpOC2QRh
No1J5tc/COH48ePov2aiXhMTctiwYaNGjQLDgNfVdAaQDSQEOQNhkn69oqCN mERBzysvosqR
CQdFoCc0E4mBLuHlHmiVz2GS+fVjGhjJIr9molITFvL1118Hbw86YNMZQDaQ MAQmKdcrCtqI
SRT0vPIiqhyZ0FCEeE7TnIXxKyNXNodJz6+MYpFf01yXKBsigAggAohAehBg /Mq+wdHw68WL
Fz8RwokTJ7B/OD2Vh5IgAogAIoAIpBYBoEuYtMS+wWHB5b8Cv3722Wef2gH5 NbUViYIhAogA
IoAIpAoBxq/sExw2UVjm140bNwLFsnDy5En0X1NVfygMIoAIIAKIQDoRALqE QVWgVT5L2MWv
ly5d2kQDsCwE5Nd01iJKhQggAogAIpA2BBi/sjnCLOj5lbHsqVOn0H9NWxWi PIgAIoAIIAIp
RADoEgZVgVb5LCaZX7fQsJkG5NcUViGKhAggAogAIpBCBBi/8glMcODi1y++ +GKrHYBlT58+
jf5rCmsRRUIEEAFEABFIGwJAlzCoykZXWZD5tUwIyK9pqz+UBxFABBABRCCd CHB+ZQOsEGR+
3bZtGzAs+0V+TWctolSIACKACCACaUMA+BUGVTm5whirzK9syWbgVwhnzpzB /uG0VSHKgwgg
AogAIpBCBBi/Aq2yaUwQXPx6+fLl7UI4e/Ys8msKaxFFQgQQAUQAEUgbAkCX 0OnLpjCxgVaZ
X8WdDpFf01Z/ScrzXukGjIgAIoAIFAwC1d1+Mn5lzMr6gGV+FbenR36t7vpI c/nwUKVZvFTJ
duXKlVTJU93CZFHfdMqMUlW3rbLyAecEGjTgVxhUZcwKAUZaXfwKQuwSwrlz 57B/OJnqT+Fd
EjDHFGodTqR0tpLhdDHJlUV90ykzSmVib9HTJMmvbA4TG2iV+XW3EJBfo9dr dktAfjWvu3S2
kubyB02ZRX3TKTNKFdT2wqVPjF+h01ccY5X5tUIIyK/h6rIwciG/mtcjTAw0 T1wAKbOobzpl
RqmSeRwA5wQaNOjuFfkVBlv9+PX8+fPh+odXj/hNnQ6u2Gb+OR2Oe57tMK74 mHRFe9K4Fo5t
aBN7mcY3L6SECZhjwcCVzlay+uDNor7plBmlqj4rFUtOjF/BKRXnMMn8ukcI ofnVViwnU1YD
vzqgioXnlCSZWk7+LuEVR341r610tpLm8gdNmUV90ykzShXU9sKlT5Jf+RQm GGt18evVq1f3
CuHChQvh/Ffk13BGUA25kF+rAVSlSFi4O4nbpOYeWdQ3nTKjVMkYNeCcgMMA dAn+K/Arn8Uk
8+u+ffsYw8JB7Pzq9BuP2ENhpa3/RujRJZ3Jdh+yQAmks5f1M89fLdQDlPPs Rva3OzEplp2B
X7uDmp+UbyTW7LniZ6z0tGSt70tOPjtiHBVGSv/1146oLtns9PxepjfSw6Kq 4HdfoYseQNg4
v84zGw4am7OHOZYOrVWr1tBSoRg407qo0rjcQkzo10pWFrUGxFjwxKlaMYy/ 8Mj65jQCrcyR
FPGQWSyTVpXLtnPKGTVBAKmIdIYPWiSgQKUAUkUFIKH8SfIrkCufxSTz6+dC uHjxYvX4r5y9
KAuyRt8ZNxWv2qOzG+e7RnCBKhhDw/lnxrFLB+ezA112ctK+EeR1s/XXlCzd I8Re/Gon4wJY
5kHKtyjfpYhULBHYktzJyEegc8Kixcr/voIisfFr69atxVYo6sOc0BNWnbe5 dOmSvnh3m1g6
1KvxDoehYS6fZIYlyMpF1jdnZcTPrx4yOzcKhUWoTIL2KJW3KUTFViwZcE7G f4VBVXGMNVl+
JdzGnCpGKq7eS9srtU8KnhnJYrm8FDS4RFl59Qjq/pJj4EipTK/xV6XLlNzI 5R/7+K/WbCwq
m0PJ7hJkRcR6ljJ6O8p82pe2NOtk7vtG6h++e/fLm7fuuOOSwbW+/+biEa1a jdhtXaJnKqRk
NejPL7/86tTpszqs9rzZqtbgxSZQhMPQMJdPMsMSXCrEoW9OTLSChZGWWa+3 zFaZu4d/v9bg
JYq1h5MzZy4rAUrlC3j46paKZTgnz6/QDezi12vXru0XQsz+q0MGKhcCBREn 0tU3q6E9sZeV
dgJbzDp/tc243v6r6ibapYXgV5oVPGYgfiJzbp5zvaU5GXPzqwILKck+mfu+ 1cOvFXcWDa7V
avgeasfOYwAnrWA1VTYZ07PANKQVo8HOe+dmxYhWVp4hi2QuN22ngjeLcZZM n94zGn4lqnko
JWvtAkoFVgCZpBw82IJRQJtwOQsWo9u3aDV8BH8BclcQFCXVlxEsceirSHtL OpMTECNRuWF4
ysysd/iQWs77Ii3ZqSD+hmSndAw4JIBhpeIPmiqJS2axxpXni9uP5+OWEFYa hEUbkLFV2pYA
BsA0SoZfYVBVnMOk4dfKykpGsjHzK++f1PagOlTh6ib1+LCH9gYLPcPPjuAd yF79w978qukf
5qxGe3R13jYjTKFTWuynZd6wH7fZGb1uZDvHLlj0J4V+afW+kfqH79z98sbN 2+64eFCtVsN2
w0n1gKcULxEu3QWFLBpCaPXNPaQ0cjxkESmZpyQnravyHSUBUvcnPL0nTp7S YLV7eCum+83b
uyz2k6DjWgMONlCQS0ZYQtuG0Y0e8IBQU6TAQYv4rdl9tRUkXcoNbwz6ggG4 pN0zDHRmtmFF
ARCttQQ0Ek+ZCYYkMKzEu1tnXNVBXl48DTigSFBOcKm4/WglUWtcfb6Ivv4P WnCpbPQCYOXY
5w2eS7YKQXiN6eY2VF6hTKPE+BWmLvEg8yuQKw8x8yufE/TM/GeFvlw6A4h0 GuunLLmmKQle
oPidq+ubV4dRrOlUzqQnlt3royBxfhOjVXpmxHz7I103V0kTr5zebB8iF4rl PdIeN9LCopwU
51Xp7+uAEHz81ZdfKU2S5sb1DNsOkUIkYjJ+TB4tIbja3ADPj/ISkGheP76x XiOYPDZQGq1d
TQm8qtPGXTypfZsREtAynXZToHbjCjIFLQZ9VWldQJnobiotsw1fzmg1bBF/ p6HFEvHY+x+J
xtURTKTAUunfaAWjsl/mzC1N++AkgZUWYckqXPZvvaCzvgP3y2Ju2PPFrzCX qVr5NecsBkyg
RcDrDUBdi6MaAYTXvRz8epO4HYMWibTBWiU4b86vTkOWX5oMffevvvrq+ImT ubCS+FXSWqRS
hqoJx8gv+MxLJnm1/Oo0atoKyt1OMYji0Nfx6S1pq5lfc8vseMnJ8WswqULy q4+l6Ws8mFTh
3kX0udxWIfKrxnRNzZVbbDL+Kzil4hxhmV8PCAHmXEWbP1yNrX9BF50afr1z 9/qNW+5I2/Rd
9sldzAGlZ+iQ7E5IT06yNGJi7THtrRpWodxFummq//zyq6+OHT95R4PVrZ1A lbUGL7Qw5Aio
WgtnCHosSwUlWqo7GX3yh9SCCO5I8WT9b+QklSFQBYlyCnVtW0Ic+krSEk3d ZuBlLRIIOUTl
duUts3MjAhQzYAE9asysOvxFEhNUn1Q+NqCrcaqIN7D6xyoprGzbdhBWbdg2 P7+2JTfaTKOE
+ZWNsbr49fr164doOEgD8mueWDw7/Co235QPKNsOHgSNvBG/MjK2w6DFWSRa H76xqdFS0Gnp
ZK1JGzFokIWExakWrbLhwcH2a43r/WahNXi4mBKwNb3JonP7TKthw+28agXd ckpw+CM8v5rq
q0pLmYAFqn4e+BWEJ2g474hMHP6GoX9ZDAFgINYXpNLWiyCVpsbV58v9fiy/ PROGM+HXyFiJ
ggkk6rZhAVuftiV1/CqOsVbr/OE80RPeNg4E4HXv9p27167fxOiPAIzuHK06 XnOwyqK+6ZQZ
pUqmbWE4J+O/wvxhPrlJ/j4HFmlkaxOzHXZwf/U4eCqrZYA53rp95+q1Gxj9 EYCn98jRYzUH
qyzqm06ZUapk2haGczL8evr0ab6/Ohy4/Ndjx45NFQIs8oTjr1mlx8hyI78a PvzpbCUNhQ+R
LIv6plNmlCqE+YXIkiS/gl9aLAQXv4Jj+2s7/OpXv/r444+RXyPzVFYLIPx6 686Vq9cx+iPw
5ZdfHj5SVXOwyqK+6ZQZpUqmbWE4J+O/rl+//plnnvkXGn7+85+7+BX6i58X wkcffYT8mlV6
jCw3mOPNW7cvX7mG0R+Bu19+eejw0ZqDVRb1TafMKFUybQvDORl+/eCDD35K wz/ToOHXX9oB
+TUySWW4AORXw4c/na2kofAhkmVR33TKjFKFML8QWfLCr4xiZX5l3PoLGpBf M0yPkUUHfuW7
LOEBIoAIIAKZRiBh/5V5sRp+ZeSK/BqZobJdAJjjXQxmCNyB1SVqUsiivumU GaVK5rkBnBPj
15/QoOdXTq5wsGHDBhx/zTZJRpCemSN8slVVVSXuqoTHKgLwXg8bONccZLKo bzplRqmq+6mB
5gsaMfgsNRl+XbduHeNXRrGO/1q/fn3YGPY5CJRj4V/k1wj0lPmsYI5glPDJ FqzqBZuvYfRB
4MaNm8CvNQeiLOqbTplRqup+aqD5gkbs6NGE5jcBvz799NOcYh1+rVevHrxM /fznz1oB+TXz
FBlJAeBXWCfz9q3bt2/fgf8x+CAAGycDv9YciLKoL5P50OEjhjGZ2kwnkumU KmyN3IFGbO+e
PYn5r8CvnGIdfq1bt97u3bvZvOKfQXjmGfiUB/uHI3FUljODOULXDYyOAMNi 9EfgKm27aw5K
WdSXyWxIrpAsmdpMJ5LplCp0jUAjBq5jMvy6du3ap4Tg8GudOnV27dr14x// mJMvfMrTokXz
LHMEyh4eAc6vN2/ewuiPwJUrV6HtrjkoZVFfJvPIUaNMIvBrMrWZTiTTKVXo GkkFv9auXRtW
Hn7yySeBfSnHPg1dyc2bI7+Gp6hM52T8CvPuYIgobFxENkUZtEjKvsvaMc28 WCgHNtmA9PzA
PG8SKS9fvgJtt4LSbmtDIYKBLQbfOqbVm7tcwPLEgxeJ562d6RQt5PMUamu/ FwaUGBh6HrcI
Xr8e+kq1I9aaZAbaCqXiEWtRzSaGemcyA7lC56cabt0iAyE3btyAS5AG+DWs zQezt1yW4zaG
4DUVTgsPqW7eUK3OMmPVtEzOCFjJJSvPjrPnkv00se2OLauXniZXLUAjln// 9d5774W1EwcN
GjRkyJAnhz755NCh69atbdasaaZJAoUPjQDjV2h0rl2/HjbCBlOtHmjV6o2d Ygls1ynppP8t
SDm0EH4QWqRqyXgJWu4vvpBRWjjMUpxoPGgBwLhz2AMeipPNRwcthBL4AS1t 5xuDWilZdr5B
eGiQjQnRaMGgWg8M22llbzVsp1hlBDNyxuMWYQDR6yvXjqvWHiD68XtpKpSr wGrZI30YaVm9
MJkZvy5YukqMm7Zun/L2hy++Nv/A4eMwHYbxq7fNx2mEWiRjrKlwT65WKtXq SE15mJaqgrdS
Gnu+pjw74PtZurieJvpY5YrQiOWfX+/51j3bt+94ov+AgQOfgIcXwurVq5s0 aRK6gcaMmUaA
8ysMxoSNCwbWemDgoAceeGOnUwK0o4MGwfk3dpoXS8qh6fmBed4kUl68RFok b5QssQmFiFA4
wO5844FaAxdQUcnhoAXs0oJBD7zxhgdWIhRwbGdRILJv6nGLUJXroa9UO+5a W/AG2MEO63Zy
he6gStsA0qv69OFrk8nM+XVLeQWLW7fvuXDxcu+fTHmw75hV67eDC8v4NWdt hn0oXCpokdQb
Q6iaCiektz0rVUzqVDUtkzNSVXo92up529rFJ8UXnFTw67e+9a3y8u39+z0+ YEC/ARCeeGLV
qlWNGjXKNEmg8KERYPwKYx5Xwof3oKF8vRx+B75nFVL++gPsDPzCKX7gPoZU Vr8Py6hLr0sz
cCDk4/cKL3fQnPAhE7TdnrmY0kyL1wcyzdxSanGAbJBKvCTeQcoiIiwWngvq oKrS9B76SqLK
txYuuy8BJswcrGBd1aUPJa4gs8SvZTv2HKk6uXBl+UN9xzz54pxTp07z/mGv O1n1Z1UhkTGK
1WmRFODwqv3wOJjk9LZnrTyq9ZqckQTx0NR6dpzE5Llnxu60AC7rURWERiz/ /ivj18cffxwo
tl//fv379wd+bdiwYegGGjNmGgGbX8mXnWHD/CdqPfD7bV/AP0/Mp2Vs+/0D 1gnyzxfkCjsQ
j4WT85+gl/kZ9YBctNM4ZYUVOGS+c+fOeecEnZn6RPgHfk+BgEMbElt3CyFH WQs1ESLxJuJ5
cgsLR1KyULSTyqkEN+xhVPbQVxLVp9bES+RtgyvvYQleIAQQnsnM+bXi84OH q05U7Dtw5eq1
/s/OeOTxsWv/sKfywAHOr95FS0Ybyeq0SPLHJXpNBQBISOptz9qKUE3L5Iwk mrZk/uywtoO+
mbptxb6gnBWKv3nzZv759Z57oH94e3/g1/4QSVi1amUj5NdMk2QE4Rm/QnfZ xYuXwsZ5A2q1
fK3s0sWy11rCvxcvwd8D5kFp9nnnQDgJicWpOQPmadL7pQktbfiMZ86chcdZ ixKoCjrTS1xr
ON4GSlIoWBQvsWNIQKFzXRIlFLNQhBloA16zM5LENNE2j1vErq9bJG0tz3uC ouE2gHkgPFNW
QUNOH1Vmxq+fbCrbVH5w1oKNFy5eXL2hom3/8UNemANTnCoq9nB+9bZ5tbKi SiXdy3pqZMMI
f5egz6+3PUtV7GW9KkQ5QdOULDw7gu5gErWemOdqlLRSOVmgEUsLvw7o3w9i f+a/rlzZsOH9
EZpozJphBBi/wnQP6CwKG96FluLVrZB766stW776Lvkhf13g5/mBcBLS1hrw ruuWSnq/NGGF
jZDv9OnTwK9qAW4xRWUpIBQLGoQ/rTyQWAxiYpZFLE24s+uWHnfUoBdMeQ99 3Uo5d5HEgNpV
KpSoyyvdJ30wOcXUTGbGr4eOHH3mN/PAZy3fXfXUr95u/0TxivUV0AofOHiI 86v3nXRGG1Yu
LZKObUSuqXByedmzh9Wp1mtyRhJNtmdv1VXL93gW7DtAI5Z/foXvc+j8YZjc BDOcSMDx1wzT
Y2TRGb9CcwOdRWHDO/1rtXxlE80Nh7XEP9j5Ta+0rNX/HZ6AnSRJ7Wzszrwc 8cArTVhhI+Q7
efIktN1yAYL2XA1LW6Ii09tKxIEQEJF0F3GQjvmdSW4OnesPAWvlFoE11+vr rjlHRaf66I3I
7bktOBgJ0rqB06dXTSKHFkxmxq9l5TsOHT3Tpt+4tgPGA7kO/MXsW7fvwPmj VVWcX72LE8XT
HgeQTYuktzEErqlwGbzqV3gSXQWrApuccZfmrnTl2XHup32s3O2FpDXUaf75 FdaXIN+/DhkM
cciQwRDWrF7duHHjyA01FpBJBBi/Xr16FTqLwsa3+9Vq8fJGln3Tyy36v20V JZx/m/AuCTDm
zxNvfLkFd976vX3mDE8vZPRME1ra8BmPHz8BbbeEkqAD1e9tBgJTjMPCNbIv wRUX4CKG7JgX
YpdE8LFCi5c32WKQZMKfwt3lWwRWXKuvXcuOKLYiogrkXrTqGAKuS0QNIptJ ep1J+Boqk5nx
66cbN589/8WbE9a0G1DcYWDJolU72MevwCucX31s3oLbZZmiLgFk80DSyxgC 11S4Jze3Pcsm
pApscsbLnt0WTp4d8QxrRoQzuewZGrH882vdunXJ+k1PDX3qqaEsrF27pmlT /D4nk+wYXWjG
rzAZDzqLMPgjAAuIQ9tdc1DKor5MZsavm7ds3b+/8nDVmeETVhdNWXfl6o3z Fy6cO3ce2Ijz
azK1mU4k0ylV6BqBRiz//Arr+8P6wz9hixPDMok//jGs39SsWbPoLTWWkEUE OL+ePHkKoz8C
R49WQdtdc1DKor5MZnH9JhiWA7cVpjXBgbiiE/v+NZnaTCeS6ZQqdI2kiF/J rrBkcx17fUTk
1yxyYxwyk/1zDh2CJuns2bPQb4bBBwHY/Yrya00JWdSXyWyy+LDNr0nUZjqR TKdU4eoDmi+o
97179+Z5fX/Y/xX8V7J7DgmEZ+n6/i3iaKuxjOwhYO3/WkXe+mGDYgw+CJw/ f75GoZRFfdMp
M0pV3Q0LPJjHqqoS2//Vc/8cF7/SbeqQX7PHivFJDPwa7uN0zIUIIAKIQNoQ yLP/ysZfre5h
uv868CvunxMfYWWspATMMWOIeIsLH9pBa1Iw6uRUJIv6plNmlCqnscWSAHBO oEGD7dI9/Vc2
f1jcGxaS4v45sdRuFgtJwByzCItW5nS2ktUHbxb1TafMKFX1WalYcv75lX3/ CnvTwf50JDz5
5Jo18H0O7k+XjAGk7i7Ir+ZVks5W0lz+oCmzqC+TGSYGG8agmIRLn04k0ylV OIRZrvzzK1u/
aSDsSwdLS8D6EkMYv+L3r1GqNcN5kV/NK6/w2iN/3bOoL/JrTbbn/PPrPffe C/u/wrLDsDLi
QAiDB61es6ZJk8bmtYIpCwkB5Ffz2swi35hrp6bMor5MZvPvc6LgY543nUim UypzVLUWm0CD
5jf+CvvnlG/fDuv6k71fgV+t/dWRX6NUa4bzxmGOpUNhsbyhpRIKlUWta9Vq XVRpDg6Uw9Lz
A/O8SaT0aI+oojQ4GFBISJAB4IndeJH0Oqzk81K5/E/xZh63CI6Qh75S7Yi1 JpmBtkKpeER7
1WxiqHfOr+JSEvwYVplgSyTy9ZuCoxImRy7LUR6eMDcJnMeTX1Wrs2xTNS2T M4JgcsnKsyNY
tAWKkyR3c5J//5Xt/9oX9n6FzXOoD7t69Wr0XwPbZqFkiIlfW0NwUyl7UGoA v5YWWYoTjWmb
QFoEveLkCk/iNKqVRUNbK1kYDw213zmIwXH+0dzBvuZxizD2GpxfwQrEFy0N vwoUSg490oeR
luUR+XXB0lVi3LR1+5S3P3zxtfkHDh+HtZzY+hLed4qB7HnhWiRjrKlweGml Uq2O2B01Z1Vg
kzO2bBp7/lp5dior7fdx19Nk+v6Rf3795re+ta28vG/fvrDFej8IAwbg/jnh rLMwcsXFr0OB
IUSChcfDzQ0GcGXUf+WaWfJ7N8y8ORLaKkqbrYuKRB51v/BzXAmmdi+BfBOF Xt23MEBfTRKC
X4tKiwQ7kCtU0N9+W9CnDyWujl+3lFewuHX7ngsXL/f+yZQH+45ZtX47uLB5 51f7XSuGmgqH
l3f/sNJFQWxQtV6TM5JoXg+Het62drfR+Guaf3791rfuKS8v79P3MUqvZBwW +LUxjr+Gs9Ds
54qLX4sqxdYfngl4IrV8KTxIcueQLr0uDXC5pj+6+usix3gVU5o5mUCXUo+x y/+UfFFgTZN2
R0I4h6cYvZs9DL9a+jMvxF2h8iuE+joSg8so+a+MXMt27DlSdXLhyvKH+o55 8sU5p06dztk/
bPfv867s1lGsTouk8EYVg+IhzN+YX1nZopDs2OSMGb9az46T2GFVpwXI3RmW f35l469ArkCt
A8j2r9g/HMIyCydLfPxKnj9nyIQzjTyeqiNRq/9JvSQ8wE6aYJ3OMVaVL7/y BoHI3LqI+pm8
j8sSQueAWudM+FXoFSYlu4d7rcbHz8cNCkU4fpVp1TIA9/i0yr4xjbtL/Frx +cHDVScq9h24
cvVa/2dnwF7ra/+wp/LAgZz8qtBJJKvz4FfP3oigNRUufXB+lQRWjS2n+Wnt XHRRbTrVz+fI
0VGcf36915o/POAJmN9ECJbxK36fE85EM58rRn4lHUi0lbcfMl//VZy2YHGF kt4vTR6Q9+FX
gUnFFkTq21Lf9/l7uwm/so5E5hcXafthdU5GeKDC8iu3AHeFQlewi6RcL0/2 jKfcPkrOHkK+
f84nm8o2lR+ctWDjhYsXV2+oaNt//JAX5sAUp4qKPcH5NZJg6L/ataaxc/kt lHvL8pzJ3F5+
/vnV+v6VTBwmYfCgIbi+RPgWKPs54+RXRrDOiFpOfpXeRrX86pUmD9B78atm WNGapSF1ewl/
WnmoH+oEtRH3aFNct5QY3S4kyMCVFk3vWa+CnM5d1BcLpUJdTalP+vCVK/qv h44cfeY388Bn
Ld9d9dSv3m7/RPGK9RUw8nrg4KE08KvzhhS5psLhFdB/Va3X5EyO/mFv1VXL zwK/2us3Wcs3
wT9r16xphus3hbPQ7OeKlV+tby7s1pc/D8JDRFpY/hGO1Oem8rGT2uf9N7FK 0LdHylPvkIjr
yDVFRGlWVNeWv8arpCt0FCuzlXnJ0Rttr/ZXrBUPx5272vIHV+4+bomn+YRz rSUYeZAiv5aV
7zh09EybfuPaDhgP5DrwF7Nv3b4DzHq0qioCv4aRLUPzh6nZ6ZlMNS2TM359 Kj6MqX2scplA
/v1Xtv4wTO0cOvRJGofS9Ydxf/XEWul03ShmfiUurG5Uiftp4qRisfvX+iBS +f7VM00eYPT8
nkHwQPnXN+6vX12vGroPl1R+dXeOW+PZ6le1Lq6loNgZczVGORH09m8E2Zy7 yC0iTaRUKHsH
cw3PW4Lo0mu7QPwEF/n1042bz57/4s0Ja9oNKO4wsGTRqh3s41fYYdSAX9n3 uc78Jnt2fGz8
GmNN5axK8/4J/jG339fbTqWrxqaeYYip9uw+Q5CWn3ZhRMToW78k+RVaMr6M //27/viNb3wD
QK4F++cAv/5YCOvWrcP9c8IZaAHkioNfCwAGIxVyzB82KiNLibKor8ivm7ds 3b+/8nDVmeET
VhdNWXfl6o3zFy6cO3f+zJmzJvwaY1WlE8l0ShUF9vzzK9v/Fbale9oOwK+4 v3qUSs10XuRX
8+orvPbIX/cs6ivyK1u2CZaSALcVpjXBgbioU67vX83tInfKdCKZTqlyo+md ImF+5S6s478y
foX9X3nA/dWj1GjW8yK/mtdg4bVHBcyvJksQ+67fZG4XuVOm03LSKVVuNNPB r08+SUZXWXD4
tUGDBsCv/2yHn/3sZ+vXr4cFi6NohXmziwDyq3ndFV57VKj8al6nyaRMp+Wk U6ooNZKY/wof
3QC/corV+a82xSK/RqnRrOcFfoXvBTEgAogAIlAACCTgMIA7CvxKN0+3KFae 3/T00zAC+xPa
RfzPyK9Z58go8idgjlHES1XewnvfR/81GQNLp+WkU6ooNZKk/8q+cGUU6/Ar +z4Hpg/D9CbG
sMivUWo063mRX81rsPDaI+RX89qPkjKdlpNOqSLinECDxvzXwYMHc4p1+LV2 nTo7d+4kQ7NP
PUW92J/C/KaWLVpE0QrzZheBBMwxu+BIkhdee1So/AoTlwxjMsaZTstJp1RR aiQx/xUWFQZ+
5RQr8Gvt2jt27hwMfu3QocSJ/clPkF+j1GjW8yK/mtdg4bVHyK/mtR8lZTot J51SRcQ5gQYN
/FfgV7K6sE2xbn7dAfwKBPuUxa/4/WuUKs143gTMMeMIOeIXXntUqPxq8nEO fv9aePacmP8K
m7oO5Gv4Dx7s8Ou999besWMHMO+QIeC//pj5ry2aNy+YRhAVCYRAHPxKF5LT 7yflsUafuqif
l9DqCsSB1Is1sUd75CzqZmPAz6jbaamX+NKROqxk9aXE/E+2biIrwefuweDw 0Ne0uoWlidl9
1dVmXfLn2HvMTHZ1fQlxTYlg60sw6SIvMwmCG1uOmZIxpdJLJa5RaOmuWpS3 jWmyxySuQTFJ
8ivZ3BW2n6MsK/uvxH0dyvzXn36A/qtBzRVqkpj4tTUEe4FW3phGbJzokyqu V5zvOtC3R6VF
luI2n/issK9ecjhHu3yvW33XKsYq3vRM9a/vT6TIXd0gB9mSXJRSy69x0Jdg GCK/Lli6SooL
l61etmrdmg82GKyPqLweRDA/Q8uJcIcwWb351fWqY7aIvy0ATx1Goqh5kuTX AbDBq02x8vwm
Ovz6FJtD/ME69F+j1mt288fFr1JTSveAHUrX9Y6Ijc8WGxFLDpw9V3+as465 s8+8y68X2h7r
kLCQBZFwKEgmrfvvuSO3nU69RWA1eQZv/1VmTrW6mTZunfLAr1vKK3jcvmsf bLReefDwhj98
Ysav0a3XwtLMcsLXVLicZvyqNVrbrFU2rUn8yigWXFiHX9n+dGz+MJ3ehPOb whlngeSKi1+L
KgmjllqosHZVaE/lPtQcl4Ct7R7n7PCrRSYSI3o5cHYyy03y8pa8+FVqxngy n7sHtlgffs1R
3WwnYOZNe2+w47UPWmBBvf1XRq5lO/bsrNi/r/LQwcNHq44d//SzjTn5le/L yzcAsrYuCtWL
nYNf9a9WUWAwypurf1jd+4hZl6+NOU96bG8nRsrQRIn5rytXruxPA6NY8ftX a/8c6ruSL2Bx
/rB5/RVeyvj4lfowjGBlphEeyNKh9LHT8YFzSXR7s8KvnPDE9wxJeO0l/+FS sQSS0mq0CB0L
rrGTyufugY3Xl199qlukVZE6tP4r39svFHEpOkn9w2U79m7f/fnuvZXgtgK1 njh58vTp01vL
ynLyqwf3h7RGX37Nm8fnz/pseKZUqGcbEyMbs7MHtrooGZLk1379+nGK1exP R7bPIQSL/muU
Cs183hj5lTsr9vMn9llKW6QaXLKgDdmiVUfF+LRHgvsZyH8V2la9B+tW3+Hi Ig/HMDH/1SFR
ubrdXqtbQ49B4/hqS+TXJSvWQofw/gOHjxw9BrR6/jxsT0fC7oo9gfmVvtC4 9/QNILSZ5QQo
MJakZr3WqkUZ2lgentwk+fXxxx/nFCuvP0yJ1Qrov8ZirBktJE5+ZQRbylt+ kUQl78TgUnb4
1e2AuIdU5fFXYbRVdg60vYQejZTrlpKPK90ivGH6+68WjarVbW9MLu86r58/ HHMvosivK9es
B6/1+IkTZ8+evXTp0hU7HDh4KBi/OmiH7Mn1YrK8ua52byosOOxtH8yuVHv2 sXCxsELm1xUr
VjB+ZRQr758j7U+H++eEb4QynjNWfqUdSM4XDfwBI2fd7ajJJYZsHp5Sryr1 mAUqz+Lijabq
uimXBKfVSZ3TPxA6itmEYQFc3d1D2mgufvWobrnGxJ7zRP3Xtes/Onb8xJkz Z0AR4Fa2Fyz8
Hq2qCsavXCMHa9GA1XFKGXBDywlZT2Gz+fuv/KFVLcrHwrks6jMfVswA+RLz X4FfH3vsMaBY
xrIa/5Vtrw4+LOyvjusjBqjDwkoaM7+S1l43x5V3bFrDhkIb7HlJvBDPZ4gR q07bHpFRKtlT
syXXTO1RLgla2sBxv0EolxSl7aOU6BVUVO8eUu/c/KqrbvWFyG6OHfntlzD1 TEhReTbRf/3o
408ZuYKXBoR6ww4nT54Mxq8OpHyafAz8qrOcqOoHyp/Dnh3rVS3Ky8IFa465 Y8JIs8T4tbS0
tG/fvpxi5fHXp/jOsEOHrl27tjmuL2FUfQWYKA5+LUBYtCrlGq8qNByyqK/I r5u3bN29u6Ky
8sCRo0dPnjp19ty5c+fPw/9nzpw14Nc4azOdSKZTqii4J8yvnGJlfiV76tjb 66xdg/wapU6z
nRf51bz+Cq898tc9i/qK/Oq1chM7j+sjZrF+c1psAg0aDKeC/9qnTx/GrxBc +9OR9REHwUex
Awc+QdZ2gqWKmzZtat7KYMpCQiABcywYuAqvPcrZWvnOf0ljxXJ+NVmCGPbY SUaHdFpOOqWK
UiNJ+q+PPvooo1gIrvUlgF/hq1iY9UTmPvXrD5/KNmncOIpWmDe7CCC/mtdd 4bVHhcqv5nWa
TMp0Wk46pYpSIwnzK6NYCBK/bifk+vjjj4F32/cxmArVqFGjKFph3uwiAPwK PgoGRAARQAQK
AIEEHAbWPwzkyoKLX2vXrr19+3bCrX36PtqbXIWkjRo2zC5DoORREIhijvNq UgCQ2ft+DVE6
i/pymYM+EdVap+lEMp1SRakIplGUBs3QbBi/9qaBUaxr/xzCr+C4Ptqnd6/e vXs9Wrq8tCHy
qyG0BZcsijlGeRgyl7fw2iP/Ksiivsiv5o9VFuvXxGKjNGiGrbvIr4xi3fxa Xg7e66O9e/fs
0bNnz17Lly+///77DYvGZAWGQBRzNH+YCyBl4bVHJq1Vtvx1Xkcwcckwsse5 Wu0znZaTTqmi
VESS/iuQZq9e4J5aQdxf/d7y8nKg3F49e/Xo1gModvky5NcCI80A6iC/Gj7S hdceIb/y+cOG
NhAuWTotJ51ShUOY5UqeX4FiGcu6/Ffg177UfwWKBe8W+odx/DUAIxVWUuRX w0e68NqjAubX
xWYB+TVb/RMmFhulQTNs2qF/mPmvPOjGX/sAx8L/j60oxfnDhsAWYLIo5mib +6v9mjVr1u9V
yfpLnmvTrFmb50p0DwW55nHJlZyWQYNSvCEtxpbMm1+5kLaMFA8PsQMlnjeP FCUCxYtmJ4U7
kfvRk353D4CGt76um8q3tGrK1CRIOlfVwgnJMFy38zcDLjPQqzoV9vLly7AK 8dWrV9lCxJAm
B7+yO5vYqS+uBpaTB/P2e1+UrU55DI0s3FYqJoPMabv58l+BZWV+7QdrThAf FtafeHzlipWN
8fvXAqROI5Vi4tc2ENxUGkfj9OpzVplKM5zzYYs9gVd7RNoe2uo7ByX2O4Ui dpDEtFGDT9SF
Bp6Tj+b9xL5W4n33QJj48qta15ozuU0C1GjTr5/LcrT8akpxPvwqkasBv8Zm c55I5tW8vaRS
rW6eIqefjQVKHMgicyVOBb/WqVOHri9BFpeApf/hQ9hVq1Y1adLEqDHGRAWH QFz8KjWTxIty
c0Oup8P/utrsRisveG6f9shyqjh5OoUTFAS/XkiROzErRVRcLE0GRAeQdPdg Okfn15wmQej1
uRL2K/SF5CRvT0W8+FUiV7bOfy7/NTaTMxhZiO1e5nXsK5WXPNq3H68+hUCJ zQXPUftRGjTD
1t2vf7hu3brAr0888cSAARAHPPHEwFWrcH1EQ2ALMFkUc3S3iWJrztpM4QGT e5hyXIKm2dVv
6G6DY3gWgxfh1R4J/qXcoCgcKpGli0g0hOvHr1JyTYPoUaCp5tH5lRoAb3wV kyAOP0XAVbnx
+69s11fWJwy0evPmzVs0+PMr7+KXO+KDD1Tk5td8mHcYflXk9LOxQIlNrdIv XSr8V8avsOww
CQMHDR48ZM2aNbh/TgEyp5lK8fErdVmZs2Y9WrytFBrNV/vZI3a84bJpxrkk jXlFZIo4nl17
dqI6H0SgEFf3rW7QWOuA2q8e+oZb5BuhV5h0XgqusYuV/As0RcNw/JVKTaVx jThbAnmbhEir
Ykus5Vfv4Wy3NqL/Cj4rc1slZr1th1D+axhHMxe/5se8g/OrKGdOGwuU2NQm /dOlgl/r1au3
c+dO2DuHbKEDge5P16JFC7PWGFMVGgIx8it3ROxW1W6MHOeVT1UyuCR4x3mY /qE8yiH8V8o7
Im36+a9KYrV/mI3xMgyfE3tV9a2+fPdgrVgc/qtDorJJuL1WoTGOzX/l85iY z8pp9Y4dgvGr
8wphOhjM4fbn12i1FKxOxdRB+VUvp4f0gRKH10H3dhWlQTNs3P36h4Ffd+3c aZEr8qshooWb
LIo5KmNm1BF5lbf8IolK3pnBJdsTTgO5gize4692g6sfUhWbY8FRy51Yx6+8 QXFl93Kqwjhb
BqxgQoGiK68zCXnmM/fGTQrPMQIHfQzAnaLbCuTKafXu3bvsOAC/OmiH6cn1 YbL8uK4Uv0D8
6i2nxsYCJY6LXLlGURo0w2bej1/r16+/a9eup4SA/qshrAWZLIo5Kvxq9RQ6 Hb5WRy95nXW/
9vPH0ueSe3JPjA9iqKK82iPemvgypqVvoMRUTC1HCh3FzKfV+lSR6NWn/TWh QCEN9fxkk5DL
4MCYFG7Er3yoVSRXoNUw/Cq+LTgmLQ1weMLtyWTRKiiUFTuZAvCrj5zOJfvI KHFE2fXZU9E/
3KBBg927dz8thHXr1gEhFyR5oFI5EYiZX0lrz11V4VETu4jJdZNLUrdynv1Y 7/bIltPiEFlV
N02aJ3arTwqnTEWDwKcSvWrvHqY5C9g/7AzAusfX4dYak1AbYZtgHR013/Pm +hhVHH9l85gk
zxXIlYcA/ivvl3e+JhJfEJWZBLp+S3Xknn/b7fGpdJhaM8/j3R/jVCW1M/Ux 9LFww8TmYgZI
ifyas7XHBEkjEAe/BngGspvUfxQtu3p5SZ5FfUV+lciVea5B+DW2Kk0nkumU KgroaeFX6B9G
/zVpHkvr/ZBfDR/pwmuP/BXPor4iv6rdwsivYo1nsX5NLDZKg2bYSPuNv0L/ MPDrj3/8Y06x
2D9sCGtBJotijobMVBjJCq89MmmtsrU+rcivJisQ4/rD2apfE4uN0qAZtvDI r4ZAYbKvo5hj
YRCnoRbIr4ZA5TEZr6OgD3a1ypxOy0mnVFEqIkX9w+i/Bn0CCzU98Ku6Ejqe QQQQAUQgiwhE
cRgMG3kj/xUolgXsHzaEtSCTJWCOBYPbhQsXoMUpGHVyKpJFfdMpM0qV09hi SQA4J9CgAb+W
lpbq96fj46/Ir7HUaNYLScAcsw4Rlz+drWT1wZtFfdMpM0pVfVYqlpwkv8K2 6iy49qdDfk2m
prNyF+RX85pKZytpLn/QlFnUl8kME5cMY1BMwqVPJ5LplCocwixXWvgVlm9C /zVKRRZMXuRX
86osvPbIX/cs6ov8WpPtOUX8yikWx1/NLbLwUiK/mtdpFvnGXDs1ZRb1ZTKP HDXKJPLvc6Kg
ZJI3nUimUyoTPL3S5IVfoYv4/l1//MY3vgFS1WL9w2z5YZzfFKUuCyNvHPxa OrRWrVpDSyVA
Kota16rVuqhShxO55nFJTE4LZkEpPg/we7RHVFGXjFxuVUc1MVWE5NABIp+X ShYAIgLYJXiV
FhAzD32hdFFU/qdqBuIlnoUiQKrTJ31AQYXknF9hfX//AAScg18ZugZ2mlPc XJaTH/P25FfV
flQ7tGBR7dnkTE7AQiZAfg0JHGarJgRi4tfWENxUGkPjVFlpkzMpLP8Mq22P SHNCReMHnFXU
twg1Ma3WyqKhrZUXDsZDQ0Uy8ymZsBWpAU2u0JYTnF/BCsR60vCrQM7k0CN9 aJHJCBzzX4Fc
FyxdJcWFy1YvW7VuzQcb4Goufo3T5vRIlhZZj0yctwoAnVYqxeq0FlU6lD7u qj2bnAkgYsCk
6eJX5sXC/jm4vn/Aeiyc5HHx61BgCJFgoclwc0M0yEhxsoMcrcQQub3aI0sy q2kRRZVcPd74
CC0TdV5bFxW5nUIunViCT8k2vVr5pPuG0JVkCcGvRaVFgh3I/Croz3z21h7p QwrMZeb8uqW8
gsftu/ZV7DtQefDwhj98YsavcbiuVJVcPbHx1FdQ1LylUuVROi3slzm38asW 7mHzQWU1S58W
foWmj+9Qh/xqVneFmSoufi2qFFt/eKjg+ROeSd5pZNFkjkvA1qLD6m6X81YR 2vZI4EWmlISD
1p+z2YX456ActFFeLawXv0qQKM1fHN2aYfi1UtTEza/yK4R1VfJo9QMKxnUu +a+MXMt27NlZ
sX9f5aGDh49WHTv+6Wcbc/IrH5lgHEs8zAgDFTn4lT0uxjrGlTACvzIRJON0 P/LWVTVNXOJr
ykkHv9r7qwPLQkB+rcYKT33R8fEreZ6cl1nSXmi6B6mvBi2J/yVODjYt5993 9fRCBMeaKSX0
CtNWWZBd54Ba50z41btkOXc8/lA4ftVVrkVP7mpUbSAGsSV+Lduxd/vuz3fv rQS3Faj1xMmT
p0+f3lpWlpNf3eSh7U4I8Gz78mve3h7j4FdeperLpdeZALgFTZp/foX91Xfu 3DnIDoMHD169
ek2LFi2CaoLpCwOBGPmVeGI2edLHzm4uHeeVTwMyuCTiS9rn/HOsmf/K+n6Z pkVux0R9l+ee
iwm/epasZI6BqLx7Nb18Zbcjas1g4u4f7QrWT4yiluJKH/7ZEvl1yYq10CG8 /8DhI0ePAa2e
P38erkLYXbEnML86DmwYT9OHX/No2nHwK0eDs2nOM+ErN2fOVPDrjh07BtLw xBNPwO/q1aub
N2+eU3RMUJAIxMmvjGCdETiRRCV2NLjkgjsewohYgx7jr3aDovoh8hmhH9AZ rOVTpLVzVT0U
d5WspokHLo/2192b6Ugi3pSdVTxUF5n4pA9fUSK/rlyzHrzW4ydOnD179tKl S1fscODgoWD8
6ugYsifXi8ny5rpSgCPzq2rPJmfCV27OnGnh1wH9+/Xv34+FlStXNm3aNKfo mKAgEYiVX61x
KuEzEWf0yv3aL7a80lChjhvi4YuoFahtj3gTqbSVQneuOLvXPdnYlkl1bdkV reZiydRbln2q
ePDyan8JS4qfAlnvTu6bWk684L/SAUZ3H7cgtz69wtC56lDk17XrPzp2/MSZ M2fgJHArcOr1
69fh92hVVTB+5VI40quC+WGuRzKeWsqFiPf1yPyK84etJRKd71/r16u3ffv2 x/r27dunz6OP
9u7Tpw8sVdykSZPwtYQ5s4xAzPxqzdZRuEHsIpZ6Aj0vyRfyDrO3P0d9UIss tD2JrhZa91Wl
yq/uXnVrPNtydiVeUmlKTRcCPe/2V5DNubdMFzSRzK/slYGeNkkfiV8/+vhT Rq7wxQ4Q6g07
nDx5Mhi/8h7/1nyafAz8ao8iRJk4FaJWnSwe/TFCh4o9Sdg5Jb/J2ZbgnDc5 E0lsn8xJ+q+P
2sG1vgTwa3l5ed8+sCxxTxaWLV/eqFGj6tIYy003AnHwa7o1jE8631kq8d0m NSVlUV/Rf928
Zevu3RWVlQeOHD168tSps+fOnTt/Hv4/c+asAb/GWQ3pRDKdUkXBPf/8Wq9e XeDXR3v37NWz
e7duXbt167Z06dL7G94fRSvMm10EkF/N667w2iN/3bOor8ivUddvMreMXCnT iWQ6pcqFpd/1
lPDrNiDX7t26dO7cqXPnzosXL77vfuTXKNWa4bzIr+aVV3jtUQHzK64/nNOw C8+eU8Gv27Zt
69GtS9fOHTt0aN+xY4dFixZ97777clYGJihIBJBfzau18NqjQuVX8zpNJmU6 LSedUkWpkbzw
K4zDOvOboH94W1lZ966dOnfq0L59+3bt2i1cuPB73/teFK0wb3YRAH6F2R8Y EAFEABEoAAQS
cBhgOWGYFMznNyn8uq2sW9fOXTqB/0ooduGiRfeh/5pdhowmeRRznFeTAsDM 3vdriNJZ1JfL
HPSZqNY6TSeS6ZQqSkUwjaI0aIZmk5Nft3Xv3gWGXzvRAOOv9+P4qyG0BZcs ijlGeRgyl7fw
2iP/Ksiivsiv5o9VFuvXxGKjNGiGrTvjV/i0lbuwYv9wvW3bynrAzOGuML+J hCVLljRs2NCw
aExWYAhEMUfzh7kAUhZee2TSWmXLX+d1BBu7Gkb2OFerfabTctIpVZSKSNh/ BX5lwdU/DN+/
wvymnj269+jerSsN8H0Ofv9aYKxprg7yq+EjXXjtEfIr31/d0AbCJUun5aRT qnAIs1zp4Nf6
9cq3betFFpfowcKyZctwfURzQiqwlMivho904bVHBcyvMOZlEpBfs9U/YWKx URo0w7ad9w9z
F1ZYH7F+fVhfAlZvglWdevbsBWH58uXNmjUzLBqTFRgCUczRNvdX+4EB9XtV sv6S59o0a9bm
uRLdQ0GueVxSk5PijRMbsmXwZH78qpXQS2z5PMWJBgXCefPkxBRqEhgg/E/x JC9QU5653t76
wk3F6uB/qmYgXuJZqHhENJ/05mK6UnKZgVzVqbCXL1+GVYivXr3KFiKGNDn4 laEb2fS8kfSt
+pAYmGZLp1Sm0uvS5ct/BZaV+RVWHoZeY6BY+IWhWtw/p8BY01ydmPi1DQQ3 lcbUOM0rea5f
mwBkHOUB9c3r1R5RtujnphwoSCs2oxZ34lefs3AjgImMqEnM+UrzfmJfI5do MfwgHCSh+BWs
QNRBw68COZNDj/ThRLZ6CIFZVX6VyNWAX+X6CCmT3W+p8RQ9qz70rQJk9Kzf vEoVQAElaar4
lUx9ooOzfVasWIH7v5oTUoGljItf+wELigQLrZOGdYI/Pq/2a/Pccwp7BS8n cg7f/mHJpSO+
mbfYSmJLNu158STB1O4lkBMr9BqVYMPx63OvPifYgcyvbsqnV/XpQ9aWl/8q kStb5z+X/+pV
TYFlMxhZiO1e5sKlUypz+dWUSfIrkCbdIscKsv8Kp9ll+EV+LTDKDKROXPz6 XInY+kNDCmwr
tBpyT1iOS8DW1JmDbPCbh9bH6+n1GK+SJPQX20Mdhpl8Yy9+lbxTbU9sJNxC 8muJWFtuqeTX
JOuq5NHqBxTM2l0tv7JdX1mfMNDqzZs3b9Hgz692P7zSER+80z03k+mr3kzn sKnSKVVYbUi+
5PkV2JPRqMOvDRo0IPvn2OQKB9A/3LJFy0CNMiYuGATi41fSsFqNj9Ve6Bp9 4tgBifhfsse8
rBIj8USUJ1bMG8B/zSG2Vh2v3lwxsdArDKfF3mQnlZ+PGwiK0Pyqq1wqrjzA rNpA1IoW+RV8
Vua2Ssx62w6h/NcwEuZisogd+YFq1UmcTqlCKkOzpYJf69P5TfzbWLb/K/YP FwxfBlUkRn4l
3qZNnpRoxT5La1qO3coaXOLFZcx/5c6IV1usOU/4R+8YuRM7U5ee0/bDCtwm 4B+q0YrAr1QK
awYTn4dFu4L1E6PU9KEkFkY6gTv5PCbms3JavWOHYPxqvSGEme/kz2TeVR8S BMNs6ZTKUHht
slTwaz36/StMG+7Zg84epvOHkV+D0lLBpI+TXxkjOiNqIolK7GFwST85NsoD GCmvsf/qtMTC
RF/x1jK/+vovHiTtyiP5uHYvczS/yFtfd2+mcxfZ1e73quKhusjEJ33ImhL9 V9FtBXLltHr3
7l12HIBfHR3D9OT6WE60KgqJEsuWTqmiqJQvfoU+YNf6TWVlZfDZa/dusMRE j+7dyfevOH+4
YPgyqCKx8qv1zYXdwIvNq/SZg8kl/qyF6ZSL8qD6vB2bjb+yAkSxvY7dqawb eye2ErimD0tz
iat//rDroyGBMbWutuC/0rFldx+3MOBsueZSerUP2a9iRX7lQ60iuQKthuFX LoUjfYDObU8m
y6tdp1OqKI9tKvi1Tp06W7eWdenatXNn+IFA9ldv1qx50HYZ0xcGAjHzqzUj SSEYZ34T//ZR
dLPs3mNXp2I2+JV/vap8K6nSpIgC+7DSfcbqJGYZ1cTaPkqJXi0Ki/7hpq+/ LsjmUKTOL3em
B7nS0dMm6cPzK5vHJHmuQK48BPBfeTW14dPkY+BXl+V4jQ9EIRzfvF71m1+p oqibCn6tXbv2
li1bOnbs1KFDR7r8cFdYf7hpU1xfojDoMrAWcfBrlIciM3lzzQfJjCKGgmZR X9F/lciVea5B
+NUQp9zJ0olkOqXKjaZ3ioT59TE7uPqH77239uYtW9q379i+XQfYPKdjxy6L FyG/BqalgsmA
/Gr4SBdee+SveBb1FflV7RZGfhVrPIv1a2KxURo0w1Yd1keEj1r1/HrPPfdu 3ry5Xbv2bdu2
h/1fwYldtGgxrj9siGzhJYtijobMVBjJCq89MmmtsrU+rcivuP5w4dWviUZR GjTD5t2PX++9
917qv3ZoCwTbHvZX70j4tUlTw6IxWYEhEMUcC4M4DbVAfjUEKo/JeB0FfUir VeZ0Wk46pYpS
EfnqHwZH1pk/zPi1XbsObdq0c/i1KfJr0EeyQNIDv6oroeMZRAARQASyiEAU h8GwTZf8Vze/
0vlN0C8M7ErHXzvj+KshrAWZLAFzLBjcLly4AC1OwaiTU5Es6ptOmVGqnMYW SwLAOYEGzY9f
a9eG73O2wsc5MIUYZg936txlyeIlzXD+cCzVm8FCEjDHDKKiFzmdrWT1wZtF fdMpM0pVfVYq
lpwYv65cufJxGtgsJ6d/uE6dulvLyPevXTp36UK/gIXvX3F9iWSqP4V3QX41 r5R0tpLm8gdN
mUV90ykzShXU9sKlzz+/wvqIsH4TLNvUrVu37t27ww/ya7i6LIxcyK/m9ZjO VtJc/qAps6hv
OmVGqYLaXrj0qeBXWH+4R8+eQLEsAL/i+sPhqrMAciG/mldiOltJc/mDpsyi vumUGaUKanvh
0ifPr6yL2LX/K1vfvxdd3r9nz56w/jDya7jqLIBcyK/mlZjOVtJc/qAps6hv OmVGqYLaXrj0
eeFXoFh5/9fedsD9c8JVZMHkQn41r8p0tpLm8gdNmUV90ykzShXU9sKlT5Jf +/Xrx6Y4ufiV
7f8K9NrLpliyv3pL3F89XIVmPhfyq3kVprOVNJc/aMos6ptOmVGqoLYXLn3C /Mop1rU/HfQP
96Sdw5RhH0V+DVeXhZEL+dW8HtPZSprLHzRlFvVNp8woVVDbC5c+//xat25d tv8rjLwyhkV+
DVeXhZEL+dW8HtPZSprLHzRlFvVNp8woVVDbC5c+eX5lLqzjv9Ym+79u7dKV fJ1DvVjKry1a
hNMHc2UdAeRX8xpMZytpLn/QlFnUN50yo1RBbS9c+rzwK1CswK+wPiKs3wQr S3TrRpzYXr1K
lyO/hqvNQsiF/Gpei+lsJc3lD5oyi/qmU2aUKqjthUufDn7dAvwKBAsfwBJ+ Xb58Ofqv4aqz
AHIhv5pXYjpbSXP5g6bMor7plBmlCmp74dInxq+rVq3q378/eK4siPvnkPX9 Ye3hLl3Af+2B
/BquIgsmF/KreVWms5U0lz9oyizqm06ZUaqgthcuff75tXbt2mT8lfQPM/+1 d+ny5bi+RLjq
LIBcyK/mlZjOVtJc/qAps6hvOmVGqYLaXrj0KeBXa34TmeDE5hADv2L/cLjq LIBcyK/mlZjO
VtJc/qAps6hvOmVGqYLaXrj0CfMrdBGzXmJx/xyYP1xGZjfBAsR0AjHh1+bN w+mDubKOAPKr
eQ2ms5U0lz9oyizqm06ZUaqgthcufV74FSjW4de6dcn+Ofb3r+QLWPw+J1xd FkYu4FeMiAAi
gAgUDALV3TLDcocwv2nAgAHMf3XxK+xPR9dvchZwQn6t7vrA8hEBRAARQAQK AwE/foX1h4Ff
+fr+1vpNuL5EYdQ8aoEIIAKIACJQnQhwfuUurLx/zqNCQP+1Ousi7WUXTKcQ KoIIIAKIQAIT
SkR+BYqFkItfcf+ctPNgdcmXgDlWl+iJl3vlypXE75nPG2ZR33TKjFIlY8eA cwINGvJrMrVZ
CHdJwBwLASaqQzpbyeqDN4v6plNmlKr6rFQsGfk1GZzxLqYIIL+aIoX8ao5U /lIik5ljn06s
zOVXUybJr0888QTrHMb+4ShVVuB5kV/NK/jy5cvmiQsgZRb1TafMKFUyjwPg nECDxvqHkV+T
qdOQd1k94jd1Orhim/nndGXtebbDuOJj0hXtyTCSJGCOYcRKZZ50tpLVB1UW 9U2nzChV9Vmp
WDLyazI4Z+guOZkS+TUttZnOVrL60MmivumUGaWqPivNI7+CC8sCzh9Opn5D 3AX5NQRo+cny
xRdf5OfGebprFvVNp8woVTImDDgn0CHH+4c9+bVPnz78C1jy/St+n5NM/Wvu IvOr0288Yg9N
ThNs3NCGdibbfchCrmPWpTod5q+G5Bvn13lmw0FjdTzMsXRorVq1hpYKxcCZ 1kWVxuUWYkK/
VrKyqDUgxoInTtWKYfyFR9Y3pxFoZY6kiIfMYpm0qly2nVPOqAkCSEWkM3zQ IgEFKgWQKioA
CeVHfk0I6Ozcxst/5efh4DcWZRIqZWOx4lV7dHbjfMK+sfFr69atxVYo6sOc nRrxlPTSpUv6
a+42sXSoV+MdDkPDXD7JDEuQlYusb846j59fPWR2bhQKi1CZBO1RKm9TiIqt WDLgnIz/unr1
6oEDB6L/mvMJz3sChV+BIK15TxKVElHBu312o8CvjvNKp0pZLm8ApcAc7979 8uatO+64ZHCt
77+5eESrViN2W5fomQopWQ3688svvzp1+qwOqz1vtqo1eLEJFOEwNMzlk8yw BJcKceibExOt
YGGkZdbrLbNV5u7h3681eIli7eHkzJnLSoBS+QIevrqlYhnOSfIrUCxjWXn8 FfqHeRcx9g8H
oKP4k7r5lfAl7eb9+lzxMyq/wkmVX1n6kMGPXyvuLBpcq9XwPdSOnccATlrB aqpsMqZngWlI
K0aDnffOzYoRraw8QxbJXG7aTgVvFuMsmT69ZzT8SlTzUErW2gWUCqwAMkk5 eLAFo4A24XIW
LEa3b9Fq+Aj+AuSuIChKqi8jWOLQV5H2lnQmJyBGonLD8JSZWe/wIbWc90Va slNB/A3JTukY
cEgAw0rFHzRVEpfMYo0rzxe3H8/HLSGsNAiLNiBjq7QtAQyAaZQ8vwLF6vmV sSzya0hqiieb
m195766rK9gednXY19V77PqwJ3j/8J27X964edsdFw+q1WrYbjipHvCU4iXC pbugkEVDCK2+
uYeURo6HLCIl85TkpHVVvqMkQOr+hKf3xMlTGqx2D2/FdL95e5fFfhJ0XGvA wQYKcskIS2jb
MLrRAx4QaooUOGgRvzW7r7aCpEu54Y1BXzAAl7R7hoHOzDasKACitZaARuIp M8GQBIaVeHfr
jKs6yMuLpwEHFAnKCS4Vtx+tJGqNq88X0df/QQsulY1eAKwc+7zBc8lWIQiv Md3chsorlGmE
/BoPLxVKKVL/MPFQSU/vM/OfFfzXZ0eMY53GtHNYHH/9+muxixj6h2PmV0qT pLlxPcO2Q6QQ
iZiMH5NHSwiuNjfA86O8BCSa149vrNcIJo8NlEZrV1MCr+q0cRdPat9mhAS0 TKfdFKjduIJM
QYtBX1VaF1AmuptKy2zDlzNaDVvE32losUQ89v5HonF1BBMpsFT6N1rBqOyX OXNL0z44SWCl
RViyCpf9Wy/orO/A/bKYG3bk10LhxALSA173fP1XMGvidgxaJNIGa5XgvDm/ Og1Zfmky9N2/
+uqr4ydO5sJK4ldJa5FKGaomHCO/4DMvmeTV8qvTqGkrKHc7xSCKQ1/Hp7ek rWZ+zS2z4yUn
x6/BpArJrz6Wpq/xYFKFexfR53JbhcivGtM1NVdusei/FhA7ZV8Vwq937l6/ ccsdaZu+yz65
izmg9Awdkt0J6clJlkZMrD2mvVXDKpS7SDdN9Z9ffvXVseMndVjd2glUWWvw QgtDjoCqtXCG
oMeyVFCipbqT0Sd/SC2I4I4UT9b/Rk5SGQJVkCinUNe2JcShryQt0dRtBl7W IoGQQ1RuV94y
OzciQDEDFtCjxsyqw18kMUH1SeVjA7oap4p4A6t/rJLCyrZtB2HVhm3z82tb cqPNNEJ+zT4p
FZAGRvwqNt+UDyjbDh4EjbwRvzIytsOgxVkkWh++sanRUtBp6WStSRsxaJCF hMWpFq2y4cHB
9muN6/1moTV4uJgSsDW9yaJz+0yrYcPtvGoF3XJKcPgjPL+a6qtKS5mABap+ HvgVhCdoOO+I
TBz+hqF/WQwBYCDWF6TS1osglabG1efL/X4svz0ThjPh18hYiYIJJOq2YQFb n7Yldfw6yA44
v6mA+DBuVYBfb9+5e+36TYz+CMDoztGq4zUHqyzqm06ZUapk2haGc2L+K+dX OMD5w3HzUqGU
B+Z46/adq9duYPRHAJ7eI0eP1RyssqhvOmVGqZJpWxjOeebX+g0alJeXk49f SXwUIn6fUyhc
GUYP5FfDhz+draSh8CGSZVHfdMqMUoUwvxBZ0sGv9etvKy/v/WjvXr1JhLC8 dHmLFi3CtM2Y
J/sIEH69defK1esY/RH48ssvDx+pqjlYZVHfdMqMUiXTtjCc8+y/1iP8uq1X 71497bh8OfJr
9nkyrAZgjjdv3b585RpGfwTufvnlocNHaw5WWdQ3nTKjVMm0LQznZPh1zZo1 +vHXuvXqlW3b
1r1nDx6XLl/WvEXzsO0z5ss2Asivhg9/OltJQ+FDJMuivumUGaUKYX4hsiTM r4NpYCzrzG+q
U69uWVlZ1x7dunansUe3pcuWNmveLNssgdKHRQD4tQIDIoAIIAIFgUBi/ivj V0axDr/Wrltn
a1lZ525dO3fv0rl71y7dkV/DUlNB5KPr+2MwQuAOrC5Rk0IW9U2nzChVMs8N 4Jxvfq1TZ0vZ
1g5dO3disVuXJUuXNm3etCDIApUIjAAzx8uXL1dVVe3H4IsAvN/DBs41B6Qs 6ptOmVGq6n5q
oPmCRuzChQt55td769TevHVr+66dOnbtAuTaqWtXwq/NkF8DM1NhZABzBKM8 duzY9evXYfM1
jD4I3LhxE/i15kCURX3TKTNKVd1PDTRf0IgdPZrc/CZ9//C9tYFft7Tt3LF9 l07gxXYk/LoE
+bUwyDKEFsCvhw4evH3r9u3bd+B/DD4IXLt2Dfi15kCURX2ZzIcOHzGMydRm OpFMp1Rha+QO
NGJ79+zJs/96D+dXSrHtu3RevHRJE/RfQ1BTQWQBc4SuGxgdAYbF6I/AVdp2 1xyUsqgvk9mQ
XCFZMrWZTiTTKVXoGoFGDPrh88yvlv/aCci1I/ivHbrS8Vfk14IgyxBKcH69 efMWRn8Erly5
Cm13zUEpi/oymUeOGmUSgV+Tqc10IplOqULXSL74FTqKhfnDdWrD/CbwXDvS yU2dunVdsgz5
NQQxFUgWxq8w7w6GiMLGRWRTlEGLpOy7rB3TzIuFcmCTDUjPD8zzJpHy8uUr 0HYrKO22NhQi
GNhi8K1jWr25ywUsTzx4kXje2plO0UI+T6G29nthQImBoedxi+D166GvVDti rUlmoK1QKh6x
FtVsYqh3JjOQK3R+quHWLTIQcuPGDbgEaYBfw9p8MHvLZTluYwheU+G08JDq 5g3V6iwzVk3L
5IyAlVyy8uw4ey4JT5MZINCI5cV/lfiVzB8m5CryK37/WiB0GVgNxq/Q6Fy7 fj1shA2mWj3Q
qtUbO8US2K5T0kn/W5ByaCH8ILRI1ZLxErTcX3who7RwmKU40XjQAoBx57AH PBQnm48OWggl
8ANa2s43BrVSsux8g/DQIBsTotGCQbUeGLbTyt5q2E6xyghm5IzHLcIAotdX rh1XrT1A9OP3
0lQoV4HVskf6MNKyemEyM35dsHSVGDdt3T7l7Q9ffG3+gcPHYToM41dvm4/T CLVIxlhT4Z5c
rVSq1ZGa8jAtVQVvpTT2fE15dnbuJOZNIn+ajNslaMTyz6912Pev3bvS9SW6 d+vRfemyZc1a
4PoSgZmpMDJwfoXBmLBxwcBaDwwc9MADb+x0SoB2dNAgOP/GTvNiSTk0PT8w z5tEyouXSIvk
jZIlNqEQEQoH2J1vPFBr4AIqKjkctIBdWjDogTfe8MBKhAKO7SwKRPZNPW4R qnI99JVqx11r
C94AO9hh3U6u0B1UaRtAelWfPnxtMpk5v24pr2Bx6/Y9Fy5e7v2TKQ/2HbNq /XZwYRm/5qzN
sA+FSwUtknpjCFVT4YT0tmelikmdqqZlckaqSq9HWz0vWruRPSTMr0OGDOFT iJ3+4bqwftO2
MqBVEntC7LEM1kdsjusjFgZdBtaC8SuMeVwJH96DhvL1cvgd+J5VSPnrD7Az 8Aun+IH7GFJZ
vZssoy69Ls3AgZCP3yu83EFzwodM0HZ75mJKMy1eH8g0c0upxQGyQSrxkngH KYuIsFh4LqiD
qkrTe+griSrfWrjsvgSYMHOwgnVVlz6UuILMEr+W7dhzpOrkwpXlD/Ud8+SL c06dOs37h73u
ZNWfVYVExihWp0VSgMOr9sPjYJLT25618qjWa3JGEsRDU+vZcRKT5z7gIw6N WJL+K/ArC67+
Ybb+cI9ePXv07AGxe8+ey5Yvx/WHA/NSoWSw+ZV82Rk2zH+i1gO/3/YF/PPE fFrGtt8/YJ0g
/3xBrrAD8Vg4Of8JepmfUQ/IRTuNU1ZYgUPmO3funHdO0JmpT4R/4PcUCDi0 IbF1txBylLVQ
EyESbyKeJ7ewcCQlC0U7qZxKcMMeRmUPfSVRfWpNvETeNrjyHpbgBUIA4ZnM nF8rPj94uOpE
xb4DV65e6//sjEceH7v2D3sqDxzg/OpdtGS0kaxOiyR/XKLXVACAhKTe9qyt CNW0TM5IomlL
5s8Oazvom6nbVkwUvHnzZv75leyfs21bLyHg/jmFwpVh9GD8Ct1lFy9eChvn DajV8rWySxfL
XmsJ/168BH8PmAel2eedA+EkJBan5gyYp0nvlya0tOEznjlzFp5zLUqgKuhM L3Gt4XgbKEmh
YFG8xI4hAYXOdUmUUMxCEWagDXjNzkgS00TbPG4Ru75ukbS1PO8JiobbAOaB 8ExZBQ05fVSZ
Gb9+sqlsU/nBWQs2Xrh4cfWGirb9xw95YQ5Mcaqo2MP51dvm1cqKKpV0L+up kQ0j/F2CPr/e
9ixVsZf1qhDlBE1TsvDsCLqDSdR6Yl6QRgkasfzza322/yvZ/LUXi7j/axhe KpQ8jF9hugd0
FoUN70JL8epWyL311ZYtX32X/JC/LvDz/EA4CWlrDXjXdUslvV+asMJGyHf6 9GngV7UAt5ii
shQQigUNwp9WHkgsBjExyyKWJtzZdUuPO2rQC6a8h75upZy7SGJA7SoVStTl le6TPpicYmom
M+PXQ0eOPvObeeCzlu+ueupXb7d/onjF+gpohQ8cPMT51ftOOqMNK5cWScc2 ItdUOLm87NnD
6lTrNTkjiSbbs7fqHpbvrSo0YnnhV+gidsZfgV/Ly8sfFUJpaWnLli0LhS9Q j2AIMH6F5gY6
i8KGd/rXavnKJpobDmuJf7Dzm15pWav/OzwBO0mS2tnYnXk54oFXmrDCRsh3 8uRJaLvlAgTt
uRqWtkRFpreViAMhICLpLuIgHfM7k9wcOtcfAtbKLQJrrtfXXXOOik710RuR 23NbcDASpHUD
p0+vmkQOLZjMjF/LynccOnqmTb9xbQeMB3Id+IvZt27fgfNHq6o4v3oXJ4qn PQ4gmxZJb2MI
XFPhMnjVr/AkugpWBTY54y7NXenKs+Pcz+eSh7ZQp/nn1wYNGgC/9hEC8msw Riqs1Ixfr169
Cp1FYePb/Wq1eHkjy77p5Rb937aKEs6/TXiXhH79ncQbX27Bnbd+b585w9ML GT3ThJY2fMbj
x09A2y2hJOhA9XubgcAU47BwjexLcMUFuIghO+aF2CURfKzQ4uVNthgkmfCn cHf5FoEV1+pr
17Ijiq2IqAK5F606hoDrElGDyGaSXmcSvobKZGb8+unGzWfPf/HmhDXtBhR3 GFiyaNUO9vEr
8ArnVx+bt+B2WaaoSwDZPJD0MobANRXuyc1tz7IJqQKbnPGyZ7eFk2dHPMOb EVM0oBHLP7/W
b0D81759+3KGRX4tLMYMpg3jV5i3B51FGPwRgAXEoe2uOShlUV8mM+PXzVu2 7t9febjqzPAJ
q4umrLty9cb5CxfOnTsPbMT5NZnaTCeS6ZQqdI1AI5YYv65du/ZJGtgUYqV/ uE8f0kNMORb5
NRgjFVZqzq8nT57C6I/A0aNV0HbXHJSyqC+TWVy/CYblwG2FaU1wIK7oxL5/ TaY204lkOqUK
XSOp4FcyfxjmN1FyRX4tLK4Mow3ZP+fQIWiSzp49C/1mGHwQgN2vKL/WlJBF fZnMJosP2/ya
RG2mE8l0ShWuPqD5gnrfu3dvMuv7e/qv7PvXnjCBmPmvfftS/7VFmLYZ82Qf AWv/1yry1g8b
FGPwQeD8+fM1CqUs6ptOmVGq6m5Y4ME8VlWV2P6vnF9ZF7HTP1ynLlm/qUev XoRikV+zT5AR
NQB+Nfl2G9MgAogAIpB+BBL2X9korLB/Dl1/uFvPnkCxvYgL27d0RWmLFui/ RuSprGZPwByz
Co0iN3x6B+1LwaiTU5Es6ptOmVGqnMYWSwLAOYEGDT5nFf1XN7/WIfzaFRZH BA+WdhFD/zDy
ayy1m8VCEjDHLMKilTmdrWT1wZtFfdMpM0pVfVYqlpwWfu3WA/iV+a9s/jD6 r8kYQOrugvxq
XiXpbCXN5Q+aMov6MplhYrBhDIpJuPTpRDKdUoVDmOVKC7+C/9qdjsBa/ivy a5RazXJe5Ffz
2iu89shf9yzqi/xak+05BfxK5zeR8VdYgZj3DyO/mltlYaVEfjWvzyzyjbl2 asos6stkNv8+
Jwo+5nnTiWQ6pTJHVWuxCTRofuOvdcj+r7A/HfNeef8wrj8cpVoznDcOcywd CovlDS2VUKgs
al2rVuuiSnNwoByWnh+Y500ipUd7RBWlwcGAQkKCDABP7MaLpNdhJZ+XyuV/ ijfzuEVwhDz0
lWpHrDXJDLQVSsUj2qtmE0O9c34Vl5Lgx7DKBFsika/fFByVMDlyWY7y8IS5 SeA8nvyqWp1l
m6ppmZwRBJNLVp4dwaJDgJJ//5V//8oGX3H9psBWWVgZYuLX1hDcVMoelBrA r6VFluJEY9om
kEZDrzi5wpM47Udl0dDWShbGQ0Ptdw5idpx/NHewr3ncIozVBudXsALxRUvD rwKFkkOP9GGk
ZXlEfl2wdJUYN23dPuXtD198bf6Bw8dhLSe2voT3nWIge164FskYayocXlqp VKsjdkfNWRXY
5Iwtm8aev1aencpK+32cP01BdMs/v9arX89ev4nRa5/SFStw/5wglVhQaePi 16HAECLBwuPh
5gYD1DLqv3LNLPm9G2beHAltFaXN1kVFIo+6X/g5rgRTu5dAvolCr+5bGKCv JgnBr0WlRYId
yBUq6G+/LejThxJXx69byitY3Lp9z4WLl3v/ZMqDfcesWr8dXNi886v9rhVD TYXDy7t/WOmi
IDaoWq/JGUk0r4dDPS9au6l++edXa386WH7YWuC/7wrkV9PqK8B0cfFrUaX4 PMCDB0+kli+F
B0nuHNKl16UBLtf0R1d/5eQYr2JKMycT6FLqMXb5n5IvCqxp0u5ICOfwFKN3 s4fhV0t/5oW4
K1R+hVBfR2JwGSX/lZFr2Y49R6pOLlxZ/lDfMU++OOfUqdM5+4ft/n3eld06 itVpkRTeqGJQ
PIT5G/MrK1sUkh2bnDHjV+vZcRK7X8VMlUsLv9rcCvvoIL+aVl5BpouPX8nz Z7lXItPI46k6
ErX6n9RLwgPspAnW6RxjrfnyK28QiMyti6ifKfdx6RxQ65wJvwq9wqRk93Cv 5eX6+bhBoQjH
rzKtWgbgHp9W2TemcXeJXys+P3i46kTFvgNXrl7r/+wM2Gt97R/2VB44kJNf FTqJZHUe/OrZ
GxG0psKlD86vksCqseU0P62di2Rqv1CHGH1N9vsc6J6DIK/fxPZ/JbxqB/Rf w1lnYeSKkV9J
BxJt5e2HzNd/dRxT7ugp6f3S5AF+H34VmFRsQaS3cPV9n7+3m/Ar60hkcBVp +2F1TkZ4oMLy
K7cAd4VCV7CLpFwvT/aMp0AD9hrVRH79ZFPZpvKDsxZsvHDx4uoNFW37jx/y whyY4lRRsSc4
v0YSDP1Xu6o0di6/hXJvWZ0zmcuWk/RfkV9z1QZe//rrOPmVEawzopaTX6V3 VC2/eqXJQ+V5
8atmWNGapSF1ewl/WnmoH+oEtRH34F3XLSVGtwsJ18Um4Oo961WQ07mL+mKh VKirKfVJH75y
RX49dOToM7+ZBz5r+e6qp371dvsnilesr4CR1wMHD6WBX503pMg1FQ6vgP6r ar0mZ3L0D3ur
7vXG6adr8vzKWNZZfxj913C2WKi5YuVX65sLu/XlT4jwEJEWln+EI/W5qXzs pPZ5/02savTt
kdIOOCTiOnJNEVGaFdW15a/xKukKHcXKbGVecvRG26v9FWvFw3Hnrrb8wZW7 j1viaT7hXGsJ
Rh6kyK9l5TsOHT3Tpt+4tgPGA7kO/MXsW7fvALMeraqKwK9hZMvQ/GFqdnpu U03L5Ixfn4oP
h4ah10TXb2LMivyaWPObyRvFzK/EhdWNKnE/TZxULHb/Wh9EKt+/eqbJA9qe 3zMIHij/+sb9
9avrVUP34ZLKr+7OcWvmlPpVrYtrKSh2RiM+yuENeOxnIMjm3EVuEWkizQfN Nj2bpNd2geSW
me2v/unGzWfPf/HmhDXtBhR3GFiyaNUO9vEr7DBqwK/s+1xnfpM9Oz42fo2x psI9DLnt2evr
bee8amzqGYaYas/uMwRp+WkPqhf6r0ERw/TVi0Ac/Fq9Eqan9Bzzh9MjaEyS ZFFf0X/dvGXr
/v2Vh6vODJ+wumjKuitXb5y/cOHcufNnzpw14deYUCTFpBPJdEoVBXbk1yjo Yd74EUB+Nce0
8Nojf92zqK/Ir2zZJlhKA
Previous Topic:Drag and Drop with view does not function
Next Topic:Tree with not necessary Scroll
Goto Forum:
  


Current Time: Mon Jul 28 20:49:01 EDT 2014

Powered by FUDForum. Page generated in 0.05714 seconds