
Eclipse project update
by the Eclipse project PMC – March 11th 2008

This document provides an update of the developments accomplished within the Eclipse
Project, how they align with the Ganymede simultaneous release, and beyond.

1. High-level review
The Eclipse project is composed of five sub-projects: Platform, Equinox, JDT, PDE and the
Eclipse Project Incubator We will present our current development strategy for the upcoming
releases, our release plan and our technical progress so far.

1.1. Strategy
The Eclipse project has delivered seven releases in a row, on an annual basis. Each of these
releases needed to both innovate and establish a stable platform. Today, the Eclipse platform
is the basis for thousands of solutions in the broader Eclipse community. Hence, stability is
becoming the predominant requirement, over innovation for our clients. Therefore, the
Eclipse PMC made the decision to split streams into a 3.x stream and a 4.0 stream. The 3.x
stream will be dedicated to consolidation, where the focus is on stability, performance,
scalability, and controlled innovation; it will keep delivering on an annual basis, and Eclipse
3.4 will be the Eclipse Project’s contribution to the Ganymede effort. The 4.0 stream is a
longer term effort, intended to capture the future of Eclipse, focus more on pure innovation,
and provide a catalyst for increasing participation in the Eclipse Project. The Eclipse PMC is
currently defining what a 4.0 plan might look like, and will be presenting ideas at
EclipseCon’08.

In the 3.x stream, we intend to preserve our ability to run on Java 1.4 VMs, with optional
functionalities requiring Java5 or Java6 VMs (e.g. JSR-199, JSR-269, etc.). We will continue
to leverage newer versions of our reference platforms, and provide access to new platforms
(e.g. Windows WPF). For Mac OS X, Eclipse 3.4 will still use the Carbon API. In a
subsequent release (3.5), we are considering deprecating Carbon and using the Cocoa API
instead.

The Eclipse project provides one incubator subproject to host new initiatives, until they can be
graduated into the mainstream (Platform, Equinox, JDT or PDE sub-projects). We intend to
define additional incubators as needed, and in particular one dedicated to the Eclipse 4.0
work, named “e4 incubator”. Note that an incubating component may not graduate in the 3.x
stream. For instance, the 4.0 work in the e4 incubator will only graduate once 4.0 becomes the
mainstream. Reciprocally, code developed in an incubator may graduate sooner than 4.0, we
had several instances of this occurring during 3.4 (e.g. API tooling, provisioning).

Finally, Eclipse has been evolving a runtime community for quite some time with Equinox,
RCP, RAP, eRCP, ECF, EMF and others. New projects like Swordfish, Riena and
EclipseLink are also emerging in the runtime community at Eclipse. Eclipse runtime efforts
have suffered from the view that Eclipse is for tooling. The Eclipse RT top-level project has
been proposed to focus on fostering, promoting and housing such runtime work at Eclipse.
The Equinox Framework and OSGi provide a common component model used to build
runtimes in Eclipse and therefore will move to the Eclipse RT project. Equinox will likely
move to the Eclipse RT project after the Ganymede release to minimize disruption.

1.2. Release plan

To ensure the planning process is transparent and open to the entire Eclipse community, we
post plans in an embryonic form and revise them throughout the release cycle. The current
detailed plan is publicly available at
http://www.eclipse.org/eclipse/development/eclipse_project_plan_3_4.html.

The first part of the plan deals with the important matters of release deliverables, release
milestones, target operating environments, and release-to-release compatibility. Eclipse 3.4
will be compatible with Eclipse 3.3 (and, hence, with 3.2, 3.1 and 3.0).

The plan is organized in sections based on areas of focus. For the 3.4 release, the major work
areas are:

• Platforms: This work is focused on ensuring that Eclipse takes full advantage of the
capabilities of the underlying technologies that it is based on, be they operating
systems, window systems, Java or others.

• Consumability: This work will make it easier for users to get Eclipse, install it on
their systems, and configure it for their use. It will also enhance the error handling and
reporting mechanisms to make it easier to service Eclipse in the field. Finally, it will
improve the scalability and performance of Eclipse, to provide a better experience for
users working with many plug-ins and large data sets.

• Reliability: As the basis for the entire Eclipse eco-system, the Eclipse SDK must be
robust, flexible and secure. This work will address those issues by providing API for
missing or currently internal functionality, and focusing on the issues that effect the
stability of the platform.

• The Future: Eclipse is well-established as the cross-platform IDE of choice, but it has
become much more than that. The extensive and diverse range of applications that are
being built on the Eclipse code base, and the constantly changing capabilities of the
underlying systems on which it runs, are driving us to push the limits of our
technology in almost every dimension. This work area marks the start of a new, multi-
year focus on innovation, to ensure that the Eclipse SDK continues to be a vibrant,
powerful, dynamic basis for our community's use.

Currently all the planned items are marked as committed or proposed. None are marked as
deferred until next release.

1.3. Technical progress

The highlights in our 3.4 plan are: SWT 64-bit, SWT WPF port, Linux Bidi, Mac Carbon
Internalization & accessibility, product level configurability, provisioning, serviceability, API
tooling, security, concurrent compiler and Eclipse 4.0 planning. Here is a high-level review of
our progress in some of these areas.

• SWT 64-bit : Prior to Eclipse 3.4, 64-bit support was available on Linux GTK only.
Support for 64-bit Windows was added using a similar implementation strategy. The
result is that SWT is customized for the platform and architecture. For example,
Eclipse running on 32-bit Windows is completely unaffected in terms of performance

and code size, while Eclipse on 64-bit Windows is a first class citizen on that
architecture.

• Linux BiDi : Mirroring is a technique that is used to minimize code changes for
custom controls when dealing with translation into right-to-left languages like Arabic
and Hebrew. In order to support right-to-left locales, mirroring moves the origin from
the top left of a control to the top right. All graphics and widget operations become
relative to this new point. Prior to Eclipse 3.4, mirroring was supported on Windows
only. In 3.4, Eclipse applications can now be mirrored on Linux GTK.

• Mac Internationalization and Accessibility : In Eclipse 3.4, the keyboard input
mechanism for the Mac and other platforms has been overhauled, giving Eclipse and
applications built with SWT unparalleled native behavior. For example, custom
controls such as StyledText respect native IME (Input Method Editor) colors and
settings, edit text in-line and are indistinguishable from their native counterparts. For
Eclipse 3.4, accessibility was implemented for the Mac, providing access to both
native and custom controls to differently enabled individuals.

• API Tooling : In Eclipse 3.4, PDE has been augmented with API tooling. The
integrated toolset assists developers in API maintenance by reporting API problems
such as binary incompatibilities relative to a previous release, incorrect plug-in version
numbers, missing or incorrect @since tags, and all illegal use of APIs between plug-
ins. Quick fixes are provided to correct problems where possible. The tooling is also
designed to be used in (and will eventually be integrated with) the automated build
process to create API problem reports.

• Provisioning (aka. p2) : Eclipse 3.4 delivers a complete replacement for Update
Manager based on the new Equinox provisioning platform (p2). For end users, p2
provides simplified workflows, improved download technology, and the ability to
share software components across multiple Eclipse applications. A small stand-alone
SWT-based installer allows for provisioning entire applications rather than just
augmenting or updating an existing application. p2 provides backwards compatibility
by supporting installation from update sites designed for Update Manager, and the
Update Manager concept of features.

• Equinox Transforms : Eclipse 3.4 will deliver org.eclipse.equinox.transform*
bundles to the Equinox component, that allow to provide transformations of bundle
resources at the OSGi level. Various example transformers exist (XSLT, sed,
replacement) that can be used to transform any resource in a bundle including but not
limited to plugin.xml, MANIFEST.MF, class files, etc. These bundles provide a
powerful tool for RCP and product developers to achieve customization of consumed
bundles in whatever way they see fit without actually altering those bundles directly.

2. Self-assessment
In this section, we will assess our performance under the headings inspired by the Three
Communities section of the Development Process.

2.1. Performance as an Eclipse open source project

2.1.1. Openness and Transparency
This year, Jeff McAffer (Equinox lead) left IBM, but he is still assuming his role on the
Eclipse Project PMC; so this results in some diversity on our PMC. As a result of this, we
have improved our processes to better separate internal IBM conversations from public

Eclipse-focused ones, and are beginning to use public channels more frequently for PMC
level communication.

We also identified increased openness and transparency as being high-priority.

2.1.2. Meritocracy
SWT has voted commit rights to Uttaran Dutta from IBM India and Oleg Krasilnikov from
Intel. Scott Kovatch, formerly of Apple, now at Adobe, is also a strong candidate for commit
rights. The hold up is that he is in transition from Apple and doesn't have a new email address
so the vote can't proceed. Equinox grew 13 new committers since November 2006 (5 outside
IBM). Platform/UI grew 2 new committers (1 non-IBM still in progress).

However, we are not doing a good job at revoking commit rights from inactive committers.
We need better guidance from the Eclipse Foundation on this.

2.1.3. Diversity
Diversity is a big concern in the Eclipse project. It was originally contributed by IBM and we
haven’t seen much improvement over time. We get more committers outside IBM, but the
volume of contributions is largely IBM, with help from BEA. For instance, here are numbers
for actual commits in 2007.

• Equinox: 89% IBM, 8% individuals, 1% ProsystSoftware, 1% compeopleAG
• JDT: 95% IBM, 4% BEA, 1% individuals
• PDE: 82% IBM, 17% individuals
• Platform: 98% IBM, 1% BEA, 1% QNXSoftwareSystemsCo.

The Eclipse 4.0 initiative is paving the way for others to join. One of the main objectives of
the e4 initiative is to increase diversity in participation. It is important to realize that Eclipse
4.0 will only come to fruitition with the help and participation of our community. We already
see some interest from the RAP team (Innoopract) in working together to construct the basis
for Eclipse 4.0 as the “e4” initiative as an incubator in the Eclipse Project. We do expect that
they will become committers on the platform.

2.1.4. Compliance with the Purposes
The Eclipse project is very careful at designing its API in the best possible way. In particular,
extensibility is an obvious concern for an agnostic platform. It should be noted that even
though JDT & PDE are part to the Eclipse SDK, their needs are considered with all others. All
platforms enhancements must be useful to the community at large to make it into the next
release, and are discussed in the open: our mantra there is that until you have several clients,
you do not have an API.

2.2. End user community and adoption
There is no question that the adoption of the Eclipse project is huge. What will be interesting
is to watch how much adoption we get in Eclipse 4.0 vs. Eclipse 3.x. This highly depends on
how much we succeed at getting participation from multiple companies.

2.3. Commercial community and adoption
The Eclipse platform is the core of the Eclipse universe and is depended on by all other
projects. For example, there have been more than 350 distinct products in IBM build on top of
Eclipse technologies, and thousands of Eclipse-based solutions across the world. An

interesting data point though is how quickly products adapt to newer versions of the platform.
It is important that existing Eclipse-based solutions can quickly leverage newer versions of
the platform as they become available, and thus gain new capabilities, increased performance,
scalability and robustness. Still too often, some platform evolutions are causing some
breakage even though these changes are strictly backward compatible according to our API
compatibility charter. The truth is that some applications use internal interfaces, not official
API, and thus become vulnerable to any change, even in a service release. Our 3.x/4.0 split
should improve the situation. Also, our new API tooling, available in Ganymede, will flag
non-API dependencies, and thus allow a risk assessment associated with any component.

3. Compliance with the roadmap
The Eclipse project is compliant with the 3.4 roadmap. This means our projected milestones
will be honored both in term of schedule and content. We are currently completing milestone-
6, which is our API freeze. We will then engage in a consolidation effort with a stronger
performance focus.

4. Board Assistance
The Eclipse PMC identified the following areas where the board could help our project to be
more effective.

4.1. Improving diversity
Most of the commits in the Eclipse projects are still performed by IBM. There are historical
reasons for this, but there needs to an ongoing focus for getting more committers outside of
IBM to participate. The Eclipse 4.0 effort is emphasizing this, but even in the 3.x stream,
some help would be greatly appreciated. The Update Manager is currently at risk of having
zero active committers. Even though the new provisioning functionality is replacing it, there
are still many clients that depends on the current Update Manager. Also we would like to see
a growing participation of OS manufacturers in our SWT ports. While we are seeing progress,
we need to do better. This would allow Eclipse to run better and on a wider range of
platforms.

4.2. Establishing Eclipse 4.0
Eclipse 4.0 is a big initiative, which can only succeed if many others engage. We need the
board to help in attracting new committers to Eclipse 4.0, and to promote the technology for a
wider adoption.

4.3. Java Compliance Testing
Currently the JDT subproject contributes a Java compiler, but the foundation has no license to
the official Java Compatibility Kits from Sun Microsystems Inc. As a result, it is impossible
to assess compatibility as part of normal open source development activity; and it is quite
possible that some regressions would be introduced as a result of fixing bugs in the compiler.
If the foundation did own a JCK license, then this issue would get solved, and the compiler
development would be safer.

