Towards a Mobilebased ADAS Simulation Framework

artificial intelligence and computer science laboratory

João Gonçalves et. al.

Universidade do Porto

Faculdade de Engenharia FFUP

May 15+16, 2014 - Berlin-Adlershof, Germany

Agenda

- 1. Background
 - 1.1. ADAS
 - 1.2. Mobile-based ADAS
 - 1.3. Distributed Mobile-based ADAS

2. Proposal

- 2.1. GeoStream
- 2.2. Driving Simulators
- 2.3. SUMO
- 2.4. Mobile-based ADAS
- 3. Preliminary verification
- 4. Conclusions & Future Work

1.1 Advanced Driver Assistance Systems (ADAS)

- Navigation Systems (GPS)
- Adaptive cruise control
- Blind spot detection
- Traffic sign recognition
- Intelligent speed adaptation

- Automatic parking
- Lane departure warning system
- Collision avoidance system
- Driver drowsiness detection

1.2 Mobile-based ADAS

- Huge number of mobile devices (increasing)
- A lot of unexplored helpful applications
- Easy and cheap setup
- Higher penetration

Fig. 1: Mobile-based ADAS

1.2 Testing Mobile-based ADAS

- How to test them safely and in a low-cost environment?
- Most simulation systems are complex or expensive! (Driving simulators)

1.3 Distributed Mobilebased ADAS

- Seen as a single ADAS by the user
- Send feedback to the network (requires connectivity)
- Improve the overall reliability of the ADAS

Fig. 2: Distributed ADAS (Waze)

1.3 Testing Distributed Mobile-based ADAS

How to test them?

 $(ADAS \text{ problems})^n$:(

2. Proposal

Fig. 3: Proposal's architecture

2.1 GeoStream (OSM Import)

- Create environments that resemble reality
- Seamless import from OSM to Driving Simulators
- However SUMO network import is more complex (JOSM? Proprietary-Open GIS?)

Fig. 4: Data import to Unity3D engine

2.2 Driving Simulators

- DRIS High-Fidelity Simulator
- IC-DEEP low cost simulator (Unity3D)
- Share the simulation state

Fig. 5: DRIS @ FEUP

Fig. 6: IC-DEEP @ LIACC

2.3 SUMO Coupling (Work in Progress)

Requirements

- Synchronize simulation state
- Coherent simulation representation
- Human-in-the-loop simulation
- Include ADAS testing capabilities

Challenges

- Allow latitudinal movement (lane "freedom")
- Possible communication bottleneck?

2.4 Mobile-based ADAS (GPS Mocking)

- Bound service receives
 socket communications
- Changes the device status
- Noticeable by all running applications (even Google Navigation)

Fig. 7: Mobile ADAS architecture

3.1 Preliminary verification (GeoStream & IC-DEEP)

- Real GPS logging driving at Porto's downtown.
- Cross-validate results in our simulator with Google Earth
- Reproduce the circuit in the simulator

Fig. 8: GPS logs analysis

3.2 Preliminary verification (ADAS testing)

UTIENT LIACC attificial intelligence and computer science laboratory

- Driving statistics meet those of the driving simulator (speed and distance)
- Successful coupling and usage of other system apps (Google Navigation)

Fig. 9: Developed test ADAS

4.1 Testing Mobile-based ADAS

- How to test them safely and in a low-cost environment?
- Most simulation systems are complex or expensive! (Driving simulators)

4.1 Testing Mobile-based ADAS

- How to test them safely and in a low-cost environment?
- Most simulation systems are complex or expensive! (Driving simulators)

Extend IC-DEEP with ADAS testing capabilities

4.2 Testing Distributed Mobile-based ADAS

How to test them?

(ADAS problems)ⁿ :(

4.2 Testing Distributed Mobile-based ADAS

How to test them?

(ADAS problems)ⁿ :(

Mobile-based ADAS Simulation Framework (SUMO + IC-DEEP extension + MAS)

4.3 Conclusions

- Successfully tested Mobile-based ADAS
- Testing Distributed Mobile-based ADAS is a challenge
 - Requires more integration & synchronization
 - Communication bottleneck with micro-simulators
- Coupling different simulators is desirable...
- ... to allow multifaceted simulations

4.4 Future Work

- SUMO coupling with IC-DEEP
- DRIS (High-Fidelity) Simulator integration
- Include behaviour elicitation through peer-designed agents
- Use the latter to implement a MAS and model cultural/geographical idiosyncrasies

Towards a Mobile-based ADAS Simulation Framework

MSc Student João S. V. Gonçalves

João S. V. Gonçalves, João Jacob, Rosaldo J. F. Rossetti, António Coelho and Rui Rodrigues

ADAS Interaction

1.2 Serious Games

"A mental contest, played with a computer in accordance with specific rules, that uses entertainment to further government or corporate training, education, health, public policy, and strategic communication objectives."

- Michael Zyda

INESCTEC

1.2 Serious Games - why?

- Conducting Human Factor Analysis
- Simulate Artificial Societies with behaviour elicitation through peer-designed agents

Fig. 10: IC-DEEP @ LIACC

Interesting questions...

- How does SUMO connect to multiple mobile devices?
- How much data preparation is needed for SUMO?
- Why Distributed ADAS pose a bottleneck in the simulation?