
The importance of Opposites

Edward D. Willink1

Willink Transformations Ltd, Reading, England,
ed at willink.me.uk

Lightning presentation at the 16th International Workshop in OCL and Tex-
tual Modeling, October 2, 2016, Saint-Malo, France.



1 The importance of Opposites - E.D.Willink

By itself, OCL is almost useless since it lacks models to query. Once embedded
within a model provider, OCL is still of limited utility since a side-effect free
language cannot modify anything. The QVTc and QVTr declarative languages
extend OCL to support model transformation without undermining the side-
effect free characteristics of OCL. UML navigations and OCL constraints are
used to specify the relationships between input and output model elements. No
model mutations occur within the definition of the model transformation, rather
the necessary model mutations are relegated to an implementation detail to be
orchestrated by a practical tool.

Model transformation rules relate potentially overlapping patterns of source
and target elements. The ATL example1 in Figure 1 shows the relationship be-
tween the forwardList, forwardList.name, forwardList.headElement source
pattern and the reverseList, reverseList.name, reverseList.headElement
target pattern. ATL supports the overlap between the headElement mapping
and another rule (not shown) using an implicit and opaque resolveTemp capa-
bility.

Fig. 1. Example using ATL.

Modeling the overlaps is difficult, if not impossible, without introducing new
objects to identify each pattern of source and target elements. QVTc (and QVTr)
therefore introduce an additional trace model which comprises a trace class for
each pattern, with trace properties to identify the role of each source and tar-
get class within the pattern. Each trace class instance therefore groups related
source and target elements. Simple UML navigations enforce most of the required
relationships. Additional OCL constraints enforce more complex relationships.
Figure 2 shows the UML Instance Diagram variant that the Eclipse QVTd im-
plementation uses for the example.

The left hand column shows the blue source pattern. The right hand column
shows the target pattern. The ‘copied’ value is shared at the top of the middle

1 The example is an excerpt from ”Local Optimizations in Eclipse QVTc
and QVTr using the Micro-Mapping Model of Computation”, E.D.Willink,
”Second International Workshop on Executable Modeling (EXE 016)”,
http://www.eclipse.org/mmt/qvt/docs/EXE2016/MicroMappings.pdf



Fig. 2. QVTs-like exposition of QVTc mapping.

column. The additional two trace objects in the middle column identify the
green creation of a match of the list2list rule using a Tlist2list instance
and a cyan dependency on a Telement2element instance, which is a match of
the element2element rule (not shown).

The transformation author defines the trace model explicitly in QVTc, or
implicitly in QVTr. The trace model relates source and target models that are
usually developed independently and so the relationships from trace model to
source or target model are necessarily unidirectional. There is no navigable path
from forwardList in the source model to trace in the middle model. This
conflicts with the bidirectional navigability shown in Figure 2 that is necessary
to use OCL navigation effectively.

Fortunately, OCL ignores the accidental navigability that may be a deliberate
optimization of generated code or the unavoidable consequence of independent
model development. In OCL, all object to object properties are navigable in both
directions. Where the UML exposition is unidirectional, OCL automatically syn-
thesizes an opposite using the name of the unnavigable target class allowing the
use of forwardList.Tlist2list. If the forward name is ambiguous, the opposite
name may be used to disambiguate: forwardList.Tlist2list[forwardList].

The comprehensive opposite navigation capabilities of OCL therefore provide
the foundation for the rigorous modeling of a side effect free QVTc or QVTr
declarative transformation.


