how difficult can it be to obtain an .ecore from an ANTLR grammar [message #14823] |
Tue, 10 June 2008 03:20 |
Eclipse User |
|
|
|
This is a multi-part message in MIME format.
--------------030904090501090503030209
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit
Hi,
Given that Gymnast (http://wiki.eclipse.org/Gymnast) has worked so well
for me I'm new to ANTLR. That is changing as I'm trying to visit its
grammars to obtain an .ecore out of them.
I know TMF tools take as input formats similar to ANTLR's .g, I want to
take as input .g, only .g, and all .g
I was planning to make use of ANTLRWorks,
http://www.antlr.org/papers/antlrworks-draft.pdf
as it can produce railroad diagrams like the one attached. It appears to
me easier to generate EBNF or Ecore once a .g has been pre-processed
that much by ANTLRWorks, rather than starting from scratch.
Is there a yet better shortcut?
(yes, the whole purpose of this exercise is to produce the .ecore that
DSL2JDT, http://bugs.eclipse.org/234003 needs for building an internal
DSL. All of this because many, oh too many DSLs are not yet avaialble as
metamodels but as grammars only. It does not matter if the
transformation from .g into .ecore widens a bit the language accepted
because with DSL2JDT arbitrary well-formedness rules can be checked at
DSL embedding time)
Any thoughts?
Miguel
http://www.sts.tu-harburg.de/%7Emi.garcia/
--------------030904090501090503030209
Content-Type: image/png;
name="prolog.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="prolog.png"
iVBORw0KGgoAAAANSUhEUgAAAz0AAACNCAIAAAASKIPKAAAauklEQVR42u2d bWgU1/7HbcRa
a0SEUK2IyJ8tjdyAgabSF0H+L0qIkFBKt9AXpZS+KJY0T2RDNg8kYkpAXyQX xZaouQQNYiI+
4BolXLiEViQoKLdJ2BZ84loarfUBYohmSXJ/l1OGYXdm3Z3M7p6ZfD4My9nZ mTOz+/ud73zP
7JmZFYuZZ3p6uqOjo6ioaAUAgB4EAoFwOCzqtKgfaCYAemLHiiwIUGlpaUVF xfXr12dnZxcB
AHJNLBYbHx8PBoPFxcW6WTc0EwA9yaVvk16jCBBxBQANEamVXrJWu4RmAqAn ufRtRUVF0msk
nACgIdFoNBAIaLVLaCYAepJL37ZixQpO9QOAnsRiMdEorXYJzQRAT3Ls24gl AGiLhr6NoACg
J/g2AAB8GwDg29AgAEBn0UwA9ATfBgCAbwMA9ATfBgCAbwMAfBsaBADoLJoJ gJ7g2wAA8G0A
gG/zpwbxpD/wwQMrSezMRQff5pvs8lYTRk/QE3ybdS7ypD9IBZ0fWEliZzQ6 +DZ/ZJe3mjB6
gp5o59sk9mZvm6tU4El/kC4aPrCSxM5odDTxbXGaKeTKfHg9uzzRhNET9EQ7 3yZs3LhRqc+m
TZtyFRWe9AfpouEDK0nsjEZHn/NthmaWlZWVlJSQXT5uwugJeqKjb6usrFQa 9MEHH+QqKjzp
D9JFwwdWktgZjY4+4TY0UwqhUIjs8nETRk/QEx1928DAgNKgzz77LIfpSJsE /6XNck5sH/s2
QzNLSkoikYjPsqt1S2vViiqZqldWD+8ddlBDy+YWVYNMNBD0ZNnqSQY3MD09 nZeXJ98hh0MN
XP8FDeF45ZJXj11t3NBYs6rmu79954o2dW7v3PfuvkQdbFjXMDc7Z6zVvKnZ Kw1m6TqelpTj
27JMYsbi21LUzPz8/KdPn/ovu1Q7nbw8KcJ4YOeBh78+dFwJRgQ9wbdlBDVc 44cffsiC3mXt
F0zRIogwyWIvZ166tRXL7aqZo4dGU98xrXBFx13/7lodyL2rsxlKSB/7NkMz szO4Ld3sUn0k
1TM0l499ekx6j9KE5bD6yz9/ietQTQxP1K6uHawaNKeENHkp1K2pk/J8bP5s w1kpy3TiyxPT
f/y1V5G2SPitsHTqZMnQ+hC+DT1ZVnqS5LKkzEZLDde4fPlyFroLBQUF5eXl fX195n6qW7/g
s9+fnfrmlKiPkhuVPXZyE3cSyDgBlqhu5rN3qmyXo8apqbgzamrO3nf2xq0S t60jHx9RPrJt
a5tsSCb5OvKlLL/Cnat3uku7ZY6sIropmzbvgFJhtbrd97LUXMttWep4hqQ8 twfyn3/+OZuJ
bRlEy181rchaHowtl7TLWOF803mJnSx/rvFckmO8tjqb0TNhSjOzM7gt3ex6 8p8nEqP2be1S
FiWR8uN7j41PZ57MyByVaeZWKck2HhmXXllcOzXKZ+rPSOHWj7dkkkLvR70q SaQ80jWyML8g
iZooesvct927dw898bee2AUr475NDdeIRqNZECCDvLw849u6FZL6tfWSBJf2 XZIETS43rxSX
OHUzFotbPq3zbT27eiRBExcwb0t9OjU5pb6IvMqXsvwKTQVNSpHv37wvTdQ4 NW2osLG63bYs
NddyW5Y6niEpz61v27x5czYT2zKIdhmbemQtD8avzG0zF1ouyMwrvVfG+sek IDF9ZbW66WxG
B34ozczO4DYH2SVSI2GSo7i8/v3//67MnMyUQ6xZG80xFWmybKdGWY6sxiFZ JnkrM+UwHJeH
+DYzzq72Q088pCd2wRIP5//bIrt7htZ8vs1SbuzExU7dXPFtooxKT9UCltsy F4y3ll/h+BfH
VcYf/eTo6KHRudm5RBVOvi1LzbXclp1vy4SUO1M3jya2ZRDtMjb1yFoejF+Z 24kHAOmpyySF
xg2NdtV6Ojp+lc2rx65KmI58fEQdLGVO144uFbiXMy9TFzHz+XWVlnKQTpQL 6aE59m2AnvhW
TzLtJYPBYBZOdag7HlVWVpaUlOTn58trKBSSPmsWfFuc3NiJi526ueLbpNDx fx1G2XJbSXxb
4leQ/nSkLdJd2i2fHvzwoHlb8guYa7PclqXmWm7L7n/STEh5Ds+3vf32284u rF5KYicG0S7c
qUfW8qdOfUlzEGUyRzz1COb2VEpjY2O658PS3eG6urrspKuD7Hox/UKNuJBX Kcuc0PqQSio5
nKcoYpIqsvr+9/Y/iD6QmUPVQzLzYvtFcQMjXSNtW9tkZv/n/Wqm5MnzP58f 3n2Y820GO3fu
lC/Y3t6OnvhYT+yC9b/zbZk+pJ07dy47vs38rVwPifqfdHjvsLkHYCk3duJi p26q5t/+/dsr
JU8tKY1hanJKMjtusX/1/MsoW27L0rdZfoXWLa0nvz4pzeDR7UfyqXRokpz9 ttyWpeZabstS
xzMk5Tn0beoiQQc3oHac2JZBtMvY1CNr+VMnz+24jFX7MNY/pv7XkLfe0tkd O3akO/4s0+Pn
luLbHGTXPz77h0Tq2KfH1NubZ242b2qWBPvph5/Mw48Sx/jGXT9udMDE/0mu ygFYXZykrrKS
dBr4akByUhbu3N55beBaXJ3Jr533t29bs2aNfMH3338fPfGxntgFa9HB+LZ0 v2QsFsuCBmX6
Mplnvz8brBoUZTGGkYlkWMqNIlGz7NRNsk1Wl6Q3Ztppk9oHWbhnV8+NoRtm HVQ7o9Laclu1
b/xvJ1VV6lX1mL/f/X3iVzB2QGZK7+ru2N24XpQa6alGm1p+L0vNTfy57HQ8 Q1KeQ99mjFHI
WmJbBtEuY1OPrOUFN3a5nZixgkj86drTkqsySUH94WJZrZ46+8Ybb6R7vWem d9hx/Z6+unA5
n29TerJ27Vr0xMd64ub1pNpq0DJsvVnGi/cZ0SFtDh8+bAxLcHZVaab30FuR zWGjnpycVHF8
8803Uz8r5i3NxLdpzoULFww9cXZVKXriaT1ZFr6N51y5Qvu2duk8qcl8qb// cP3JJ2pwm/Da
a6+59ewQFxPbW5HN7SOM1GAU4Z133kl9iJsXfRvPudIWNbhNeP311x0McUNP vK4n/vdtPFce
0sX1Jw2rwW3qf1IHQ9xI7IxGJy3UYBRBCqkPcfOcb+O58jqjBrcJUnAwxA09 8bqe+N+3dXR0
VFRU4EUgdYLBoLs36Iq7DQ+JrVV00kINRhE2btyY+hA3z/k2r2dXbpMk05jF xMEQN/TE63ri
f982PT0tP4dkpHQm0r1CApYVkh7S95JmXFhYmGRAaLo8ePAg7s47t2/fJrE1 iU5azM7OxoUy
xT3xnG/zaHbpkCSZJvGeq6Iw6Mmy0hP/+zaVkdKZkPBwZ0VITiAQCIVCGWrG JLbO0cloKD2n
md7NLn2SRLckRE98oyfLwrcB+FJnAd9GapGEsAxDiW8DQGcB3wboCeDbSEcA EhvfhmYCQQd8
GwA6C/g2UoskBHwbGgRAYgO+DdATwLeRjkDjBHwbqQUEHfBtAOgs4NuAJAR8 GxoEQGIDvg3Q
E8C3kY5A4wR8G6kFBJ1Q4tsA0FnAtwFJCPg20hGAxCaUaCagJ4BvIx2Bxgn4 NlILCDqhXJ6+
TT0ut6ioSMPn2obD4eXwCGRAZ/Ft3kotbWXTcw8vz5DIoyf4Nt9qkDSY0tLS ioqK69evz87O
6hOqWCw2Pj4eDAaLi4uxbjROwLdp1dfVUza9RUZFHj3Bt/lWg6TLKOqjc8yk VUuHjNylcQK+
TZPU0l82vUUmRB49wbf5VoOKioqky6hzzKLRaCAQIHdpnIBv0yS19JdNb5EJ kUdP8G2+1SCp
TfPz/LFYjBZI4wR8mz6ppb9seotMiDx6gm/zs29beiWd2zv3vbsvlZm0QCDK hNIHvi3dVa4e
u9q4obFmVc13f/vOlX1IIrBVK6pkSrfC1i2tasXqldXDe4ed7VXL5hZVSbo7 gG8DfFtWa7Ns
pc60gxZI4wR8m/98mzg20cOXMy/d2gcXBTauzsnLk7K3B3YeePjrw6ztG74N 8G3x2F2tY1nb
nat3uku769bUSesNvxWWfpiaPx+bP9twVubLdOLLE9N/TJt7aTI1b2qO67qZ Z1qubvTPJoYn
alfXDlYN0gL9TVqpCPi2HB7C3cpV81kopYfGHKNsnnnqm1P1a+tvDN1Qq0fa IqLD1Sur5aPQ
+pCdwC7an+4633ReVmxY13Cu8VzckuZtGSuKdZOCCLWdbtvtWPZ9G3qCnvjW t8laBQUF5eXl
fX19T58+TV5bU0GTtLrH9x7fv3lfmqVxNv5M/RmZf+vHWzJJofej3iStNHFm 8tVFFMYj49LJ
owX6vhGmnoqAb8uhb3MxVxP10Jhj/kiVRXjltX1bu7JcUh7pGlmYXxDPZLi0 JN4o7qMLLRfk
7ZXeK2P9Y1KQCu22lbgnSXTbbsey7NvQE/TEz77NIC8vz0h0y9qOf3FcGamj nxwdPTQ6Nzun
5teurjU6czLJ27R8W/LVJ4YncvWTQpYbYeqpCPi23Po2t3I1Ld+mCtUrq6XQ sK6hfm19KhXa
faT64fOxeZmk0Lih0W5blntip9t2O5Z934aeoCce8G3uYrmVO1fvRNoi3aXd 0vwOfnjQbLxm
nsyk0krtfFuKq2f0K4Oe7Nmzx9xjBnybnpqZHd9mtk0L8wuOfZtRg0zGv5+W 27L8n9ROt+12
zLFvQ0+A823xa5WVlVVWVpaUlOTn58trKBSKRCKWtbVuaT359UlpkI9uP5Lm J901NX+oekje
Xmy/ODc7N9I10ra1Tc2XXpcazTo1OdW1o8tupt3qqfg2ctdPjTD1VAR8W27P t7mVq4kqpxTy
t3//lty39X/er2RTBPn5n88P7z6cRHUtt6WEd6x/TP1PKm+T+7aJ4YmaVTX7 39v/IPogiW7b
7Vj2z7ehJ+iJb32bkdCvHARgDFmV1ttd2n137K6a/2L6hfg56Wapq41GD42q +c9+fzZYNSgz
e3b1GGNpE2darp44Yhff5vtGmHoqAr4tt77NlVy1VDlxUaKE4oSM+Wox84UL Up55MjPw1UDd
mrrqldWd2zuvDVxLorrmDRlVid86XXtafJ5MUlDjXhK39e3Kb833ATFOpNnJ vuWOWe6AJ2IE
+DbtNMjTF93QAv0E13+hs17xbeSq/iJPjMgN3/o2T1siWiCNE/Bt+qQWuUqM AN+WS9/Gc64A
3wb4Nj/JprfgOVeAb0sDnisP+DbAt/lMNr0Fz5UHfFsadHR0VFRU6ByzYDAY DofJXRon4Ns0
SS39ZdNbZELk0RN8m281aHp6uqSkRDRIuo+xWEyfUMnOSCdM2nNhYaHdyFPA twG+Lfv1ayub
3iKjIo+e4Nt8rkHSfZSWo9tdWAOBQCgUwrTROAHfpltqaSub3iJzIo+e4Nt8 rkEA+DbAtwF6
Avg20hGAxCaUaCagJ4BvA0BnAd9GagFBJ5T4NgB0FvBtgJ4Avo10BCCxCSWa CQQd8G0A6Czg
20gtkpCg49vQIAASG/BtgJ4Avo10BCCx8W2kFhB0wLcBoLOAbwOSEPBtaBAA iQ34NkBPAN9G
OgKNE/BtpBYQdEKJbwNAZwHfBiQh4Ns8qkHqAclFRUU85Dhzz04Oh8OZeHYy Ogv4tpzUj2xq
rm/oCb7Ntxokja20tLSiouL69euzs7OkiOvEYrHx8fFgMFhcXIx1Q2cJpT/6 usim5vqGnuDb
fKtB0mUU9SEzsoBIm/RK+R3QWULpdd+GbOqvb+gJvs23GlRUVCRdRjIjC0Sj 0UAgwO+AzhJK
r/s2ZFN/fUNP8G2+1SCpjb9Hs0MsFkNK0FlC6QPfhmzqr2/oCb7Nz76NtEBK +HEA30au+uln
IUb4NnybT2jd0lq1okqm6pXVw3uHHdTQsrlF1SATvzapCJ7wbe6eHnN9hzu3 d+57d5/lR86k
ZulC50Dr9GnC/LmBb/ODb7O70mcZJreSocnLkzWrag7sPPDw14eOK8GakIqg v29zPBwta7nq
TE+yIHRp7Zs+TZjBxPg2P/g2WaugoKC8vLyvr+/p06eOazN6YKe+OVW/tv7G 0A01/9inxxrW
NYhASK/xl3/+cuTjI1KWxdq2tskqMsnyz35/Nh+bP9twtm5NnUwnvjwx/cdf snjn6p3u0m6Z
KWuF3wpLZ9HoL04MT9SurlWrW25LzYy0RWRF6VzKKqH1IZljty1DhkTRpCCf Jlk4sVp829IT
2JVUBHxbiji+/HOJuXq+6byIhojVucZzi6ZzYHGaZsyXqXlTc6LYxklNXLV2 spyW0Lmidfo0
YS7ex7f5xLcZ5OXlGWLkoDbVjO/fvC+v7dvazR/NPJmRmSJDxmJTk1Pyemnf JXkVQTlTf0YK
t368JZMUej/qVSs2FTTJ28f3Hku1oh3qLwNVg+iLsbrdtkTIpDzSNbIwvyBK pLTPbltmGTLK
lgtbVotvW3oCu5WKgG9L8bRZSUmJut1aLBbLTq5eaLkgEnGl98pY/5gUREyS aFoSPYn7yLJa
S1lOXejc0rqcN2EJbjQaFdNWWFjIzTLxbXr5Nndx5ttUQTpnUnjynyc9u3pq VtWIHpk/NQrG
W+llGj1I9VbVefyL40rOjn5ydPTQ6NzsnLGK9E3NtVluS7qeca5OsNuWpZxZ LmxZ7RJ9GyRh
z5495rMagG9z0bp1dHTI4Txrsqn6ovOxeZmk0Lih0U7T0vJtltVaynLqQueW 1mny8IZQKIRp
w7f55HxbWVlZZWWl9Dvz8/PlVZI7Eoks0bepQteOLiVGL2depuLbZp7MJFZ7 5+qdSFuku7Rb
Fjj44cFF0/iMV25LVSs9xUTflrgty78PLBe2rJbzbUtPYLdSEfBt2uaqoR4y GTpjqWlp+TbL
ai1lOXWhc0vraMKAb3PZtxmis8RBRYm6EFofUlowemg0uW8bqh6S14vtF+dm 50a6Rtq2tqk6
W7e0nvz6pKjGo9uPZAHpUy7a/Kdgua3+z/tVtVLD8z+fH959WGbabcvo8tas qtn/3v4H0Qd2
C1tWi29begK7lYqAb9M2V5WkjPWPqT805e2i/f+kUlB+bmpySrqmSWyTZbVJ fFsqQueW1tGE
Ad/mZv1uXRilBsCq0Q9G+eaZm/IqZuunH37667zaG7UiFmox9SozZc73u78X fyZ9O3WJk3gv
c7Vqme7S7rtjd819U1l+sGpQjeFN3Ja8FRs38NWAqGH1yurO7Z3XBq7Jki+m XyRuK+7yeKN/
abmwZbXmwcJx44jRtWymIuDbdM5VMUana0+LIZNJCuaxH3GaJkhB3or49Ozq MS72spQay2oT
Zfnbld+mLnRuaR1NGPBt2ahf55aWiWvjPZd/NE7At/kmV/2naTRhwLflwLfp +cCW9m3t0ilU
k7po1OtwK0hEn1D6xrc5kE3/aRr6Bvi2HNTPA5KzBreCxLcRSn+EHtlE3wDf lrP6Hd+REtKF
W0Hi2wilP0KPbKJvgG/LWf2O70gJKcKtIPFthNJnoUc20TfAt+WyftfvSAnc ChLfRij9HXpk
E30DfBuHN6BxAr4NAADfBoBvA3wbAODb8G0AJDbg2wAA34bGAY0T8G0AgJ7g 2wDwbYBvAwB8
G74NgMQmlIQeAPBtaBzQOAHfBgDoCb4NAN8G+DYAwLdxeAMgsQllkuUdPKYd AHxPLBbDtwHg
20CvUPKYdgCwJBqNBgIBfBsAvg00CiWPaQcAS4LBYDgcxrcB4NtAo1DymHYA MCM6EI1GxbQV
FhY6ePTtcnmufFFREQ9IDgQCYu15QDK+DbIcSh7TDgBxh+NQKOTscOxz3yY/ SmlpqerpLvOh
wWLwx8fHxeAXFxdj3fBtQCgBwJMS5G/fxsiSRJz9oQ4c7IFQAgC+LbP1cyVX Is4uYAEO9kAo
AQDfltn6uXNSIs5uGAMc7IFQAgC+LeO+jRjzs/CbA6EEAHxbpjTRxTNkqe9t 1YoqmbLwi3du
79z37j7znNYtrWrr1Surh/cOO6izZXOLqiHFr8CBJ8twjhPfBgDgT9/mbESa 3QWSGiqspbtS
MycvT9asqjmw88DDXx+6VTMHHh1gTCG+DQDAn77N2RWgslcFBQXl5eV9fX1P nz5Na28tT1Yd
+fiIWCiZ07a1TRaQ6dQ3p5rfblaLTQxP1K6ulTnPfn+mlj/fdD60PtSwruFc 47m4atXCg1WD
i6ZTazI1b2pOtFxi3aRQt6ZOyvOx+bMNZ6Us04kvT0z/8Zc3jbRFwm+Fq1dW y5KyUXyb/nAN
L74NAMCfvs3ZvcXNt7PLy8szPNxS/idVc6Ymp+T10r5L8lq/tl7NFCNlzJEl L7RckPKV3itj
/WNSEA9nrkEWHo+MH9h5IIm7Ms80ymfqz0jh1o+3ZJJC70e9yiBKeaRrZGF+ QZycpfnjwKMJ
S7wpNuDbAAB0922Lbt9bfIm+TRWMt8YpNPMCTQVNUpiPzcskhcYNjeYa1MLJ 3ZWlb6tdXWve
qLyVmQ3rGpRZTOUrpGJzQdubYgO+DQDAA77NmZKWlZVVVlaWlJTk5+fLqxws I5FIhnzb5OXJ
RIO1ML8gk/EvZyoWLXGm+X9SVe3Mkxnzksa2lujbSH0AfBsA4NtypqSGV0t3 fJsD3xb3P+lQ
9ZCUx/rH1P+k8jaJkVJ/too/m5qc6trRZV5yYniiZlXN/vf2P4g+MKq92H5x bnZupGukbWub
zOz/vF/NFOv2/M/nh3cfxrcB4NsAAN/mJc1ayvWk5usSjMsF1HUJqqxe5SN1 pYJyXepSA3Vd
gviq07WnxZDJJAV5G1eteRSarCIrSlU9u3puDN1YTLgPiHEu7cX0i5Nfn5QN qYtMRw+NysyZ
JzMDXw2IcZSFO7d3Xhu4ZvcVOPAA4NsAAN/mJc1yfW+zdps3DjwANB8AgGXn 21y8i2/7tvba
1bVqat3S6tGQcw9YAHwbAODbdITnyifCPWAB8G0AgG/TEWd38fU33AMWAN8G APg2HXF2F19f
wj1gAfBtAIBv84B1c/EuvtwDFgDfxo8AAPg2AAB8GwAAvg0AAN8GAPg2AAB8 GwAAvg0AAN8G
AIBvAwDAtwEAvg0AAN8GAIBvAwDAtwEAvg3NAgBAAwHAf77NxSe1AwB4iFgs hm8DAC/5Np7U
DgDLlmg0GggE+B0AwDO+jSe1A8CyJRgMhsNhfgcA8Ixv40ntALDcEK2LRqNi 2goLC3nCLwB4
ybct8qR2AFh+BAKBUCiEaQOA3PJfwo6QsOZvVV0AAAAASUVORK5CYII=
--------------030904090501090503030209--
|
|
|
Powered by
FUDForum. Page generated in 0.31728 seconds