
XDebug Support In PDT 2.0
Version: 1.0
Dave Kelsey

Latest Revision: 31 December 2008

This document provides an overview of the features and idiosyncrasies of
XDebug support in PDT (PHP Developer Toolkit)

1 Contents
1 Contents .. 2
2 XDebug Support User Guide ... 3

2.1 Determining the correct INI file to update .. 3
2.2 Required configuration of XDebug .. 3
2.3 Getting debug information. .. 5
2.4 Configuring XDebug support in PDT ... 6

2.4.1 Transfer Encoding ... 6
2.4.2 Output encoding ... 7
2.4.3 Step Filtering page .. 7
2.4.4 Workbench Options ... 7
2.4.5 Installed Debuggers ... 8
2.4.6 Multisession ... 10
2.4.7 Accept Remote Session (JIT) .. 10
2.4.8 Output Capture Settings .. 11
2.4.9 Proxy Support .. 12
2.4.10 Configuring your web browser ... 13
2.4.11 Testing your configuration ... 13

2.5 Debugging using XDebug ... 14
2.5.1 Debugging standalone scripts launched by PDT. .. 14
2.5.2 Debugging a web based application .. 16
2.5.3 Debugging using Remote Session initiation .. 22
2.5.4 Advanced Path Mapping .. 24

2.6 Breakpoint support .. 26
2.6.1 Conditional Breakpoint support .. 27

2.7 The debug views ... 29
2.7.1 Strings in the variables view .. 31
2.7.2 Hover ... 33
2.7.3 Expression view ... 33

2.8 Other known issues .. 34
2.9 Tips ... 35

2.9.1 Launch waiting for debug session ... 35
2.9.2 Watch Expressions returning Objects/Arrays .. 36

Page 2 of 36

2 XDebug Support User Guide
The following versions of XDebug are currently supported

• Official 2.0.0 – 2.0.3 releases
XDebug is available from PECL or http://www.xdebug.org, prebuilt windows
binaries are available and you need to select the appropriate version for the level
of PHP you are running. For Linux, you will need to download the source and
build it yourself. The instructions for this are on http://www.xdebug.org .
This website also provides loads of information about setting up xdebug and
issues with xdebug itself, please visit the website for more information.

2.1 Determining the correct INI file to update
For EXE launches, PDT will take a copy of the INI file stored in the same
directory as the PHP executable, create a copy and will use that copy. Make sure
that you add your Xdebug information to this INI file for launches.
For Web launches, you need to modify the INI file that is used by the version of
PHP that is executed by your web browser. You can determine this file by
invoking a simple script with the following contents
<?php
phpinfo()
?>

and look at the output, specifically the line
Configuration File (php.ini) Path => C:\WINDOWS\php.ini

Which indicates the ini file being used.

2.2 Required configuration of XDebug
The following minimal configuration is required for XDebug in your PHP.INI file if
you are using the thread safe, non debug version of PHP (This is the default
build for the windows binary version on PHP.net).
[xdebug]
xdebug.remote_enable=1
xdebug.remote_host=<hostname>
xdebug.remote_port=<port>
xdebug.remote_handler="dbgp"
zend_extension_ts=<xdebug library location>

Where

• <hostname> is the name of the host where your IDE will be running

• <port> is the port you have configured your IDE to listen on (9000 is the
default)

An example set of entries may look like
[xdebug]

Page 3 of 36

http://www.xdebug.org/
http://www.xdebug.org/

xdebug.remote_enable=1
xdebug.remote_host="localhost"
xdebug.remote_port=9000
xdebug.remote_handler="dbgp"
zend_extension_ts="C:\php\php_xdebug-2.0.0-5.2.2.dll"

Ensure you place your entries at the bottom of your ini file or XDebug could fail to
load.
You may need to change the “zend_extension_ts” to “zend_extension” if you are
using the non thread safe version of PHP or to “zend_extension_debug” if you
are using the debug version.
To determine if Xdebug has been located successfully, you can either

• launch PHP with the –m option to list the loaded modules

• launch PHP with the –i option to output definition information

• run a PHP script which calls the “phpinfo()” function.

With the –m option you should get something like
[PHP Modules]
bcmath
calendar
...
...

[Zend Modules]
Xdebug

With the –i option and phpinfo you should be looking for the following entries
This program makes use of the Zend Scripting Language Engine:
Zend Engine v2.1.0, Copyright (c) 1998-2006 Zend Technologies
 with Xdebug v2.0.0, Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, by Der
ick Rethans

As well as information about the XDebug extension and its configuration settings.
xdebug

xdebug support => enabled
Version => 2.0.0

Supported protocols => Revision
DBGp - Common DeBuGger Protocol => $Revision: 1.125 $
GDB - GNU Debugger protocol => $Revision: 1.87 $
PHP3 - PHP 3 Debugger protocol => $Revision: 1.22 $
…
…

Page 4 of 36

If you don’t get this and you are sure the path is correct then you need to make
sure you have the correct entry for zend_extension in your PHP.INI file. When
you do PHP –i or run a script with phpinfo() in it you need to look for 2 entries
Debug Build => no
Thread Safety => enabled

The above output shows a non debug build that has thread safety so you should
use “zend_extension_ts”.
If thread safety was “disabled” then you should have the php.ini entry of
zend_extension=<xdebug library location>

if it was a debug build you need to have the entry
zend_extension_debug=<xdebug library location>

If you are running a thread safe debug version of PHP, then your ini entry must
be of the form
zend_extension_debug_ts=<xdebug library location>

In summary the rule is (in the stated order)
1. start with “zend_extension”
2. if you have a debug build: Debug Build => yes , add “_debug”

3. if you have thread safety: Thread Safety => enabled , add “_ts”

2.3 Getting debug information.
XDebug can generate a log which is useful for debugging. To enable logging you
need to add the following line to php.ini
xdebug.remote_log=<file location>

Page 5 of 36

2.4 Configuring XDebug support in PDT
PDT has a preference page for debug which allows you to configure various
aspects of the debug environment. These options are also available on a project
specific basis. An example of this dialog is shown here.

You should change the “PHP Debugger” option to XDebug to ensure that
XDebug is selected as the default debugger.

2.4.1 Transfer Encoding
Variable data is transferred to and from PDT in bytes and the bytes have
character meaning. This defines the code page of these character bytes so that
they can be correctly displayed in PDT when converted to Unicode strings and
correctly converted to appropriate bytes when updating a variable in PHP. Most
of the time UTF-8 will be the correct encoding to use.

Page 6 of 36

2.4.2 Output encoding
Output from the PHP is in bytes. In order to display these bytes in the Browser
Output view and the Debug Output view, the data must be converted to Unicode
strings. Output encoding defines the character meaning of the output in PHP so
that the data can be displayed in these PDT views.

2.4.3 Step Filtering page
XDebug currently doesn’t support this configuration option

2.4.4 Workbench Options

• Allow multiple debug sessions has no effect on XDebug support

• Open in Browser has no effect on XDebug support

Page 7 of 36

2.4.5 Installed Debuggers

Port 9000 is the default for XDebug, but it will depend on how you have
configured XDebug in PHP.INI
There are some specific XDebug options as well, to change these select
“XDebug” in the “Installed Debuggers” panel and press the Configure button.

Page 8 of 36

Item Description
Debug port Corresponds to the value you specified

for “xdebug.remote_port” in PHP.INI

Show super globals in variable view Display the super globals in the variable
view when debugging

Max array depth Defines how much data is retrieved on a
single request for nested arrays. This
doesn’t restrict the depth that can be
displayed, just how much information is
retrieved per request to XDebug.

Max Children Defines the maximum number of array
children or object properties that will be
initially retrieved. This doesn’t restrict
showing all the entries, just the number
of entries retrieved per request.

Page 9 of 36

2.4.6 Multisession
There are times when a developer will want to debug multiple PHP scripts for the
same application simultaneously. In PDT you can only have a single web server
debug session running (with associated path mappings) so multisession allows
multiple debug sessions to run under a single application launch thus allowing a
developer to debug multiple sessions at the same time.

2.4.7 Accept Remote Session (JIT)
There are many scenarios where you want to debug an application but don’t
want to do this via launching a php web script or php script from PDT itself. For
example

• You want to use the Firefox XDebug extension to enable/disable debug
mode for a web page and drive the application from your web browser
yourself.

• You may want to run a script from the command line on a different
machine and debug it on your local machine

• You want to use the JIT support of XDebug (xdebug.remote_mode=jit) to
force the IDE to go into debug mode when an error condition occurs.

There could be other scenarios as well where this could be useful. You can
configure the “Accept Remote Session” option with one of the 4 possible choices

• Off – any remote session request is rejected

• Localhost – only remote sessions initiated from the localhost are accepted

• Any – any remote session from any machine is accepted

• Prompt – prompt the user that a remote session initiation has been
requested and for the user to accept or reject it.

Any remotely initiated session will be assumed to be a Web server based
initiation, and thus only one debug session can exist within PDT (however you
can make use of multisession support to allow for multiple sessions, but
remember that they will share the same path mappings). If you want to have
multiple command line debug sessions then you need to set the environment
variable DBGP_COOKIE to a unique number for each separately running
command line php script.

Page 10 of 36

2.4.8 Output Capture Settings
Output Capture allows you to collect output from your php script and display it in
the Debug Output view and the Browser Output view. The options available are

• Off – no information is captured, nothing will be displayed in the views
(output from a php script, a non web page script, will still be displayed in
the console)

• Copy – information will be captured and displayed in the views. Also
output from the php script, a non web page script, will also be displayed in
the console

• Redirect – information will be captured and displayed in the views.
Redirect should stop output from the php script being displayed in the
console as well, but as of XDebug 2.0.3 there is a bug which means
redirect works the same as copy.

The capture option for “stderr” currently has no effect as of XDebug 2.0.3. In the
future xdebug may make use of output capture on stderr such that you can
control the capture of messages from the php error handler (the error handler
outputs notice/warning/error messages).

Page 11 of 36

2.4.9 Proxy Support
PDT 2.0 supports the use of a DBGp Proxy. The proxy allows multiple
developers to debug a single or multiple applications on the same web server.
PDT 2.0 only supports the ActiveState DBGp Proxy.
To enable support for a proxy, check the use proxy box. The IDE Key is
automatically generated but it is important that all IDEs that register with the
proxy have a unique IDE key.
Finally you need to enter the address of your configured proxy. For example if
your proxy is configured on your machine listening for IDE connections on port
9001, then enter “127.0.0.1:9001”.
One important point, if you are running the proxy on your machine you must
ensure that PDT XDebug port is not the same as that of the proxy ports. The
proxy uses 2 ports, one for listening for debug connections from php and xdebug
(default 9000), and the other is for IDE connections (default 9001).

In the above example, each IDE has had the xdebug port changed to listen on
port 9002. The proxy is listening on port 9000 for debug connections and port
9001 for ide registrations.

Page 12 of 36

Web
Server

Proxy

IDE 1
listening
on 9002

IDE 2
listening
on 9002

Debug connection
on port 9000

IDE
registration
on port 9001

IDE
registration
on port 9001

Debug
connection
on port 9002

2.4.10Configuring your web browser
In PDT you can choose which browser is used and whether to have a window
inside of PDT for your web browser or for it to run as an external application. You
configure this in WindowsPreferences and select “Web Browser”

2.4.11Testing your configuration
It is highly recommended that you do a debug EXE and/or Web launch of a script
containing
<?php
phpinfo()
?>

and review the output to see if xdebug is loaded correctly as described in section
2.2.

Page 13 of 36

2.5 Debugging using XDebug
PDT can be used to debug standalone php scripts as well as web based php
applications. You can use PDT to launch the standalone script or web based
application, or you can get PDT to switch to debug mode when an application
requests to be debugged (using something like the XDebug Firefox extension to
enable xdebug for web applications, or by enabling xdebug on the command line
for the CLI script).

2.5.1 Debugging standalone scripts launched by PDT.
You will need to define a PHP Executable location. In preferences, select PHP
Executables and press the Add… button to get the following dialog

Ensure you have selected the PHP debugger as XDebug and define the path to
where you have PHP with XDebug setup.
You can either create a new PHP script launch in the Debug Configurations
panel, or you can select the script in your workspace and invoke the “Debug As
PHP Script” context menu.

Page 14 of 36

2.5.1.1 Disconnecting while debugging a script
Disconnect will terminate the debug session, but the script will run to completion.
In order to disconnect a script, you need to ensure that the top level launch
(guessAgain in the example below) or the entry beneath called “PHP Application”
is selected in order to activate the disconnect button.

Page 15 of 36

2.5.2 Debugging a web based application
PDT supports different scenarios for this, allowing you to debug an application
locally on your machine to debugging an application on a remote web server, but
one fundamental requirement is that the same level of code is available to PDT
that is being executed by the web server. You can achieve this in many ways, for
example

• Point your local web server document root to your workspace or a project
in your workspace

• you can use eclipse to create links to local files or folders and make them
part of your PHP project

• You could look at Remote System Explorer from the eclipse Target
Management project to share files across different systems

Unless you have chosen the 1st option, your web server and PDT may use the
same file, but its path will not be seen as the same. To address this, a concept
called path mapping is used. Path mapping is about trying to automatically locate
the local file that PDT should display to the user based on the file that is being
executed by the Web Server. The filename will be the same but the path qualifier
will be different so rules are needed to convert from the Web Server path to the
PDT path and vice-versa. Path mapping will be discussed later, PDT does
attempt to generate path mappings automatically for you but there may be
occasions where you need to do some manual configuring.

Page 16 of 36

2.5.2.1 Define your Web Server
You will need to define your server to PDT. PDT has a default web server defined
as http://localhost but this may not be what you want. To define a new server Go
to “Preferences” in the “Window” drop down menu, expand PHP and select PHP
Servers

Press New to add a new Web Server with the appropriate base URL for that
server, eg http://myserver.com:8080 and press Next.
Here you see the path mapping tab where you can define the path conversion
between your web server and PDT. Unless you get a problem you shouldn’t have
to provide your own configuration here.
Press Finish to complete the server definition.

Page 17 of 36

http://myserver.com:8080/
http://localhost/

2.5.2.2 Create a PHP Web Page Launch
You can do this in 2 ways, either in the Debug Configurations dialog or you can
using the “Debug AsPHP Web Page” pop up menu. Either way the most
important thing here is that the php script you have selected or entered into the
dialog matches the script that will be executed when the particular URL that you
have also provided is invoked by a Web Browser. This is how PDT creates the
path mapping information for you. Getting this wrong could result in PDT showing
the wrong file or no file at all.
The Debug AsPHP Web Page is rather limited in what you can enter, so it is
recommended you use the Debug Configurations to define your launch.

In the above example I have defined my launch and configured the URL myself
by removing the “Auto Generate” option.
Note that for Xdebug, the Advanced tab options have no effect.

Page 18 of 36

2.5.2.3 Debugging the web application
The application is driven through a web browser. The type of browser and
whether it is internal (ie a view inside of eclipse) is defined under the Window
Preferences in the “Web Browser” entry under “General” Section.
If you have problems trying to get the internal view to work, then you can change
to using an external browser.
As your application is driven through a web browser and XDebug works by
saving a persistent cookie to your web browser to ensure that multiple requests
and redirections/links to other scripts still continue to be debugged, you can only
ever have a single Web launch active at any one time.
When a debug session is waiting for the next request to be processed and be
debugged your Debug window will look like this

Page 19 of 36

When debugging a script you should see something like this in the debug window

Whenever a request completes, the Web launch debug will remain active waiting
for the next request to be debugged until you explicitly stop the debug session by
terminating it, ie by selecting either the PHP Web script launch, the “Remote
Launch” child entry, or the “PHP Thread” child entry and press the red button.

Page 20 of 36

2.5.2.4 Disconnect
You can disconnect a web launch at any time by selecting either “PHP
Application” or the higher level parent which is the name of the launch
configuration itself (In the example below it is “Guessing Web”).

When you disconnect from a web launch, the web launch remains active but
stops the script that is currently being executed by your web server. Your
browser will still have the XDebug cookie registered which means if you go to
that browser press enter or return back to the original launch URL, you should
still be in debug mode and eclipse will receive a new debug session initiation.
This is different to terminate which will stop the script from running, but also send
the stop URL to remove the XDebug cookie from the browser (and thus stop
xdebug from debugging further from that browser) and it also terminates the web
launch.

Page 21 of 36

2.5.3 Debugging using Remote Session initiation
First enable Remote Session Initiation in the xdebug preferences page. With that
done you can use something like XDebug Firefox extension to turn on the
XDebug cookie which will cause xdebug to start debug sessions or turn on
xdebug JIT support.
If you specify “prompt” for Remote Session Initiation, then when a request comes
in a dialog will be displayed

Select yes to accept this session, or no to reject.
When a session is accepted, it is very likely that a path mapping will be required
because PDT is not sure which file it needs to work out the path mapping from.
PDT is likely to prompt with a dialog similar to the following

here you select the appropriate file which should be used based on the current
script that is being executed by the server (in this case
c:\htdocs\PhpCode\guessingWeb.php). In my example I have 2 copies in my
PHPCode project and I should select the correct one.

Page 22 of 36

The above will result in a debug session which is like a PHP Web Page launch
being invoked.

Note that the launch is showing as <unknown> as it did not originate from PDT.
You can also use Multisession support as well.

2.5.3.1 Remote Session with CLI PHP
If you are launching CLI PHP scripts remotely and you want to use Remote
Session Initiation, then this is possible as well, first you need to set or export the
Xdebug IDE Key as follows
export XDEBUG_CONFIG="idekey=ECLIPSE_DBGP"
or
set XDEBUG_CONFIG="idekey=ECLIPSE_DBGP"
(or if you are using the proxy, enter your unique idekey defined in the
preferences).
And you also need to set or export a DBGP_COOKIE integer value, for example
export DBGP_COOKIE=1223
or
set DBGP_COOKIE=1223
Doing this ensures that PDT recognizes this is a CLI PHP invocation. The value
used can be anything.

2.5.3.2 Path Mapping
No correlation is made between defined PDT Servers and the server that initiated
the remote debug session. Because of this, there is no initially defined path
mappings available and are created as needed during the debug session. Once
the debug session is terminated, those path mappings are lost.

Page 23 of 36

http://www.xdebug.org/docs/all_settings#idekey
http://www.xdebug.org/docs/all_settings#idekey

2.5.4 Advanced Path Mapping
As described before, the concept of path mapping is to try to match the script
executing on the server with a script that PDT can access. The scripts that PDT
can access must be identical to those stored on the server and also the directory
structure should also be the same. XDebug needs to know the fully qualified
name of the file to place the breakpoints on, but the breakpoints are placed on
the files in PDT which are not the same files so a remapping must occur. Also
when you want to step through a file, you want the script that is currently being
run by the web server so again a mapping must occur and the correct file can
then be loaded.
As previously described, PDT creates path mapping information from different
sources. One is from the PHP Web Page launch which maps the file executed
when the URL is invoked to that of the script file listed in the launch. Another is
when PDT prompts you to specify which file to select when in a debugging
session (seen when doing remote session initiation).
Finally you can modify path mapping yourself for server. Go into Preferences,
select PHP Servers and edit your particular server and select the path mapping
tab

In the above example, we see a path mapping between a real directory and an
eclipse workspace project which was automatically generated by PDT but could
have been entered manually as follows

Page 24 of 36

Path Mappings will also work between different operating systems for the server
and the PDT user. The server could be linux and PDT could be windows.

Page 25 of 36

2.6 Breakpoint support
Breakpoints work in a similar manner to other IDEs and languages. It is best to
add breakpoints before you run your script or web application or add new break
points when your script is suspended due to a break point or you are stepping
through code.
Break points added to a file while a script is not running will not be noticed until
your script suspends due to an already existing break point. In other words if you
are blocked in your script (for example a blocking function call such as fgets) or
you are in a long loop, any break points you add will not be honoured. So you
cannot for example attempt to stop a script from running a long loop by putting a
breakpoint on a line within that loop.
Any break point added to a file while a script is actively running (in the case of a
Web launch this will be while the request is running) and not suspended, are
deferred until the script is suspended. If the script ends or the request ends then
the breakpoints will be installed before the script is run or another request is
processed.

Page 26 of 36

2.6.1 Conditional Breakpoint support
There are 2 types of conditional breakpoints supported

• Hit counts

• Expression evaluation
You set a condition of a breakpoint by bringing up the popup menu for an existing
breakpoint and selecting “Breakpoint properties…”. This will bring up a dialog box

Where you can set the condition

Page 27 of 36

2.6.1.1 Hit counts
You can control when a breakpoint will suspend a script based on the number of
times the line where the breakpoint is set is executed. There are 3 types of hit
count you can specify

expression Behaviour
hit(== x) Suspend when you execute this line for the ‘x’th time only

hit(>=x) Suspend when you execute this line after but including the ‘x’th
time

hit(%x) Suspend when you execute this line every ‘x’th time

So for example if you want a script to suspend every 10th time a specific line is
executed, you would enter into the condition box

hit(%10)

2.6.1.2 Expression evaluation
This allows you to control when a breakpoint will suspend a script when an
expression evaluates to true. So for example when a counter variable exceeds a
given number, you may wish to have the script suspend. An example of the
expression you would enter into the condition box is

$counter >= 20

Page 28 of 36

2.7 The debug views
Apart from the source file, the other important views while debugging are the
Stack frames and the variables view. Only when the script or request is
suspended will these views display anything.
Variables are only visible at a certain stack level so when you select a different
stack level of your suspended script you will see the list of variables change.
Some variables will be common such as globals and super globals (if you have
chosen to have super globals be shown in the variables view)
The following shows executing scripts, which include their stack frames

The list of variables and their values exposed for the selected stack frame

The variables view also has a useful find facility from the popup menu

Page 29 of 36

So an example of the find dialog is

Page 30 of 36

2.7.1 Strings in the variables view
In PHP, strings can represent binary data or character data. Also strings can be
very large in PHP. To accommodate this, the way strings are presented in the
variables view has been changed for PDT 2.0.

In the above example the $str shows a single line representation. Underneath
you have the current length of the string and in brackets the true length of the
string. The above is saying that the complete length of the string is 16890 bytes,
but only the first 1024 bytes are being shown here. Following that you can get a
byte view of the string split into blocks

you cannot change individual bytes however.
The final part is the view is the string in a multiline view.

Page 31 of 36

If however you need to view the complete string, then you can get the complete
string by selecting the string and invoking “Change Value…” on the popup menu

Then press cancel so that you don’t change the value (unless you want to of
course), and you will now see the $str value has changed in the variable view to
include all the contents of the string.

Page 32 of 36

2.7.2 Hover
While suspended you can select an entry in the stack frame and it will show you
the file and highlight the line it is at (so long as the file is part of your workspace).
You can place your mouse over variables and if they are within scope the
contents of that variable will be highlighted

2.7.3 Expression view
You can also create expressions in the expression window which will be
evaluated and displayed whenever your script or request is suspended.

One quick way to add a variable to the expressions window is through the watch
pop up menu item. To do this highlight a variable (include the $), you can do this
by double clicking the variable, bring up the pop up menu and select “watch”

2.7.3.1 Issues with Expressions
The PDT expression evaluator uses “eval” to determine the expression. This
makes it powerful but can also cause the script you are debugging to suddenly
terminate. The reason for this is that every time a script is suspended, all enabled
expressions are evaluated at the current context. If you try to invoke functions in
an expression and that function is not available then the script will terminate and
you will see a dialog

Page 33 of 36

If you are getting this error then you may have to disable your expressions to
stop your script from terminating.

2.8 Other known issues
• Currently it is not possible to change the type of a variable when you

change its contents. For example you cannot change a boolean to a string
or an integer/float to a string. You can change a string to a number and
you can interchange between integers and floats

Page 34 of 36

2.9 Tips

2.9.1 Launch waiting for debug session
You have done a launch but you find that you aren’t debugging and the launch
status window shows that the application is still launching. You can still interact
with the script but you cannot debug. This can occur when

• A PHP script launch or PHP Web Page launch is done but you either have
no XDebug information defined in your INI file or the XDebug information
doesn’t contain the correct Server, Port or debug protocol.

• A PHP script launch produces a firewall pop-up which you have missed or
denied

• A PHP Web Page launch but either the web server is not running or the
defined URL in the launch is incorrect

You will see the following at the bottom right of your IDE. You can click on the
very right icon to bring up the launch view for more information

You can terminate the debug session in the usual ways, as well as terminating
the launch from the launch view.

Page 35 of 36

2.9.2 Watch Expressions returning Objects/Arrays
Watch expressions are evaluated and the results are returned. If your expression
returns and array of data (for example when you watch something like
get_include_files()), there is no variable defined to hold the results in PHP.
xdebug by default returns only the 1st 32 elements of the array which is why you
can see this information in the watch. However when you try to expand the next
set of elements it needs a way to query the next set of elements, and there is no
way to do that as there is no variable in PHP which is holding the results. It is
also not possible to re-evaluate the expression and get it to pass the next set of
elements.

One way round this is to use the “Max Children” preference option. This would
control the amount of information xdebug would send back when querying
information about arrays/objects such that if you set this value to say 100 it would
transfer 100 elements back on each request (and that show up as array chunks
of [0-99] [100-199] etc, and for the watch expression you would set it to a value
such that all the information you require will appear in the first block.

END-OF-DOCUMENT

Page 36 of 36

	1Contents
	2XDebug Support User Guide
	2.1Determining the correct INI file to update
	2.2Required configuration of XDebug
	2.3Getting debug information.
	2.4Configuring XDebug support in PDT
	2.4.1Transfer Encoding
	2.4.2Output encoding
	2.4.3Step Filtering page
	2.4.4Workbench Options
	2.4.5Installed Debuggers
	2.4.6Multisession
	2.4.7Accept Remote Session (JIT)
	2.4.8Output Capture Settings
	2.4.9Proxy Support
	2.4.10Configuring your web browser
	2.4.11Testing your configuration

	2.5Debugging using XDebug
	2.5.1Debugging standalone scripts launched by PDT.
	2.5.1.1Disconnecting while debugging a script

	2.5.2Debugging a web based application
	2.5.2.1Define your Web Server
	2.5.2.2Create a PHP Web Page Launch
	2.5.2.3Debugging the web application
	2.5.2.4Disconnect

	2.5.3Debugging using Remote Session initiation
	2.5.3.1Remote Session with CLI PHP
	2.5.3.2Path Mapping

	2.5.4Advanced Path Mapping

	2.6Breakpoint support
	2.6.1Conditional Breakpoint support
	2.6.1.1Hit counts
	2.6.1.2Expression evaluation

	2.7The debug views
	2.7.1Strings in the variables view
	2.7.2Hover
	2.7.3Expression view
	2.7.3.1Issues with Expressions

	2.8Other known issues
	2.9Tips
	2.9.1Launch waiting for debug session
	2.9.2Watch Expressions returning Objects/Arrays

