Table of Contents

1 RTSC Creation REVIEWDOCUWAcoieiiieeeee et 1
T 10T [T) P .
1.2 ExtensibleFrameworkandEXemplaryTOOIS.uueuiiiiiiiiiiiiieiieiiieieeeeeeeeee e 1
1.3 COMMUNITYSUDPOLL. ... eeeeeeeeeeette ettt e et e e e e e e s e et e e e e e e e e e e e e e e e s n e e e e e e e e e e nnnnees 2

R A B T V= (o] o 1T (@ 0 011 1/ 2
1.3.2 AQOPIEICOMIMUNITY......eeeeeeeeee e ittt e et e e e e s et e e e e s e e e e e e e e e e e e e e e e e e e annrnneees 3
RS IR B £7= T € o] 0 0 1011/ 3
R 0] = o T = L1 [L= PP K
IR 1V 1T o] (o] =TT OO PPUTTPT A
1.6 RoadmamndMaturity PIan............oooiiiiiiiii e 4
A O] o 0111 = =N
1.7.0 CONIIBULOIS. ..o e 5

1 RTSC Creation Review Docuware

1.1 Introduction

The RTSC project is focused on developing Eclipse tools for the development and configuration of C/C++
applications from components for highly constrained devices such as Digital Signal Processors (DSPs) and
micro-controllers. RTSC supports a C-based programming model for developing, delivering, and deploying
embedded real-time software components targeted for diverse highly resource-constrained hardware
platforms. To meet the size and performance constraints of DSPs and 16-bit micro-controllers, RTSC focuse
on development-time and configuration-time tooling to generate highly-optimized C/C++ applications. Unlike
typical Java runtimes, there is little to no infrastructure that needs to be pre-deployed onto a device for RTS(
to work. In addition to a component's C/C++ runtime code, each component includes code - written in
JavaScript - that runs both in the component's development environment during application assembly and ir
rich client platforms to monitor the execution of the C/C++ code within a deployed application.

The RTSC project will start from the current XDCtools product code base. XDCtools is a product from Tl tha
supports the creation, development, integration, and deployment of RTSC packages. This code base is
primarily written in Java or JavaScript and leverages some existing Eclipse components (SWT). While
XDCtools can be easily used within the Eclipse development platform, there a numerous opportunities to
simplify the RTSC development process by extending the Eclipse platform to become "RTSC aware". This
includes, for example, integration with CDT to create RTSC project wizards, enable multiple target support,
and simplify the debug experience.

The RTSC project scope will be limited to the creation of command-line tools, "infrastructure" components,
and plug-ins required to integrate with existing Eclipse projects. For example, rather than creating a new Ul
for developing and working with RTSC components, the RTSC project will provide appropriate CDT
plug-ins. Similarly, to enable higher-level UML design tools, additions to the core XDCtools infrastructure
may be required, but the RTSC project will not provide graphical editing tools where existing tools already
exist.

However, in cases where a graphical tool is critical to the ease use of RTSC and no similar tool exists, the
RTSC project will provide basic graphical tools. For example, we expect to provide a graphical configuration
tool for the assembly of multiple RTSC components into an executable. Community supplied replacements
will be encouraged.

Community response to the proposal has been positive but entirely hearsay; although the RTSC team has t
numerous positive discussions with a variety of interested parties, no public comments have been posted to
the RTSC newsgroup (yet).

1.2 Extensible Frameworks and Exemplary Tools

The starting point for the RTSC project is the XDCtools product from Texas Instruments. This product is
specifically designed to be independent of any specific C compiler toolchain, host development system, or
Software Configuration Management (SCM) system. In particular, these tools

« support a variety of non-TI compilers (e.g., GNU and Microsoft)
« are available on Windows, Linux, and Solaris host development platforms
« are used by development groups using Clearcase, CVS, and proprietary SCM systems.

To enable this independence and to support a diverse set of embedded applications, the XDCtools product

specifically designed to be extended by the development community along several dimensions. The
extensions enable the addition of

rl.2, 03 Apr 2008 Copyright Texas Instruments 2008. Released under EPL v1.0. 1

RTSC Project Creation Review rl.2

1. targets to enable use of alternative C compiler tool chains

2. platforms to enable creation of executables for custom hardware platforms
3. platform or domain specific embedded target content services

4. new RTSC component development tools

In each case, the extensions require the implementation of one or more well defined interfaces. Since some
these interfaces must be implemented on the embedded target and others are required on the developer's
workstation, these interfaces are specified using the RTSC Interface Definition Language (IDL) which can
simultaneously specify both "meta content” (code that runs on rich client platforms) and "target content" (coc
that runs on the embedded platform). For example, to support any new compiler tool chain, it is sufficient to
create a RTSC package containing a module that implements the xdc.bld.ITarget interface. On the

other hand, to make the xdc.runtime target content package thread-safe, it's sufficient to create a RTSC
package containing a module that implements the xdc.runtime.lGateProvider interface (using the

thread synchronization primitives provided by the RTOS that created the threads).

With few exceptions, the XDCtools code base itself consists entirely of RTSC packages created using the
XDCtools. This ensures that the XDCtools are regularly used by the developers of the tools and makes the
XDCtools product itself an exemplar of the RTSC component model. For example, the RTSC interface
xdc.bld.ITarget defines the boundary between all C compiler tool chains and the XDCtools product.

Using this interface, XDCtools contains built-in support for gcc, Tl, and Microsoft C compiler tool chains,
and this built-in support serves as exemplars for the addition of other tool chains.

1.3 Community Support

The XDCtools product is a foundational element of at least two major embedded software content products
from TI:

« DSP/BIOS - a real-Time Operating System (RTOS) for Digital Signal Processors (DSPs), and
» Codec Engine - a multi-media framework that enables portable reuse of high performance DSP
algorithms on a variety of platforms (including Arm-based Linux as well as DSP-based DSP/BIOS).

Together these products are actively being used by thousands of developers outside of Tl and have served
catalysts to grow a community of developers around the XDCtools. After all, most companies build products
out of components not component tools.

1.3.1 Developer Community

Together the DSP/BIOS and Codec Engine products are actively being used by thousands of developers
outside of Tl. As a consequence, Tl has a significant interest in ensuring that the development and evolutior
of these tools is adequately staffed. Moreover, Tl has an interest in encouraging the development of hew toc
as well as integration into the Eclipse platform. TI's latest release of its embedded development tools builds
atop the Eclipse platform.

To ensure robust future releases for existing users, key members of Tl's XDCtools development team will
form the initial set of committers. The current XDCtools development team currently consists of 5 full-time
XDCtools developers, two of which are technical leads. The initial committers and contributors are listed
below.

At this time, there is no diversity in the Developer Community. We are optimistic that as more and more

content becomes available, we'll be able to attract tools developers from outside Tl who will be able to
facilitate the use of this content and eventually the creation of new content.

rl.2, 03 Apr 2008 Copyright Texas Instruments 2008. Released under EPL v1.0. 2

http://focus.ti.com/docs/toolsw/folders/print/dspbios.html
http://focus.ti.com/docs/toolsw/folders/print/tmdmfp.html

RTSC Project Creation Review rl.2

1.3.2 Adopter Community

As mentioned above, there are several distinct areas were XDCtools is designed to be extended. At the curl
time, the only externally provided extensions are in the area of support for new targets and this has been
driven by customers who want RTSC embedded content products (such as Codec Engine) to support these
targets. As more RTSC content becomes available, we hope to see adopters who extend RTSC with new to
and application-specific embedded content.

For the most part, extensions of XDCtools to support new C compiler tool chains (such as uclibc) have beer
added by the XDCtools team. However, because the Codec Engine product provides services for both DSP
and General Purpose Processors (e.g., Arm), there is interest by the community to enable non-Tl and even
non-GCC based tool chain support. For example, with the help of the XDCtools development team,
Greenhills has created a package that allows developers to use the Greenhills C Compiler with the existing
XDCtools product. As more RTSC components such as the Codec Engine become available, we expect to ¢
a growing number of adopters who add support for alternative toolchains and platforms.

While the adopter community is relatively small, we expect that making the XDCtools available under EPL
will remove a significant adoption barrier posed by a proprietary Tl toolchain. For example, the RTSC team
has started preliminary discussions with Freescale about the possibility of using XDCtools for the
development of Freescale-specific target content. As with Greenhills, the only technical obstacle is the
creation of appropriate targets (which is possible today).

Beyond relicensing XDCtools under EPL, increasing the diversity of the developer community will greatly
help build the adopter community; companies are reluctant to adopt a technology that can be easily wrenche
or killed by a single competitor.

1.3.3 User Community

Since the XDCtools product is a foundational element of both the DSP/BIOS and Codec Engine products, tt
RTSC project will start with a very large and diverse user community. DSP/BIOS is a popular Real-Time
Operating System for DSPs and DSPs are found in a wide variety of applications. DSP/BIOS design wins
include cell phones and wireless infrastructure equipment, speaker phones, video surveillance equipment, a
even heart defibrillators.

The User Community can be roughly partitioned into two groups:

1. consumers who simply use RTSC components within their existing environment, and
2. producers who create new RTSC components.

While the popularity of DSP/BIOS has resulted in a large consumer user base, DSP/BIOS users are not
required to create RTSC components. On the other hand, the Code Engine requires all DSP algorithms usa
within its framework to be delivered as RTSC components. As a result, the increasing popularity of the Code
Engine is helping drive the number of component producers.

1.4 Collaborations

Although the XDCtools has several tools that leverage SWT, the development team has had little or no
discussions with other Eclipse projects. However, a major focus of the team for the next six months will be ©
improving the "development and debug experience" when using RTSC packages. Since Eclipse will be the
platform for debugging all embedded content from TI, the RTSC project team has recently started in-depth
architectural design reviews of how to best integrate with CDT.

As a result, we expect to become active participants in the CDT community. For example,

rl.2, 03 Apr 2008 Copyright Texas Instruments 2008. Released under EPL v1.0. 3

http://buildroot.uclibc.org/
http://www.ghs.com
http://www.freescale.com

RTSC Project Creation Review rl.2

« all RTSC target-side symbols follow a naming convention that includes the package name. From the
IDE we would like to allow the user to avoid having to specify package names for each symbol when
viewing memory, setting break points, etc.

* RTSC packages often contain support for multiple targets (e.g., Tl C6x, native Windows, and native
Linux), we would like to enable the package developer to specify the set of targets within a single
RTSC project that creates a deployable package.

« a key capability of the RTSC model is that it enables developers to create a configuration of multiple
components that "optimally" matches an application's needs. This requires a separate "configuration
step" prior to linking an application that uses the components, and we want to make it very easy to
add this configuration step (or its output) to existing CDT projects.

A second focus for the team is on Real-Time Analysis (RTA): the monitoring of the real-time execution of a
deployed embedded system. Although the XDCtools provides configuration support to ensure the runtime
footprint is small and efficient, XDCtools does not define standard interfaces for connecting and
communicating with an embedded target from a rich client platform. Here there is opportunity to leverage an
participate in the work of the Device Kit portion of the SODA project (which has similar needs for
monitoring) as well as the monitoring and data collection components of COSMOS.

1.5 Mentors

Doug Gaff and Martin Oberhuber

1.6 Roadmap and Maturity Plan

XDCtools is both mature and actively evolving. The XDCtools team currently operates on a weekly
integration cycle where a new engineering release is available almost every week. Major releases occur
roughly every 6 months with the feature list and focus determined by community feedback. Since DSP/BIOS
and Codec Engine users and developers currently make up the bulk of the community, these products often
define the near-term roadmap.

The current plan for XDCtools includes a major release, 3.10, in the July 2008 time frame with the following
enhancements:

1. Eclipse CDT project and debug integration

2. addition of a graphical configuration tool

3. Real-Time Analysis (RTA) and RTSC Object Viewer (ROV) infrastructure to enable monitoring of
deployed embedded targets

4. completely revamped user documentation

With each release, compatibility with previous releases is carefully managed. Except in rarely used parts of
the product, interface changes are required to be compatible with existing implementations. Existing
components must be "consumable" using a new release of XDCtools. In addition, components produced wit
a new release of XDCtools must be consumable by previous releases. These compatibility requirements are
currently tested by using an appropriate mix of versions of DSP/BIOS, Codec Engine, and XDCtools.

In parallel with this development, the RTSC team must vet the XDCtools code base through the Eclipse IP
process and transition from Tl internal SCM, bug tracking, and project management processes to the Eclips
development tools and processes. As a first milestone in this transition, our goal is to move the XDCtools
sources into CVS/Subversion by the end of this year.

We expect that a 1.0 release of the RTSC product will include the functionality planned for XDCtools 3.10

together with bug fixes and incremental improvements to the newly added capabilities. Our goal is to have
this release available as part of the June 2009.

rl.2, 03 Apr 2008 Copyright Texas Instruments 2008. Released under EPL v1.0. 4

RTSC Project Creation Review rl.2

1.7 Committers

The initial set of committers is listed below in order of their experience with the XDCtools code base.

« Dave Russo, PhD, Distinguished Member of Technical Staff, Tl
¢ Over 25 years embedded C experience, especially embedded Digital Signal Processors.
¢ Co-Creator of RTSC and technical lead. 8 years experience with XDCtools code base.
Original author of XDCtools product, and continues to review changes and lead its technical
evolution.
* Bob Frankel, Tl Fellow, TI
¢ Over 25 years embedded C experience, taught numerous University of California Santa
Barbara courses in compilers and databases.
¢ Co-Creator of RTSC and technical lead. 8 years experience with XDCtools code base.
Original author of the RTSC IDL and lead the development of the RTSC target runtime
model, and continues to lead technical direction.
 Sasha Slijepcevic, PhD, TI
¢ Recent University of California Los Angeles graduate (thesis in sensor arrays).
¢ 5 years experience with the XDCtools code base. Currently leads development and evolution
of the RTSC target and platform model (key extension points of the XDCtools), the
XDCtools runtime package (containing all the of embedded runtime code), and the IDL
generator.
» Jon Rowlands, Senior Member of Technical Staff, Tl
¢ 20 years DSP algorithm experience especially audio and video compression algorithms.
¢ 3 years experience with the XDCtools code base. Currently the XDCtools Engineering
Manager, original author of standalone RTSC configuration tool (configuro) and
documentation tool (cdoc), and technical lead of graphical configuration tool and RTSC
documentation tooling.
 Joe Cusano, software engineer, Tl
¢ 20 years GUI development experience especially Integrated Development Environments for
embedded DSP programmers and Engineering Analysis tools.
¢ 3 years experience with the XDCtools code base. Original author of the XDCtools repository
management tools (repoman) and current lead developer of the documentation tooling.

1.7.1 Contributors

« Amit Mookerjee, software developer, Tl
¢ 5 years experience high-performance DSP codec development.
¢ 6 months experience with XDCtools code base. Enhanced and unified error reporting within
XDCtools, created several prototype Eclipse plugins that add "RTSC package awareness" to
the Eclipse platform, and added meta-domain trace capabilities.

rl.2, 03 Apr 2008 Copyright Texas Instruments 2008. Released under EPL v1.0. 5

	Table of Contents
	1 RTSC Creation Review Docuware
	1.1 Introduction
	1.2 Extensible Frameworks and Exemplary Tools
	1.3 Community Support
	1.3.1 Developer Community
	1.3.2 Adopter Community
	1.3.3 User Community

	1.4 Collaborations
	1.5 Mentors
	1.6 Roadmap and Maturity Plan
	1.7 Committers
	1.7.1 Contributors

