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2 XDebug Support User Guide
The following versions of XDebug are currently supported

• Official 2.0.0 – 2.0.3 releases
XDebug is available from PECL or http://www.xdebug.org, prebuilt windows 
binaries are available and you need to select the appropriate version for the level 
of PHP you are running. For Linux, you will need to download the source and 
build it yourself. The instructions for this are on http://www.xdebug.org .
This website also provides loads of information about setting up xdebug and 
issues with xdebug itself, please visit the website for more information.

2.1 Determining the correct INI file to update
For EXE launches, PDT will take a copy of the INI file stored in the same 
directory as the PHP executable, create a copy and will use that copy. Make sure 
that you add your Xdebug information to this INI file for launches.
For Web launches, you need to modify the INI file that is used by the version of 
PHP that is executed by your web browser. You can determine this file by 
invoking a simple script with the following contents
<?php
phpinfo()
?>

and look at the output, specifically the line
Configuration File (php.ini) Path => C:\WINDOWS\php.ini

Which indicates the ini file being used.

2.2 Required configuration of XDebug
The following minimal configuration is required for XDebug in your PHP.INI file if 
you are using the thread safe, non debug version of PHP (This is the default 
build for the windows binary version on PHP.net).
[xdebug]
xdebug.remote_enable=1
xdebug.remote_host=<hostname>
xdebug.remote_port=<port>
xdebug.remote_handler="dbgp"
zend_extension_ts=<xdebug library location>

Where 

• <hostname> is the name of the host where your IDE will be running

• <port> is the port you have configured your IDE to listen on (9000 is the 
default)

An example set of entries may look like
[xdebug]
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xdebug.remote_enable=1
xdebug.remote_host="localhost"
xdebug.remote_port=9000
xdebug.remote_handler="dbgp"
zend_extension_ts="C:\php\php_xdebug-2.0.0-5.2.2.dll"

Ensure you place your entries at the bottom of your ini file or XDebug could fail to 
load.
You may need to change the “zend_extension_ts” to “zend_extension” if you are 
using the non thread safe version of PHP or to “zend_extension_debug” if you 
are using the debug version.
To determine if Xdebug has been located successfully, you can either

• launch PHP with the –m option to list the loaded modules

• launch PHP with the –i option to output definition information

• run a PHP script which calls the “phpinfo()” function.

With the –m option you should get something like
[PHP Modules]
bcmath
calendar
...
...

[Zend Modules]
Xdebug

With the –i option and phpinfo you should be looking for the following entries
This program makes use of the Zend Scripting Language Engine:
Zend Engine v2.1.0, Copyright (c) 1998-2006 Zend Technologies
        with Xdebug v2.0.0, Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, by Der
ick Rethans

As well as information about the XDebug extension and its configuration settings.
xdebug

xdebug support => enabled
Version => 2.0.0

Supported protocols => Revision
DBGp - Common DeBuGger Protocol => $Revision: 1.125 $
GDB - GNU Debugger protocol => $Revision: 1.87 $
PHP3 - PHP 3 Debugger protocol => $Revision: 1.22 $
…
…
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If you don’t get this and you are sure the path is correct then you need to make 
sure you have the correct entry for zend_extension in your PHP.INI file. When 
you do PHP –i or run a script with phpinfo() in it you need to look for 2 entries
Debug Build => no
Thread Safety => enabled

The above output shows a non debug build that has thread safety so you should 
use “zend_extension_ts”. 
If thread safety was “disabled” then you should have the php.ini entry of
zend_extension=<xdebug library location>

if it was a debug build you need to have the entry
zend_extension_debug=<xdebug library location>

If you are running a thread safe debug version of PHP, then your ini entry must 
be of the form
zend_extension_debug_ts=<xdebug library location>

In summary the rule is (in the stated order)
1. start with “zend_extension”
2. if you have a debug build: Debug Build => yes , add “_debug”

3. if you have thread safety: Thread Safety => enabled , add “_ts”

2.3 Getting debug information.
XDebug can generate a log which is useful for debugging. To enable logging you 
need to add the following line to php.ini
xdebug.remote_log=<file location>

Page 5 of 36



2.4 Configuring XDebug support in PDT
PDT has a preference page for debug which allows you to configure various 
aspects of the debug environment. These options are also available on a project 
specific basis. An example of this dialog is shown here.

You should change the “PHP Debugger” option to XDebug to ensure that 
XDebug is selected as the default debugger. 

2.4.1 Transfer Encoding
Variable data is transferred to and from PDT in bytes and the bytes have 
character meaning. This defines the code page of these character bytes so that 
they can be correctly displayed in PDT when converted to Unicode strings and 
correctly converted to appropriate bytes when updating a variable in PHP. Most 
of the time UTF-8 will be the correct encoding to use.

Page 6 of 36



2.4.2 Output encoding 
Output from the PHP is in bytes. In order to display these bytes in the Browser 
Output view and the Debug Output view, the data must be converted to Unicode 
strings. Output encoding defines the character meaning of the output in PHP so 
that the data can be displayed in these PDT views. 

2.4.3 Step Filtering page
XDebug currently doesn’t support this configuration option

2.4.4 Workbench Options

• Allow multiple debug sessions has no effect on XDebug support

• Open in Browser has no effect on XDebug support
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2.4.5 Installed Debuggers

Port 9000 is the default for XDebug, but it will depend on how you have 
configured XDebug in PHP.INI
There are some specific XDebug options as well, to change these select 
“XDebug” in the “Installed Debuggers” panel and press the Configure button.
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Item Description
Debug port Corresponds to the value you specified 

for “xdebug.remote_port” in PHP.INI

Show super globals in variable view Display the super globals in the variable 
view when debugging

Max array depth Defines how much data is retrieved on a 
single request for nested arrays. This 
doesn’t restrict the depth that can be 
displayed, just how much information is 
retrieved per request to XDebug.

Max Children Defines the maximum number of array 
children or object properties that will be 
initially retrieved. This doesn’t restrict 
showing all the entries, just the number 
of entries retrieved per request.
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2.4.6 Multisession
There are times when a developer will want to debug multiple PHP scripts for the 
same application simultaneously. In PDT you can only have a single web server 
debug session running (with associated path mappings) so multisession allows 
multiple debug sessions to run under a single application launch thus allowing a 
developer to debug multiple sessions at the same time.

2.4.7 Accept Remote Session (JIT)
There are many scenarios where you want to debug an application but don’t 
want to do this via launching a php web script or php script from PDT itself. For 
example

• You want to use the Firefox XDebug extension to enable/disable debug 
mode for a web page and drive the application from your web browser 
yourself.

• You may want to run a script from the command line on a different 
machine and debug it on your local machine

• You want to use the JIT support of XDebug (xdebug.remote_mode=jit) to 
force the IDE to go into debug mode when an error condition occurs. 

There could be other scenarios as well where this could be useful. You can 
configure the “Accept Remote Session” option with one of the 4 possible choices

• Off – any remote session request is rejected

• Localhost – only remote sessions initiated from the localhost are accepted

• Any – any remote session from any machine is accepted

• Prompt – prompt the user that a remote session initiation has been 
requested and for the user to accept or reject it.

Any remotely initiated session will be assumed to be a Web server based 
initiation, and thus only one debug session can exist within PDT (however you 
can make use of multisession support to allow for multiple sessions, but 
remember that they will share the same path mappings). If you want to have 
multiple command line debug sessions then you need to set the environment 
variable DBGP_COOKIE to a unique number for each separately running 
command line php script.
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2.4.8 Output Capture Settings
Output Capture allows you to collect output from your php script and display it in 
the Debug Output view and the Browser Output view. The options available are

• Off – no information is captured, nothing will be displayed in the views 
(output from a php script, a non web page script, will still be displayed in 
the console)

• Copy – information will be captured and displayed in the views. Also 
output from the php script, a non web page script, will also be displayed in 
the console

• Redirect – information will be captured and displayed in the views. 
Redirect should stop output from the php script being displayed in the 
console as well, but as of XDebug 2.0.3 there is a bug which means 
redirect works the same as copy.

The capture option for “stderr” currently has no effect as of XDebug 2.0.3. In the 
future xdebug may make use of output capture on stderr such that you can 
control the capture of messages from the php error handler (the error handler 
outputs notice/warning/error messages).
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2.4.9 Proxy Support
PDT 2.0 supports the use of a DBGp Proxy. The proxy allows multiple 
developers to debug a single or multiple applications on the same web server. 
PDT 2.0 only supports the ActiveState DBGp Proxy.
To enable support for a proxy, check the use proxy box. The IDE Key is 
automatically generated but it is important that all IDEs that register with the 
proxy have a unique IDE key.
Finally you need to enter the address of your configured proxy. For example if 
your proxy is configured on your machine listening for IDE connections on port 
9001, then enter “127.0.0.1:9001”.
One important point, if you are running the proxy on your machine you must 
ensure that PDT XDebug port is not the same as that of the proxy ports. The 
proxy uses 2 ports, one for listening for debug connections from php and xdebug 
(default 9000), and the other is for IDE connections (default 9001).

In the above example, each IDE has had the xdebug port changed to listen on 
port 9002. The proxy is listening on port 9000 for debug connections and port 
9001 for ide registrations.
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2.4.10Configuring your web browser
In PDT you can choose which browser is used and whether to have a window 
inside of PDT for your web browser or for it to run as an external application. You 
configure this in WindowsPreferences and select “Web Browser”

2.4.11Testing your configuration
It is highly recommended that you do a debug EXE and/or Web launch of a script 
containing
<?php
phpinfo()
?>

and review the output to see if xdebug is loaded correctly as described in section 
2.2.
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2.5 Debugging using XDebug
PDT can be used to debug standalone php scripts as well as web based php 
applications. You can use PDT to launch the standalone script or web based 
application, or you can get PDT to switch to debug mode when an application 
requests to be debugged (using something like the XDebug Firefox extension to 
enable xdebug for web applications, or by enabling xdebug on the command line 
for the CLI script).

2.5.1 Debugging standalone scripts launched by PDT.
You will need to define a PHP Executable location. In preferences, select PHP 
Executables and press the Add… button to get the following dialog

Ensure you have selected the PHP debugger as XDebug and define the path to 
where you have PHP with XDebug setup.
You can either create a new PHP script launch in the Debug Configurations 
panel, or you can select the script in your workspace and invoke the “Debug As
PHP Script” context menu.
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2.5.1.1 Disconnecting while debugging a script
Disconnect will terminate the debug session, but the script will run to completion. 
In order to disconnect a script, you need to ensure that the top level launch 
(guessAgain in the example below) or the entry beneath called “PHP Application” 
is selected in order to activate the disconnect button.
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2.5.2 Debugging a web based application
PDT supports different scenarios for this, allowing you to debug an application 
locally on your machine to debugging an application on a remote web server, but 
one fundamental requirement is that the same level of code is available to PDT 
that is being executed by the web server. You can achieve this in many ways, for 
example

• Point your local web server document root to your workspace or a project 
in your workspace

• you can use eclipse to create links to local files or folders and make them 
part of your PHP project

• You could look at Remote System Explorer from the eclipse Target 
Management project to share files across different systems

Unless you have chosen the 1st option, your web server and PDT may use the 
same file, but its path will not be seen as the same. To address this, a concept 
called path mapping is used. Path mapping is about trying to automatically locate 
the local file that PDT should display to the user based on the file that is being 
executed by the Web Server. The filename will be the same but the path qualifier 
will be different so rules are needed to convert from the Web Server path to the 
PDT path and vice-versa. Path mapping will be discussed later, PDT does 
attempt to generate path mappings automatically for you but there may be 
occasions where you need to do some manual configuring.
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2.5.2.1 Define your Web Server 
You will need to define your server to PDT. PDT has a default web server defined 
as http://localhost but this may not be what you want. To define a new server Go 
to “Preferences” in the “Window” drop down menu, expand PHP and select PHP 
Servers

Press New to add a new Web Server with the appropriate base URL for that 
server, eg http://myserver.com:8080 and press Next.
Here you see the path mapping tab where you can define the path conversion 
between your web server and PDT. Unless you get a problem you shouldn’t have 
to provide your own configuration here.
Press Finish to complete the server definition.
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2.5.2.2 Create a PHP Web Page Launch
You can do this in 2 ways, either in the Debug Configurations dialog or you can 
using the “Debug AsPHP Web Page” pop up menu. Either way the most 
important thing here is that the php script you have selected or entered into the 
dialog matches the script that will be executed when the particular URL that you 
have also provided is invoked by a Web Browser. This is how PDT creates the 
path mapping information for you. Getting this wrong could result in PDT showing 
the wrong file or no file at all.
The Debug AsPHP Web Page is rather limited in what you can enter, so it is 
recommended you use the Debug Configurations to define your launch. 

In the above example I have defined my launch and configured the URL myself 
by removing the “Auto Generate” option. 
Note that for Xdebug, the Advanced tab options have no effect.
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2.5.2.3 Debugging the web application
The application is driven through a web browser. The type of browser and 
whether it is internal (ie a view inside of eclipse) is defined under the Window
Preferences in the “Web Browser” entry under “General” Section.
If you have problems trying to get the internal view to work, then you can change 
to using an external browser.
As your application is driven through a web browser and XDebug works by 
saving a persistent cookie to your web browser to ensure that multiple requests 
and redirections/links to other scripts still continue to be debugged, you can only 
ever have a single Web launch active at any one time.
When a debug session is waiting for the next request to be processed and be 
debugged your Debug window will look like this
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When debugging a script you should see something like this in the debug window

Whenever a request completes, the Web launch debug will remain active waiting 
for the next request to be debugged until you explicitly stop the debug session by 
terminating it, ie by selecting either the PHP Web script launch, the “Remote 
Launch” child entry, or the “PHP Thread” child entry and press the red button. 
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2.5.2.4 Disconnect
You can disconnect a web launch at any time by selecting either “PHP 
Application” or the higher level parent which is the name of the launch 
configuration itself (In the example below it is “Guessing Web”).

When you disconnect from a web launch, the web launch remains active but 
stops the script that is currently being executed by your web server. Your 
browser will still have the XDebug cookie registered which means if you go to 
that browser press enter or return back to the original launch URL, you should 
still be in debug mode and eclipse will receive a new debug session initiation.
This is different to terminate which will stop the script from running, but also send 
the stop URL to remove the XDebug cookie from the browser (and thus stop 
xdebug from debugging further from that browser) and it also terminates the web 
launch.
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2.5.3 Debugging using Remote Session initiation
First enable Remote Session Initiation in the xdebug preferences page. With that 
done you can use something like XDebug Firefox extension to turn on the 
XDebug cookie which will cause xdebug to start debug sessions or turn on 
xdebug JIT support. 
If you specify “prompt” for Remote Session Initiation, then when a request comes 
in a dialog will be displayed

Select yes to accept this session, or no to reject.
When a session is accepted, it is very likely that a path mapping will be required 
because PDT is not sure which file it needs to work out the path mapping from. 
PDT is likely to prompt with a dialog similar to the following

here you select the appropriate file which should be used based on the current 
script that is being executed by the server (in this case 
c:\htdocs\PhpCode\guessingWeb.php). In my example I have 2 copies in my 
PHPCode project and I should select the correct one.
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The above will result in a debug session which is like a PHP Web Page launch 
being invoked.

Note that the launch is showing as <unknown> as it did not originate from PDT.
You can also use Multisession support as well.

2.5.3.1 Remote Session with CLI PHP
If you are launching CLI PHP scripts remotely and you want to use Remote 
Session Initiation, then this is possible as well, first you need to set or export the 
Xdebug IDE Key as follows
export XDEBUG_CONFIG="idekey=ECLIPSE_DBGP"
or
set XDEBUG_CONFIG="idekey=ECLIPSE_DBGP"
(or if you are using the proxy, enter your unique idekey defined in the 
preferences).
And you also need to set or export a DBGP_COOKIE integer value, for example
export DBGP_COOKIE=1223
or
set DBGP_COOKIE=1223
Doing this ensures that PDT recognizes this is a CLI PHP invocation. The value 
used can be anything.

2.5.3.2 Path Mapping
No correlation is made between defined PDT Servers and the server that initiated 
the remote debug session. Because of this, there is no initially defined path 
mappings available and are created as needed during the debug session. Once 
the debug session is terminated, those path mappings are lost.
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2.5.4 Advanced Path Mapping
As described before, the concept of path mapping is to try to match the script 
executing on the server with a script that PDT can access. The scripts that PDT 
can access must be identical to those stored on the server and also the directory 
structure should also be the same. XDebug needs to know the fully qualified 
name of the file to place the breakpoints on, but the breakpoints are placed on 
the files in PDT which are not the same files so a remapping must occur. Also 
when you want to step through a file, you want the script that is currently being 
run by the web server so again a mapping must occur and the correct file can 
then be loaded.
As previously described, PDT creates path mapping information from different 
sources. One is from the PHP Web Page launch which maps the file executed 
when the URL is invoked to that of the script file listed in the launch. Another is 
when PDT prompts you to specify which file to select when in a debugging 
session (seen when doing remote session initiation).
Finally you can modify path mapping yourself for server. Go into Preferences, 
select PHP Servers and edit your particular server and select the path mapping 
tab

In the above example, we see a path mapping between a real directory and an 
eclipse workspace project which was automatically generated by PDT but could 
have been entered manually as follows
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Path Mappings will also work between different operating systems for the server 
and the PDT user. The server could be linux and PDT could be windows.
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2.6 Breakpoint support
Breakpoints work in a similar manner to other IDEs and languages. It is best to 
add breakpoints before you run your script or web application or add new break 
points when your script is suspended due to a break point or you are stepping 
through code.
Break points added to a file while a script is not running will not be noticed until 
your script suspends due to an already existing break point. In other words if you 
are blocked in your script (for example a blocking function call such as fgets) or 
you are in a long loop, any break points you add will not be honoured. So you 
cannot for example attempt to stop a script from running a long loop by putting a 
breakpoint on a line within that loop.
Any break point added to a file while a script is actively running (in the case of a 
Web launch this will be while the request is running) and not suspended, are 
deferred until the script is suspended. If the script ends or the request ends then 
the breakpoints will be installed before the script is run or another request is 
processed.
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2.6.1 Conditional Breakpoint support
There are 2 types of conditional breakpoints supported

• Hit counts

• Expression evaluation
You set a condition of a breakpoint by bringing up the popup menu for an existing 
breakpoint and selecting “Breakpoint properties…”. This will bring up a dialog box

Where you can set the condition
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2.6.1.1 Hit counts
You can control when a breakpoint will suspend a script based on the number of 
times the line where the breakpoint is set is executed. There are 3 types of hit 
count you can specify

expression Behaviour
hit(== x) Suspend when you execute this line for the ‘x’th time only

hit(>=x) Suspend when you execute this line after but including the ‘x’th 
time

hit(%x) Suspend when you execute this line every ‘x’th time

So for example if you want a script to suspend every 10th time a specific line is 
executed, you would enter into the condition box 

hit(%10)

2.6.1.2 Expression evaluation
This allows you to control when a breakpoint will suspend a script when an 
expression evaluates to true. So for example when a counter variable exceeds a 
given number, you may wish to have the script suspend. An example of the 
expression you would enter into the condition box is

$counter >= 20
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2.7 The debug views
Apart from the source file, the other important views while debugging are the 
Stack frames and the variables view. Only when the script or request is 
suspended will these views display anything.
Variables are only visible at a certain stack level so when you select a different 
stack level of your suspended script you will see the list of variables change. 
Some variables will be common such as globals and super globals (if you have 
chosen to have super globals be shown in the variables view)
The following shows executing scripts, which include their stack frames

The list of variables and their values exposed for the selected stack frame

The variables view also has a useful find facility from the popup menu
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So an example of the find dialog is
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2.7.1 Strings in the variables view
In PHP, strings can represent binary data or character data. Also strings can be 
very large in PHP. To accommodate this, the way strings are presented in the 
variables view has been changed for PDT 2.0.

In the above example the $str shows a single line representation. Underneath 
you have the current length of the string and in brackets the true length of the 
string. The above is saying that the complete length of the string is 16890 bytes, 
but only the first 1024 bytes are being shown here. Following that you can get a 
byte view of the string split into blocks

you cannot change individual bytes however.
The final part is the view is the string in a multiline view. 
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If however you need to view the complete string, then you can get the complete 
string by selecting the string and invoking “Change Value…” on the popup menu

Then press cancel so that you don’t change the value (unless you want to of 
course), and you will now see the $str value has changed in the variable view to 
include all the contents of the string.
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2.7.2 Hover
While suspended you can select an entry in the stack frame and it will show you 
the file and highlight the line it is at (so long as the file is part of your workspace). 
You can place your mouse over variables and if they are within scope the 
contents of that variable will be highlighted

2.7.3 Expression view
You can also create expressions in the expression window which will be 
evaluated and displayed whenever your script or request is suspended.

One quick way to add a variable to the expressions window is through the watch 
pop up menu item. To do this highlight a variable (include the $), you can do this 
by double clicking the variable, bring up the pop up menu and select “watch”

2.7.3.1 Issues with Expressions
The PDT expression evaluator uses “eval” to determine the expression. This 
makes it powerful but can also cause the script you are debugging to suddenly 
terminate. The reason for this is that every time a script is suspended, all enabled 
expressions are evaluated at the current context. If you try to invoke functions in 
an expression and that function is not available then the script will terminate and 
you will see a dialog
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If you are getting this error then you may have to disable your expressions to 
stop your script from terminating.

2.8 Other known issues
• Currently it is not possible to change the type of a variable when you 

change its contents. For example you cannot change a boolean to a string 
or an integer/float to a string. You can change a string to a number and 
you can interchange between integers and floats
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2.9 Tips

2.9.1 Launch waiting for debug session
You have done a launch but you find that you aren’t debugging and the launch 
status window shows that the application is still launching. You can still interact 
with the script but you cannot debug. This can occur when

• A PHP script launch or PHP Web Page launch is done but you either have 
no XDebug information defined in your INI file or the XDebug information 
doesn’t contain the correct Server, Port or debug protocol.

• A PHP script launch produces a firewall pop-up which you have missed or 
denied

• A PHP Web Page launch but either the web server is not running or the 
defined URL in the launch is incorrect

You will see the following at the bottom right of your IDE. You can click on the 
very right icon to bring up the launch view for more information

You can terminate the debug session in the usual ways, as well as terminating 
the launch from the launch view.
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2.9.2 Watch Expressions returning Objects/Arrays
Watch expressions are evaluated and the results are returned. If your expression 
returns and array of data (for example when you watch something like 
get_include_files()  ), there is no variable defined to hold the results in PHP. 
xdebug by default returns only the 1st 32 elements of the array which is why you 
can see this information in the watch. However when you try to expand the next 
set of elements it needs a way to query the next set of elements, and there is no 
way to do that as there is no variable in PHP which is holding the results. It is 
also not possible to re-evaluate the expression and get it to pass the next set of 
elements. 

One way round this is to use the “Max Children” preference option. This would 
control the amount of information xdebug would send back when querying 
information about arrays/objects such that if you set this value to say 100 it would 
transfer 100 elements back on each request (and that show up as array chunks 
of [0-99] [100-199] etc, and for  the watch expression you would set it to a value 
such that all the information you require will appear in the first block. 

END-OF-DOCUMENT
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