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Abstract

Road traffic data are conventionally obtained by fixed-location detectors e.g., induction
loop coil sensors and closed-circuit television systems. However, these conventional on-road
sensors for traffic data collection cost highly both in installation and maintenance, and they
are only available in a limited part of the road network. Thanks to the current ubiquity
of cellular communication infrastructure, the mobile phone location data, obtained from
the cell towers, are an alternative to collect real-time on-road traffic data with low costs
for traffic management operations. In this paper, the classification of vehicle types is con-
sidered from the mobile phone location data that can be made available at the cell towers
whose locations are known. Considering data that can be mixed from mobile phones car-
ried by passengers in the different modes of urban transportation, this work deals with
the motorcycle, car, and Skytrain via the Simulation of Urban Mobility (SUMO) with
the Sublane model. The random forest, k-nearest neighbor, and support vector machine
algorithms are applied for the vehicle type classification. From the random forest and
k-nearest neighbor algorithms, the classification accuracies are greater than 85% and 80%,
respectively, with the cell tower inter-spacing less than 500 meters and greater than 80%
for the average classification accuracy for both random forest and k-nearest neighbor algo-
rithms. On the other hand, the support vector machine algorithm’s classification accuracy
is greater than 85% only in the case of 100 meters of cell tower inter-spacing. Since the
existing cell tower inter-spacing is typically in the order of 500 meters for the current 4G
mobile phone technology, and as lows as 100 meters for the upcoming 5G technology, the
SUMO-based finding in this paper suggests a clear potential of using this ubiquitously
available mobile phone data for the vehicle type classification and other subsequent travel
information extraction analysis in the future.

1 Introduction

Increasing traffic congestion in Bangkok is a severe problem that affects transportation
quality and vehicle fuel consumption as well as human health because of pollution from vehicle
emission. Traffic congestion is caused by many factors ranging from the lacking of efficient
urban plans, the increasing of vehicle population inadequately to available road capacity, and
the insufficiently informed traffic management. To alleviate the traffic problem, this paper is
concerned with the last factor, i.e., to find ways of providing new potential sources of traffic
data that can be used in real-time for traffic management operations.

Conventionally, traffic congestion and control management rely on sensor data from induc-
tion loop coil sensors and closed-circuit television (CCTV) systems [1]. Despite past research
showing the sensor and CCTV usage efficiency, the cost of installation and operating is still
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expensive, and their operational deterioration is a difficult burden. That is especially true for
areas with vast coverage like Bangkok or other metropolitan cities. Such high expenses thus
prevent the full deployment of those conventional sensors in countries with restrictive economic
constraints.

However, recent advances show another potential source of data by using the mobile phone
infrastructure that has already been made ubiquitous in urban areas. In this regard, based on
the cellular communication architecture, mobile user equipment must try to connect with the
neighbor base stations since the location of those base stations is known to the mobile phone
service providers, and the rough location of that mobile user equipment can also be extracted.
Mobile user equipment carried by passengers in moving vehicles can be used to infer about the
vehicle mobility and hence the overall traffic congestion status.

In the past, there exist researches that try to utilise data from mobile phone systems. In
[2], traffic data are obtainable by using mobile phone signals to reduce the service costs and
to increase the richness of the obtainable data. Particularly, the mobile phone location data
have been used to classify the road conditions into three traffic congestion levels, i.e., low,
medium or high congestion. In [3], the paper aims to approximate traffic volumes and the
number of commuters within each vehicle. Then, the travel mode is classified into drive-alone,
carpooling or bus usages. In [4], the information from both mobile devices and Bluetooth
signals have been used to detect moving vehicles and classify them into car, truck, and semi-
truck categories. In [5], by exploiting mobile phone location data, the congestion level can
be estimated and classified into fluency, light congestion and heavy congestion categories. In
[6], the paper handles the cellular phone location data to extract vehicle traffic flow rates. In
[7], the paper uses mobile phone location data to estimate the accuracy of travel time. In [8],
human mobility patterns are extracted from mobile phone location data for the development
of transportation planning purpose. In [9], the paper exploits the mobile device location for
traffic monitoring and compares the accuracy obtainable from a range of traffic data sources.

The existing researches have shown a promising potential to use mobile phone location
data for vehicle movement data extraction. However, the past researches have considered
not all plausible types of vehicles that may be present in many urban road networks. In
particular, to the best of our knowledge, there is not yet any consideration on the existence
of two-wheel vehicles like motorcycle, or rail transportation modes. These two transportation
modes are important both because of their usage popularity in many cities and their interesting
movement patterns that can affect the accuracy of the traffic data to be extracted. Research
in the scenario with various combinations of vehicle types, i.e., cars, motorcycles, and rails, is
believed worthwhile. To carry out this research, an efficient simulation platform that is ready
with the ability to mimic the movement of various vehicle types becomes an essence.

Fortunately, both the vehicle movements and the corresponding traffic data assumed avail-
able at mobile phone base stations can be simulated and generated via SUMO (Simulation of
Urban Mobility) (e.g. [10], [11]). As the first step, in this paper, we are interested to analyze
the simulated results to classify vehicle types. Vehicle type recognition is important in traffic
prediction because vehicle type classification can help filter out some data that are not relevant
to road traffic congestion. To estimate the congestion levels on surface road networks, the data
noises can be injected by the mobile phone location data from moving passengers inside the
so-called Skytrain, which is rail-mode transportation that runs on the up-lifted infrastructure
built separately high above the underlying road surface. Moreover, due to the smaller size of
motorcycle, the mobile phone location data from moving passengers driving motorcycles should
be considered with lower importance than cars. Without the classification, the travel time
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obtained from the mixed passengers of Skytrains, cars and motorcycles would result definitely
in data extraction inaccuracy.

This paper aims to investigate the factors that affect the accuracy of vehicle-type classifica-
tion algorithms. The vehicle types in this paper are car, motorcycle, and Skytrain. As the first
step, a single straight road is considered with regularly spacing traffic light signals sharing the
locations with the stopping station of Skytrains. From similar work with only subsets of vehicle
types considered therein, three interesting classification algorithms have been investigated (e.g.
[4]). In this research, we have selected to compare three standard algorithms, i.e., the random
forest, k-nearest neighbor, and support vector machine algorithms.

Random forest algorithm [12] is an ensemble method, developed by combining decision trees.
The decision tree algorithm is the supervised learning algorithm with a tree-like structure to
decide with each branch of the tree represents each condition. Instead of splitting all input
features for every tree, the random forest algorithm randomly selects the input features and
samples by using bootstrap to create the trees. The majority vote of all trees in the forest is
used for evaluation.

K-nearest neighbor algorithm [13] is the supervisor algorithm using for classification an
unknown class data. By using labeled training data, the k-nearest neighbor algorithm classifies
the class of unknown class data by considering k numbers of nearest known class data and take
the majority vote class to be class of the considered data.

Support vector machine algorithm [14] with a linear kernel, considered in this paper, applies
hyperplane, a linear combination equation, for classification. Thereby, the optimal hyperplane,
causing the highest accuracy, is chosen by the mathematics method to calculate the hyperplane
with the largest distance between the hyperplane and each class.

The influencing factors interested in this paper are the cell tower inter-spacing that affects
the level of data resolution obtainable; the traffic light signal inter-spacing, the number of
vehicles per hour and the length of green and red time intervals, all of which affect the overall
road congestion level.

In the remainder, this paper is structured as follows. Section 2 presents the problem formu-
lation. Section 3 then gives the experimental results and discussion. Finally, Section 4 provides
the conclusion.

2 Problem Formulation

In this paper, the road configuration is set up by using SUMO [10] version 1.4.0. One-
dimension road with 3 lanes 3-kilometre-long for car and motorcycle and another railway with
the same length for Skytrain are implemented as shown in Figure 1. This simplified network
topology allows then the vehicle’s behavior to be analyzed easily while still capable of simulating
the motorcycle penetrating behaviour on the lateral area between moving or stopping cars.
Traffic light signal inter-spacing and Skytrain station inter-spacing are varied from 500, 1000,
and 1500 meters which are chosen by the approximated length of the maximum and minimum
Skytrain station inter-spacing in Bangkok. The traffic light signal and the Skytrain station are
always in the same position to simulate the worst-case scenario when the data of mobile phone
from Skytrain, moving on the railway, interrupt the data of mobile phone from the vehicles on
surface road underneath with the same stopping points.

The whole 3-kilometer-length of the road is equally divisible by the traffic light signal inter-
spacing. So, the traffic light signal could be in-space periodically located. Additionally, cell
tower inter-spacing is varied to evaluate the effect of the classification accuracy at 100, 250,
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500, 1000, and 1500 meters. Moreover, the road with 3-kilometer-long is divisible by all cell
tower inter-spacing, resulting in the simple model of the cell tower locations.

Figure 1: Model with traffic light signal inter-spacing of 1000 meters and cell tower
inter-spacing of 500 meters

In practice, the cell tower radius of the 5G network is recommended to be less than or equal
to 50 meters [15]. So, the highest resolution in this paper is set for practical design as a cell
tower inter-spacing 2×50 or 100 meters. And the cell tower inter-spacing is varied to find out
the effect of the resolution.

The length of the green and red time intervals of the traffic light signals is varied according
to practical operational measurements in [16], which aims to observe the start-up lost time
in Bangkok. Specifically, the cycle length is set to a constant value at 230 seconds while the
green time is varied from 50, 100, and 150 seconds according to the minimum and maximum
green-time range in [16]. Although the standard yellow light is practically set to 3 seconds, this
state does not affect the traffic in Bangkok significantly so the yellow light can be ignored from
this computer simulation study. The teleported vehicle is neglected because the teleportation
in the simulation causes the missing of data which is not considered in this paper.

Table 1: The parameters of motorcycle and car for SUMO simulation

Vehicle Type maxSpeed accel decel width length latAlignment minGap

Motorcycle 12.5 4.0 4.0 0.5 1.9 compact 0.4

Car 12.5 2.0 2.5 1.78 4.62 center 2.37

Vehicle Type minGapLat lcSublane lcPushy lcAssertive lcLaneDiscipline

Motorcycle 0.05 10000 10 10 -

Car - 100 0 1 1
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Three types of vehicle considered in this paper are the car, motorcycle, and Skytrain, which
are represented by the vehicle type of passenger car, motorcycle, and rail urban in SUMO sim-
ulator. The motorcycle model has been adjusted using the Sublane model [17] with resolution
0.7 meter, the sub-lane width of 0.7 meters with the parameters as shown in Table 1. And the
ratio of cars and motorcycles is 0.56:0.44 which this ratio is based on the actual population of
those vehicle types in Bangkok [18]. These parameters are set for the motorcycle configuration
so the motorcycles could penetrate through the stopping cars alike what happens in reality.
The stop offset is set to 5 meters at all traffic light signals for the motorcycles to stop in front
of the car stopping line, simulating the stopping line layout in Bangkok, as shown in Figure 2.

Figure 2: Stopping behaviors of motorcycles, cars and Skytrains

The formulation assumptions of this paper are as follows: (1) The cell towers are assumed
to be installed alongside the road and be equidistant. So, the cell towers could connect to
the mobile devices located within the vehicles, moving along the street and the effect of cell
tower inter-spacing could be discovered. (2) The location data of mobile phone are only from
the mobile devices that are located within vehicles of 3 types, which are car, motorcycle, and
Skytrain. (3) A mapping ratio between the vehicles and the mobile phone is 1:1 to consider the
worst-case scenario for classification. For instance, if multiple mobile phones are originated from
a single Skytrain, then the location data of those mobile phones will become easily clustered
and distinguishable from the location data of mobile phones from cars and motorcycles. (4)
The mobile phones are connected to the closest cell towers to gain the highest intensity of
mobile phone signal. This is a custom design of cellular networking principle. Consequently,
the vehicle location could be implied by the mobile phone signal’s connected cell towers.

The data are collected from the SUMO simulator by using TraCI (Traffic Control Interface)
[19] in the form of the positions, time values, vehicle IDs, and vehicle types with 1 Hertz
sampling frequency for 2 hours in each simulation. From the criteria of this paper, the mobile
phone locations and the vehicle locations are considered as a 1:1 mapping; thus, the number of
mobile phones and the number of vehicles are the same. And the mobile phone locations are
supposed to be the same as those of the vehicles.

Based on TraCI data, the movement data of mobile phones are converted by a simple
programming logic to the cell tower IDs with time values where mobile phones are connected.
The conversion is follow the rule that each mobile phone could connect to one cell tower at a
time which is the closest cell tower. All these events are time-stamped in SUMO, reported in
TraCI, so finally the cell dwelled time at each cell tower can be calculated. Herein, to generate
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the data point for each vehicle traversing all the cell towers in its movement direction, the cell
dwelled time C at a given -th cell tower is computable from the difference between the first
timestamp that the cell first sees a mobile phone on its arrival and the last timestamp that the
cell last sees that mobile phone on its departure as shown in Figure 3.

Figure 3: Example of cell dwelled time calculation from simulation

Figure 4: Example of input features and output label from simulation

Figure 4 shows the data structure which included vehicle IDs, output label, and input
features, reconstructed from calculated cell dwelled time at each cell tower, which is prepared
for classification. To evaluate the vehicle types classification, the standard random forest, k-
nearest neighbor, and support vector machine algorithms are chosen. With the cell dwelled time
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at every cell tower (C for all ) as the input feature, and the vehicle type as the output label,
the problem of classifying vehicle types is here formed. To evaluate the classification algorithms,
the train-test split method has been used with the splitting ratio of 80% for training and 20%
for testing.

3 Results and Discussion

3.1 Vehicle Type Classification on One-dimensional Road Network

Table 2: Summary of main traffic parameters as defined in 6 congestion levels

Green Time (sec) Red Time (sec) Total Flow Rate Congestion Level

case 1 150 80 1400 0.072

case 2 100 130 1400 0.116

case 3 150 80 2800 0.143

case 4 50 180 1400 0.161

case 5 150 80 4200 0.215

case 6 100 130 2800 0.233

Table 2 shows the 6 cases of congestion levels of the motorcycle and car which are composed
of the length of green and red time intervals with 230 seconds of cycle time and the number
of vehicles per hour, including for both motorcycles and cars. However, the rate of Skytrain is
constant and set to 10 Skytrains per hour. The congestion level can be calculated by:

Congestion Level =
Red Time

Cycle Time
×

Total Flow Rate

Saturation Flow Rate
(1)

where the cycle time is 230 seconds and the saturation flow rate is 6800 vehicles per hour.
SUMO simulation has been carried for a week and its TraCI outputs have been processed

by Python classification codes. Figure 5 shows the relationship between cell tower inter-spacing
and classification accuracy. Each box represents the distribution of the simulation in each case
of congestion level, as shown in Table 2 with varying traffic light signal inter-spacing are varied
from 500, 1000, and 1500 meters. For the cell tower inter-spacing as the x-axis, the lengths of
100, 250, 500, 1000, and 1500 meters indicate the resolution of each classification algorithm.
Because the cell tower inter-spacing implies the precision of vehicle location, the cell tower
inter-spacing can be considered as the resolution of mobile phone location data availability.
The location of the individual vehicle could be estimated by using the cell tower inter-spacing
length together with the timestamp that each mobile phone connects with each cell tower.

From Figure 5, the classification accuracy is compared to each cell tower inter-spacing value
to observe its effects. The graph of each algorithm shows that the classification accuracy is
better in the shorter, hence higher in resolution, cell tower inter-spacing than a longer inter-
spacing case. This is because the low value of cell tower inter-spacing indicates a high precision
data for classification. And unsurprisingly, all the algorithms show this similar trend.
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(a)

(b)

(c)

Figure 5: Boxplot of classification accuracy for each cell tower inter-spacing from each
algorithm

In Figure 5(a), the random forest algorithm is employed to analyze the data for calculating
the classification accuracy. Among all of the algorithms in this paper, the random forest is the

8



Computer Simulation Study of Vehicle Type Classification Eosanurak, Wongtrakoon, Mon and Aswakul

best algorithm that predicts the highest overall classification accuracy. This algorithm provides
high classification accuracy with the cell tower inter-spacing lower than 500 meters which is in
the magnitude of design lengths of the installed cell tower in city urban areas. This observation
is also obtainable from Figure 5(b), for the k-nearest neighbor algorithm. However, the overall
classification accuracy of k-nearest neighbor algorithm is lower than that of random forest
algorithm. The classification accuracy from the support vector machine is shown in Figure
5(c). The support vector machine algorithm provides high classification accuracy just in the
case of 100 meters cell tower inter-spacing. In that case, the cell tower should be installed in
large numbers in order to achieve good classification accuracy comparable to the random forest
and k-nearest neighbor algorithms.

Table 3: Confusion matrix showing percentages of classification outcomes for different
algorithms

Predicted Outcomes

Random Forest Algorithm K-Nearest Neighbor Algorithm Support Vector Machine Algorithm

Motorcycle Car Skytrain Motorcycle Car Skytrain Motorcycle Car Skytrain

A
ct

u
al

C
la

ss Motorcycle 36.583 7.230 0.011 36.243 7.561 0.022 26.512 17.347 0.014

Car 8.226 47.405 0.004 10.670 44.954 0.012 6.941 48.653 0.006

Skytrain 0.050 0.026 0.462 0.044 0.027 0.0468 0.048 0.112 0.367

Table 3 shows the confusion matrix of overall classification accuracy for each algorithm.
From all of the algorithms, the Skytrain is the vehicle type that is most convenient to classify
with the lowest misclassification. This is because of the regularly scheduled and patternable
behavior which is independent of the traffic on the road. However, the vehicle types which affect
the classification accuracy by majority are the motorcycle and car. The overall classification
accuracies are 84.45%, 81.66%, and 75.53% for the random forest, k-nearest neighbor, and
support vector machine algorithm respectively. These classification accuracies are in overall
good enough for many applications. And, as demonstrated in Figures 5(a)-5(c), the accuracies
can be improved when the cell tower inter-spacing is shortened.

3.2 Vehicle Type Classification on Chula-SSS

To evaluate the classification accuracy in a more realistic road, instead of the one-
dimensional road, Chula-SSS, included the calibrated cars and traffic light signal, is chosen.
The motorcycles are added to Chula-SSS by the ratio of cars and motorcycles, based on the
actual vehicle types of vehicles in Bangkok, and the sublane model also set in Chula-SSS for
motorcycles. The Skytrains and the railways are added to Chula-SSS with the same schedule
and location as in Bangkok. By adding the motorcycles and Skytrains, Chula-SSS is simulated
for 30 times by using the SUMO simulator, and the data is collected by using TraCI in the
interested area as shown in Figure 6.

The collected data are converted to cell dwelled time by using the same logic as in a one-
dimensional road. The cell tower inter-spacing is varied from 100, 250, and 500 meters, and
located along the considered street. However, with the two-directional vehicle flows, the input
features are different for each vehicle flow direction, there are two input features for one cell
tower represented each vehicle flow direction. After that, random forest, k-nearest neighbor,
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Figure 6: Chula-SSS with cell tower inter-spacing 500 meters

and support vector machine algorithms perform for vehicle type classification with the tuned
hyperparameters from grid search with 5-fold cross-validation. For model evaluation, the train-
test split method has been used with the splitting ratio of 80% for training data and 20% for
testing data.

Table 4: Hyperparameters from brute-force optimally searching

Algorithms Hyperparameters

Cell Tower

Inter-Spacing (m)

100 250 500

Random Forest Algorithm
n estimators 100 100 90

max features sqrt 0.1 sqrt

K-Nearest Neighbor Algorithm n neighbors 7 17 17

Support Vector Machine Algorithm C 1 1 1

The tuned hyperparameters from grid search with 5-fold cross-validation of Chula-SSS sim-
ulated data, shown in Table 4, are determined to be the hyperparameters for each algorithm for
vehicle type classification. For the random forest algorithm, n estimators is the number of trees
in the forest, and max features is the maximum number of features, bootstrapped for each tree.
For the k-nearest neighbor algorithm, n neighbors is the number of the closet neighbors using
for classifying. For the support vector machine algorithm, C is the regularization parameter
from a squared ridge regression.

Figure 7 shows the boxplot of each algorithm at each cell tower inter-spacing. For the
random forest and k-nearest neighbor algorithms, the classification accuracy is more than 80%
with the cell tower inter-spacing less than or equal to 500 meters. However, for the higher the
cell tower inter-spacing value, the larger the variance of classification accuracy. For the support
vector machine algorithm, with the cell tower inter-spacing less than or equal to 500 meters, the
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classification accuracy is in the range between 70% and 80%. From 3 considered algorithms,
the random forest algorithm achieves the highest classification accuracy.

Figure 7: Boxplot of classification accuracy for each cell tower inter-spacing from each
algorithm from Chula-SSS

The random forest algorithm is the most complex algorithm among the considered algo-
rithms in this paper, with many bootstrapped trees. So, the complex relationship of the input
features can be detected and used as decisions for classification. For the worst algorithm, the
support vector machine algorithm with a linear kernel has the simplest logic to classify. By
using the hyperplane, maximizing the distance between the hyperplane and data points in a
high-dimensional axis, the linearly separated data points could be classified accurately. How-
ever, mobile phone location data in this paper are not linearly separated. So, the classification
accuracy from the support vector machine algorithm with a linear kernel is worse than the
others. For the k-nearest neighbor algorithm, k nearest neighbor data points are used for a
majority vote to classify. With the more complex logic than the support vector machine algo-
rithm with a linear kernel, the classification accuracy from the k-nearest neighbor algorithm is
higher. Compared to the random forest algorithm, the classification accuracy is lower, because
the random forest algorithm can capture more complex information from the input features.

4 Conclusion

This paper is concerned with the computer simulation study in an attempt to classify the
vehicle types of car, motorcycle, and Skytrain. The location data of mobile phones simu-
lated from SUMO are processed and submitted to 3 standard machine learning algorithms
i.e. random forest, k-nearest neighbor, and support vector machine algorithms. In Bangkok
traffic congestion evaluation problems, the Skytrain could be reckoned as the data noise be-
cause Skytrains do not affect the on-surface road traffic states to be observed. This paper
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shows that such noises can be distinguishable with ease. The results show also that the clas-
sification accuracy is highly influenced by the cell tower inter-spacing. Particularly, the lower
inter-spacing, the higher classification accuracy. Based on the simple one-dimensional road
network setting, the results suggest that the random forest and k-nearest neighbor algorithms
could be effectively utilized with the cell tower inter-spacing as large as 500 meters. On the
other hand, the support vector machine algorithm can be applied accurately with the cell tower
inter-spacing that must be as short as 100 meters. In addition, based on Chula-SSS [1] dataset,
the classification accuracy is lower than the one-dimensional road network. The random forest,
k-nearest neighbor, and support vector machine with a linear kernel algorithms are descend-
ingly ordered by the complexity. Due to the finding that the more complex the algorithm, the
higher the classification accuracy, the random forest, k-nearest neighbor, and support vector
machine with a linear kernel algorithms are descendingly ordered in classification accuracy. In
practice, the existing cell tower inter-spacing is typically in the order of 500 meters for the
current 4G mobile phone technology. And the cell tower inter-spacing can be designed as low
as 100 meters for the upcoming 5G technology. Hence, this SUMO-based finding suggests a
clear future potential of using the ubiquitously available mobile phone data for the vehicle
type classification and other subsequent travel information extraction analysis in the future.
To explore more detail about our work, all source codes and datasets are publicly available a
https://github.com/IoTcloudServe/smart-mobility-chula.
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