SLATEC Common Mathematical Library
Version 4.1
Table of Contents

This table of contents of the SLATEC Common Mathematical Library (CML) has three sections.

Section I contains the names and purposes of all user-callable CML routines, arranged by GAMS category. Those unfamiliar with the GAMS scheme should consult the document "Guide to the SLATEC Common Mathematical Library". The current library has routines in the following GAMS major categories:
A. Arithmetic, error analysis
C. Elementary and special functions (search also class L5)
D. Linear Algebra
E. Interpolation
F. Solution of nonlinear equations
G. Optimization (search also classes K, L8)
H. Differentiation, integration
I. Differential and integral equations
J. Integral transforms
K. Approximation (search also class L8)
L. Statistics, probability
N. Data handling (search also class L2)
R. Service routines
Z. Other

The library contains routines which operate on different types of data but which are otherwise equivalent. The names of equivalent routines are listed vertically before the purpose. Immediately after each name is a hyphen (-) and one of the alphabetic characters S, D, C, I, H, L, or A, where
S indicates a single precision routine, D double precision, C complex, I integer, H character, L logical, and A is a pseudo-type given to routines that could not reasonably be converted to some other type.

Section II contains the names and purposes of all subsidiary CML routines, arranged in alphabetical order. Usually these routines are not referenced directly by library users. They are listed here so that users will be able to avoid duplicating names that are used by the CML and for the benefit of programmers who may be able to use them in the construction of new routines for the library.

Section III is an alphabetical list of every routine in the CML and the categories to which the routine is assigned. Every user-callable routine has at least one category. An asterisk (*) immediately preceding a routine name indicates a subsidiary routine.

SECTION I. User-callable Routines

A. Arithmetic, error analysis

A3. Real
A3D. Extended range
XADD-S To provide single-precision floating-point arithmetic

```
DXADD-D with an extended exponent range.
XADJ-S To provide single-precision floating-point arithmetic
DXADJ-D with an extended exponent range.
XC210-S To provide single-precision floating-point arithmetic
DXC210-D with an extended exponent range.
XCON-S To provide single-precision floating-point arithmetic
DXCON-D with an extended exponent range.
XRED-S To provide single-precision floating-point arithmetic
DXRED-D with an extended exponent range.
XSET-S To provide single-precision floating-point arithmetic
DXSET-D with an extended exponent range.
```

A4. Complex
A4A. Single precision
CARG-C Compute the argument of a complex number.
A6. Change of representation
A6B. Base conversion
R9PAK-S Pack a base 2 exponent into a floating point number.
D9PAK-D
R9UPAK-S Unpack a floating point number X so that $X=Y * 2 * * N$.
D9UPAK-D
C. Elementary and special functions (search also class L5)
FUNDOC-A Documentation for FNLIB, a collection of routines for
evaluating elementary and special functions.
C1. Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)
BINOM-S Compute the binomial coefficients.
DBINOM-D
FAC-S Compute the factorial function.
DFAC-D
POCH-S Evaluate a generalization of Pochhammer's symbol.
DPOCH-D
POCH1-S Calculate a generalization of Pochhammer's symbol starting
DPOCH1-D from first order.
C2. Powers, roots, reciprocals
CBRT-S Compute the cube root.
DCBRT-D
CCBRT-C
C3. Polynomials
C3A. Orthogonal
C3A2. Chebyshev, Legendre

```
        CSEVL-S Evaluate a Chebyshev series.
        DCSEVL-D
        INITS-S Determine the number of terms needed in an orthogonal
        INITDS-D polynomial series so that it meets a specified accuracy.
        QMOMO-S This routine computes modified Chebyshev moments. The K-th
        DQMOMO-D modified Chebyshev moment is defined as the integral over
            (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
            polynomial of degree K.
        XLEGF-S Compute normalized Legendre polynomials and associated
        DXLEGF-D Legendre functions.
        XNRMP-S Compute normalized Legendre polynomials.
        DXNRMP - D
C4. Elementary transcendental functions
C4A. Trigonometric, inverse trigonometric
        CACOS-C Compute the complex arc cosine.
        CASIN-C Compute the complex arc sine.
        CATAN-C Compute the complex arc tangent.
        CATAN2-C Compute the complex arc tangent in the proper quadrant.
        COSDG-S Compute the cosine of an argument in degrees.
        DCOSDG-D
        COT-S Compute the cotangent.
        DCOT-D
        CCOT-C
        CTAN-C Compute the complex tangent.
        SINDG-S Compute the sine of an argument in degrees.
        DSINDG-D
C4B. Exponential, logarithmic
        ALNREL-S Evaluate ln(1+X) accurate in the sense of relative error.
        DLNREL-D
        CLNREL-C
        CLOG10-C Compute the principal value of the complex base 10
        logarithm.
        EXPREL-S Calculate the relative error exponential (EXP (X)-1)/X.
        DEXPRL-D
        CEXPRL-C
C4C. Hyperbolic, inverse hyperbolic
ACOSH-S Compute the arc hyperbolic cosine.
DACOSH-D
CACOSH-C
ASINH-S Compute the arc hyperbolic sine.
DASINH-D
```

```
        CASINH-C
        ATANH-S Compute the arc hyperbolic tangent.
        DATANH-D
        CATANH-C
        CCOSH-C Compute the complex hyperbolic cosine.
        CSINH-C Compute the complex hyperbolic sine.
    CTANH-C Compute the complex hyperbolic tangent.
C5. Exponential and logarithmic integrals
ALI-S Compute the logarithmic integral.
DLI-D
E1-S Compute the exponential integral E1(X).
DE1-D
EI-S Compute the exponential integral Ei(X).
DEI-D
EXINT-S Compute an M member sequence of exponential integrals
DEXINT-D E (N+K,X), K=0,1,...,M-1 for N.GE. 1 and X .GE. 0.
SPENC-S Compute a form of Spence's integral due to K. Mitchell.
DSPENC-D
C7. Gamma
C7A. Gamma, log gamma, reciprocal gamma
        ALGAMS-S Compute the logarithm of the absolute value of the Gamma
        DLGAMS-D function.
        ALNGAM-S Compute the logarithm of the absolute value of the Gamma
        DLNGAM-D function.
        CLNGAM-C
        COLGMC-C Evaluate (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative
            accuracy.
        GAMLIM-S Compute the minimum and maximum bounds for the argument in
        DGAMLM-D the Gamma function.
        GAMMA-S Compute the complete Gamma function.
        DGAMMA-D
        CGAMMA-C
        GAMR-S Compute the reciprocal of the Gamma function.
        DGAMR-D
        CGAMR-C
        POCH-S Evaluate a generalization of Pochhammer's symbol.
        DPOCH-D
        POCH1-S Calculate a generalization of Pochhammer's symbol starting
        DPOCH1-D from first order.
C7B. Beta, log beta
```

```
ALBETA-S Compute the natural logarithm of the complete Beta
DLBETA-D function.
CLBETA-C
BETA-S Compute the complete Beta function.
DBETA-D
CBETA-C
C7C. Psi function
PSI-S Compute the Psi (or Digamma) function.
DPSI-D
CPSI-C
PSIFN-S Compute derivatives of the Psi function.
DPSIFN-D
C7E. Incomplete gamma
GAMI-S Evaluate the incomplete Gamma function.
DGAMI-D
GAMIC-S Calculate the complementary incomplete Gamma function.
DGAMIC-D
GAMIT-S Calculate Tricomi's form of the incomplete Gamma function.
DGAMIT-D
C7F. Incomplete beta
```

```
BETAI-S Calculate the incomplete Beta function.
```

BETAI-S Calculate the incomplete Beta function.
DBETAI-D
C8. Error functions
C8A. Error functions, their inverses, integrals, including the normal
distribution function
ERF-S Compute the error function.
DERF-D
ERFC-S Compute the complementary error function.
DERFC-D
C8C. Dawson's integral
DAWS-S Compute Dawson's function.
DDAWS-D
C9. Legendre functions
XLEGF-S Compute normalized Legendre polynomials and associated
DXLEGF-D Legendre functions.
XNRMP-S Compute normalized Legendre polynomials.
DXNRMP -D
C10. Bessel functions
C10A. J, Y, H-(1), H-(2)
C10A1. Real argument, integer order
BESJO-S Compute the Bessel function of the first kind of order

```
```

DBESJ0-D zero.
BESJ1-S Compute the Bessel function of the first kind of order one.
DBESJ1-D
BESYO-S Compute the Bessel function of the second kind of order
DBESYO-D zero.
BESY1-S Compute the Bessel function of the second kind of order
DBESY1-D one.

```

C10A3. Real argument, real order
BESJ-S Compute an \(N\) member sequence of \(J\) Bessel functions DBESJ-D J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X .

BESY-S Implement forward recursion on the three term recursion DBESY-D relation for a sequence of non-negative order Bessel functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive \(X\) and non-negative orders FNU.

C10A4. Complex argument, real order
\begin{tabular}{|c|c|}
\hline CBESH & Compute a sequence of the Hankel functions H(m,a,z) \\
\hline ZBES & for superscript \(m=1\) or 2 , real nonnegative orders \(a=b\), \(b+1, \ldots\) where \(b>0\), and nonzero complex argument \(z\). A scaling option is available to help avoid overflow. \\
\hline CBESJ-C & Compute a sequence of the Bessel functions J(a,z) for \\
\hline ZBESJ-C & complex argument \(z\) and real nonnegative orders \(a=b, b+1\), \(b+2, \ldots\) where \(b>0\). A scaling option is available to help avoid overflow. \\
\hline \[
\begin{aligned}
& \text { CBESY-C } \\
& \text { ZBESY-C }
\end{aligned}
\] & Compute a sequence of the Bessel functions \(Y(a, z)\) for complex argument \(z\) and real nonnegative orders \(a=b, b+1\), \(b+2, \ldots\) where \(b>0\). A scaling option is available to help avoid overflow. \\
\hline
\end{tabular}

C10B. I, K
C10B1. Real argument, integer order
```

BESIO-S Compute the hyperbolic Bessel function of the first kind
DBESIO-D of order zero.
BESIOE-S Compute the exponentially scaled modified (hyperbolic)
DBSIOE-D Bessel function of the first kind of order zero.
BESI1-S Compute the modified (hyperbolic) Bessel function of the
DBESI1-D first kind of order one.
BESIIE-S Compute the exponentially scaled modified (hyperbolic)
DBSI1E-D Bessel function of the first kind of order one.
BESKO-S Compute the modified (hyperbolic) Bessel function of the
DBESKO-D third kind of order zero.
BESKOE-S Compute the exponentially scaled modified (hyperbolic)
DBSKOE-D Bessel function of the third kind of order zero.
BESK1-S Compute the modified (hyperbolic) Bessel function of the

```
```

DBESK1-D third kind of order one.

```
```

BESK1E-S Compute the exponentially scaled modified (hyperbolic)

```
DBSK1E-D Bessel function of the third kind of order one.

C10B3. Real argument, real order
\begin{tabular}{|c|c|}
\hline BESI-S & Compute an N member sequence of I Bessel functions \\
\hline DBESI-D & I/SUB (ALPHA \(+\mathrm{K}-1\) ) / (X), \(\mathrm{K}=1, \ldots, \mathrm{~N}\) or scaled Bessel functions EXP (-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and \(X\). \\
\hline BESK-S & Implement forward recursion on the three term recursion \\
\hline DBESK-D & relation for a sequence of non-negative order Bessel \\
\hline & functions K/SUB (FNU+I-1)/(X), or scaled Bessel functions \\
\hline & EXP (X)*K/SUB (FNU+I-1)/(X), \(\mathrm{I}=1, \ldots . . \mathrm{N}\) for real, positive \\
\hline & \(X\) and non-negative orders FNU. \\
\hline BESKES-S & Compute a sequence of exponentially scaled modified Bessel \\
\hline DBSKES-D & functions of the third kind of fractional order. \\
\hline BESKS-S & Compute a sequence of modified Bessel functions of the \\
\hline DBESKS-D & third kind of fractional order. \\
\hline
\end{tabular}

C10B4. Complex argument, real order
CBESI-C Compute a sequence of the Bessel functions \(I(a, z)\) for ZBESI-C complex argument \(z\) and real nonnegative orders \(a=b, b+1\), b+2,... where b>0. A scaling option is available to help avoid overflow.

CBESK-C Compute a sequence of the Bessel functions \(K(a, z)\) for ZBESK-C complex argument \(z\) and real nonnegative orders \(a=b, b+1\), \(b+2, \ldots\) where \(b>0\). A scaling option is available to help avoid overflow.

C10D. Airy and Scorer functions
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { AI-S } \\
& \text { DAI-D }
\end{aligned}
\] & Evaluate the Airy function. \\
\hline \[
\begin{aligned}
& \text { AIE-S } \\
& \text { DAIE-D }
\end{aligned}
\] & Calculate the Airy function for a negative argument and an exponentially scaled Airy function for a non-negative argument. \\
\hline \[
\begin{aligned}
& \mathrm{BI}-\mathrm{S} \\
& \mathrm{DBI}-\mathrm{D}
\end{aligned}
\] & Evaluate the Bairy function (the Airy function of the second kind). \\
\hline \[
\begin{aligned}
& \text { BIE-S } \\
& \text { DBIE-D }
\end{aligned}
\] & Calculate the Bairy function for a negative argument and an exponentially scaled Bairy function for a non-negative argument. \\
\hline \[
\begin{aligned}
& \text { CAIRY-C } \\
& \text { ZAIRY-C }
\end{aligned}
\] & Compute the Airy function \(A i(z)\) or its derivative dAi/dz for complex argument \(z\). A scaling option is available to help avoid underflow and overflow. \\
\hline \[
\begin{aligned}
& \text { CBIRY-C } \\
& \text { ZBIRY-C }
\end{aligned}
\] & Compute the Airy function \(\operatorname{Bi}(z)\) or its derivative dBi/dz for complex argument \(z\). A scaling option is available to help avoid overflow. \\
\hline
\end{tabular}

C10F. Integrals of Bessel functions
```

BSKIN-S Compute repeated integrals of the K-zero Bessel function. DBSKIN-D

```

C11. Confluent hypergeometric functions
CHU-S Compute the logarithmic confluent hypergeometric function. DCHU-D

C14. Elliptic integrals
```

RC-S Calculate an approximation to
DRC-D RC(X,Y) = Integral from zero to infinity of
-1/2 -1
(1/2)(t+X) (t+Y) dt,
where X is nonnegative and Y is positive.
RD-S Compute the incomplete or complete elliptic integral of the
DRD-D 2nd kind. For X and Y nonnegative, X+Y and Z positive,
RD}(X,Y,Z) = Integral from zero to infinity of
-1/2 -1/2 -3/2
(3/2)(t+X) (t+Y) (t+Z) dt.
If X or Y is zero, the integral is complete.
RF-S Compute the incomplete or complete elliptic integral of the
DRF-D 1st kind. For X, Y, and Z non-negative and at most one of
them zero, RF (X,Y,Z) = Integral from zero to infinity of
-1/2 -1/2 -1/2
(1/2)(t+X) (t+Y) (t+Z) dt.
If X, Y or Z is zero, the integral is complete.
RJ-S Compute the incomplete or complete (X or Y or Z is zero)
DRJ-D elliptic integral of the 3rd kind. For X, Y, and Z non-
negative, at most one of them zero, and P positive,
RJ(X,Y,Z,P) = Integral from zero to infinity of
-1/2
(3/2)(t+X) (t+Y) (t+Z) (t+P) dt.

```

C19. Other special functions
```

RC3JJ-S Evaluate the 3j symbol f(L1) = (L1 L2 L3)
DRC3JJ-D (-M2-M3 M2 M3)
for all allowed values of L1, the other parameters
being held fixed.
RC3JM-S Evaluate the 3j symbol g(M2) = (L1 L2 L3)
DRC3JM-D (M1 M2 -M1-M2)
for all allowed values of M2, the other parameters
being held fixed.
RC6J-S Evaluate the 6j symbol h(L1) = {L1 L2 L3}
DRC6J-D {L4 L5 L6}
for all allowed values of L1, the other parameters
being held fixed.

```
D. Linear Algebra
D1. Elementary vector and matrix operations
D1A. Elementary vector operations
D1A2. Minimum and maximum components
    ISAMAX-S Find the smallest index of that component of a vector
```

IDAMAX-D having the maximum magnitude.
ICAMAX-C

```

D1A3. Norm
D1A3A. L-1 (sum of magnitudes)
SASUM-S Compute the sum of the magnitudes of the elements of a DASUM-D vector. SCASUM-C

D1A3B. L-2 (Euclidean norm) SNRM2-S Compute the Euclidean length (L2 norm) of a vector. DNRM2-D SCNRM2-C

D1A4. Dot product (inner product)
CDOTC-C Dot product of two complex vectors using the complex conjugate of the first vector.

DQDOTA-D Compute the inner product of two vectors with extended precision accumulation and result.

DQDOTI-D Compute the inner product of two vectors with extended precision accumulation and result.

DSDOT-D Compute the inner product of two vectors with extended DCDOT-C precision accumulation and result.

SDOT-S Compute the inner product of two vectors.
DDOT-D
CDOTU-C
SDSDOT-S Compute the inner product of two vectors with extended CDCDOT-C precision accumulation.

D1A5. Copy or exchange (swap)
ICOPY-S Copy a vector. DCOPY-D CCOPY-C ICOPY-I

SCOPY-S Copy a vector. DCOPY-D CCOPY-C ICOPY-I

SCOPYM-S Copy the negative of a vector to a vector.
DCOPYM-D
SSWAP-S Interchange two vectors.
DSWAP-D
CSWAP-C
ISWAP-I
D1A6. Multiplication by scalar
```

 CSSCAL-C Scale a complex vector.
    ```
```

 SSCAL-S Multiply a vector by a constant.
 DSCAL-D
 CSCAL-C
 D1A7. Triad (a*x+y for vectors x,y and scalar a)
SAXPY-S Compute a constant times a vector plus a vector.
DAXPY-D
CAXPY-C
D1A8. Elementary rotation (Givens transformation)
SROT-S Apply a plane Givens rotation.
DROT-D
CSROT-C
SROTM-S Apply a modified Givens transformation.
DROTM-D
D1B. Elementary matrix operations
D1B4. Multiplication by vector
CHPR-C Perform the hermitian rank 1 operation.
DGER-D Perform the rank 1 operation.
DSPR-D Perform the symmetric rank 1 operation.
DSYR-D Perform the symmetric rank 1 operation.
SGBMV-S Multiply a real vector by a real general band matrix.
DGBMV-D
CGBMV-C
SGEMV-S Multiply a real vector by a real general matrix.
DGEMV-D
CGEMV-C
SGER-S Perform rank 1 update of a real general matrix.
CGERC-C Perform conjugated rank 1 update of a complex general
SGERC-S matrix.
DGERC-D
CGERU-C Perform unconjugated rank 1 update of a complex general
SGERU-S matrix.
DGERU-D
CHBMV-C Multiply a complex vector by a complex Hermitian band
SHBMV-S matrix.
DHBMV-D
CHEMV-C Multiply a complex vector by a complex Hermitian matrix.
SHEMV-S
DHEMV-D
CHER-C Perform Hermitian rank 1 update of a complex Hermitian
SHER-S matrix.
DHER-D
CHER2-C Perform Hermitian rank 2 update of a complex Hermitian

```
```

SHER2-S matrix.
DHER2-D
CHPMV-C Perform the matrix-vector operation.
SHPMV-S
DHPMV-D
CHPR2-C Perform the hermitian rank 2 operation.
SHPR2-S
DHPR2-D
SSBMV-S
DSBMV-D
CSBMV-C
SSDI-S
DSDI-D Routine to calculate the product
is a diagonal matrix.
SSMTV-S SLAP Column Format Sparse Matrix Transpose Vector Product.
DSMTV-D Routine to calculate the sparse matrix vector product:
Y = A'*X, where ' denotes transpose.
SSMV-S SLAP Column Format Sparse Matrix Vector Product.
DSMV-D Routine to calculate the sparse matrix vector product:
Y = A*X.
SSPMV-S
DSPMV-D
CSPMV-C
SSPR-S
SSPR2-S
DSPR2-D
CSPR2-C
SSYMV-S
DSYMV-D
CSYMV-C
SSYR-S
SSYR2-S
DSYR2-D
CSYR2-C
STBMV-S
DTBMV-D
CTBMV-C
STBSV-S
DTBSV-D
CTBSV-C
STPMV-S
DTPMV-D
CTPMV-C
STPSV-S
DTPSV-D

```
```

 CTPSV-C
 STRMV-S Multiply a real vector by a real triangular matrix.
 DTRMV-D
 CTRMV-C
 STRSV-S Solve a real triangular system of linear equations.
 DTRSV-D
 CTRSV-C
 D1B6. Multiplication
SGEMM-S Multiply a real general matrix by a real general matrix.
DGEMM-D
CGEMM-C
CHEMM-C Multiply a complex general matrix by a complex Hermitian
SHEMM-S matrix.
DHEMM-D
CHER2K-C Perform Hermitian rank 2k update of a complex.
SHER2-S
DHER2-D
CHER2-C
CHERK-C Perform Hermitian rank k update of a complex Hermitian
SHERK-S matrix.
DHERK-D
SSYMM-S Multiply a real general matrix by a real symmetric matrix.
DSYMM-D
CSYMM-C
DSYR2K-D Perform one of the symmetric rank 2k operations.
SSYR2-S
DSYR2-D
CSYR2-C
SSYRK-S Perform symmetric rank k update of a real symmetric matrix.
DSYRK-D
CSYRK-C
STRMM-S Multiply a real general matrix by a real triangular matrix.
DTRMM-D
CTRMM-C
STRSM-S Solve a real triangular system of equations with multiple
DTRSM-D right-hand sides.
CTRSM-C
D1B9. Storage mode conversion
SS2Y-S SLAP Triad to SLAP Column Format Converter.
DS2Y-D Routine to convert from the SLAP Triad to SLAP Column
format.
D1B10. Elementary rotation (Givens transformation)
CSROT-C Apply a plane Givens rotation.
SROT-S
DROT-D

```
```

 SROTG-S Construct a plane Givens rotation.
 DROTG-D
 CROTG-C
 SROTMG-S Construct a modified Givens transformation.
 DROTMG-D
 D2. Solution of systems of linear equations (including inversion, LU and
related decompositions)
D2A. Real nonsymmetric matrices
D2A1.General

```
```

SGECO-S Factor a matrix using Gaussian elimination and estimate

```
SGECO-S Factor a matrix using Gaussian elimination and estimate
DGECO-D the condition number of the matrix.
DGECO-D the condition number of the matrix.
CGECO-C
CGECO-C
SGEDI-S
SGEDI-S
DGEDI-D
DGEDI-D
CGEDI-C
CGEDI-C
SGEFA-S
SGEFA-S
DGEFA-D
DGEFA-D
CGEFA-C
CGEFA-C
SGEFS-S
SGEFS-S
DGEFS-D
DGEFS-D
CGEFS-C
CGEFS-C
SGEIR-S
SGEIR-S
CGEIR-C
CGEIR-C
SGESL-S
SGESL-S
DGESL-D
DGESL-D
CGESL-C
CGESL-C
SQRSL-S
SQRSL-S
DQRSL-D
DQRSL-D
CQRSL-C
CQRSL-C
D2A2. Banded
```

```
SGBCO-S
```

SGBCO-S
DGBCO-D
DGBCO-D
CGBCO-C
CGBCO-C
SGBFA-S
SGBFA-S
DGBFA-D
DGBFA-D
CGBFA-C
CGBFA-C
SGBSL-S
SGBSL-S
DGBSL-D
DGBSL-D
CGBSL-C
CGBSL-C
SNBCO-S Factor a band matrix using Gaussian elimination and
SNBCO-S Factor a band matrix using Gaussian elimination and
DNBCO-D
DNBCO-D
CNBCO-C
CNBCO-C
SNBFA-S
SNBFA-S
DNBFA-D
DNBFA-D
CNBFA-C

```
CNBFA-C
```

| | SNBFS-S
 DNBFS-D
 CNBFS-C | Solve a general nonsymmetric banded system of linear equations. |
| :---: | :---: | :---: |
| | SNBIR-S | Solve a general nonsymmetric banded system of linear |
| | CNBIR-C | equations. Iterative refinement is used to obtain an error estimate. |
| | SNBSL-S | Solve a real band system using the factors computed by |
| | DNBSL-D | SNBCO or SNBFA. |
| | CNBSL-C | |
| D2A2A. | Tridiagonal | |
| | SGTSL-S | Solve a tridiagonal linear system. |
| | DGTSL-D | |
| | CGTSL-C | |
| D2A3. | Triangular | |
| | SSLI-S | SLAP MSOLVE for Lower Triangle Matrix. |
| | DSLI-D | This routine acts as an interface between the SLAP generic |
| | | MSOLVE calling convention and the routine that actually -1 |
| | | computes $\mathrm{L} \quad \mathrm{B}=\mathrm{X}$. |
| | SSLI2-S | SLAP Lower Triangle Matrix Backsolve. |
| | DSLI2-D | Routine to solve a system of the form $L x=b$, where L is a lower triangular matrix. |
| | STRCO-S | Estimate the condition number of a triangular matrix. |
| | DTRCO-D | |
| | CTRCO-C | |
| | STRDI-S | Compute the determinant and inverse of a triangular matrix. |
| | DTRDI-D | |
| | CTRDI-C | |
| | STRSL-S | Solve a system of the form $T * X=B$ or TRANS (T)* $\mathrm{X}=\mathrm{B}$, where |
| | DTRSL-D | T is a triangular matrix. |
| | CTRSL-C | |
| D2A4. | Sparse | |
| | SBCG-S | Preconditioned BiConjugate Gradient Sparse Ax $=\mathrm{b}$ Solver. |
| | DBCG-D | Routine to solve a Non-Symmetric linear system $A x=b$ using the Preconditioned BiConjugate Gradient method. |
| | SCGN-S | Preconditioned CG Sparse $A x=b$ Solver for Normal Equations. |
| | DCGN-D | Routine to solve a general linear system $A x=b$ using the |
| | | Preconditioned Conjugate Gradient method applied to the normal equations $A A^{\prime} y=b, x=A^{\prime} y$. |
| | SCGS-S | Preconditioned BiConjugate Gradient Squared Ax=b Solver. |
| | DCGS-D | Routine to solve a Non-Symmetric linear system $A x=b$ using the Preconditioned BiConjugate Gradient Squared method. |
| | SGMRES-S | Preconditioned GMRES Iterative Sparse Ax=b Solver. |
| | DGMRES-D | This routine uses the generalized minimum residual |

| | (GMRES) method with preconditioning to solve |
| :--- | :--- |
| | non-symmetric linear systems of the form: Ax = b. |
| SIR-S | Preconditioned Iterative Refinement Sparse Ax = b Solver. |
| DIR-D | |
| | Routine to solve a general linear system Ax = b using |
| iterative refinement with a matrix splitting. | |

```
        SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
        DSLUCS-D Routine to solve a linear system Ax = b using the
        BiConjugate Gradient Squared method with Incomplete LU
        decomposition preconditioning.
    SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
DSLUGM-D This routine uses the generalized minimum residual
        (GMRES) method with incomplete LU factorization for
        preconditioning to solve possibly non-symmetric linear
        systems of the form: Ax = b.
SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
DSLUOM-D Routine to solve a general linear system Ax = b using
        the Orthomin method with Incomplete LU decomposition.
D2B. Real symmetric matrices
D2B1. General
D2B1A. Indefinite
    SSICO-S Factor a symmetric matrix by elimination with symmetric
    DSICO-D pivoting and estimate the condition number of the matrix.
    CHICO-C
    CSICO-C
    SSIDI-S Compute the determinant, inertia and inverse of a real
    DSIDI-D symmetric matrix using the factors from SSIFA.
    CHIDI-C
    CSIDI-C
    SSIFA-S Factor a real symmetric matrix by elimination with
    DSIFA-D symmetric pivoting.
    CHIFA-C
    CSIFA-C
    SSISL-S Solve a real symmetric system using the factors obtained
    DSISL-D from SSIFA.
    CHISL-C
    CSISL-C
    SSPCO-S Factor a real symmetric matrix stored in packed form
    DSPCO-D by elimination with symmetric pivoting and estimate the
    CHPCO-C condition number of the matrix.
CSPCO-C
SSPDI-S Compute the determinant, inertia, inverse of a real
DSPDI-D symmetric matrix stored in packed form using the factors
CHPDI-C from SSPFA.
CSPDI-C
SSPFA-S Factor a real symmetric matrix stored in packed form by
DSPFA-D elimination with symmetric pivoting.
CHPFA-C
CSPFA-C
SSPSL-S Solve a real symmetric system using the factors obtained
DSPSL-D from SSPFA.
CHPSL-C
CSPSL-C
D2B1B. Positive definite
```

```
    SCHDC-S Compute the Cholesky decomposition of a positive definite
    DCHDC-D
    CCHDC-C
    SPOCO-S Factor a real symmetric positive definite matrix
    DPOCO-D and estimate the condition number of the matrix.
    CPOCO-C
    SPODI-S Compute the determinant and inverse of a certain real
    DPODI-D symmetric positive definite matrix using the factors
    CPODI-C computed by SPOCO, SPOFA or SQRDC.
    SPOFA-S
    DPOFA-D
    CPOFA-C
    SPOFS-S
    DPOFS-D
    CPOFS-C
    SPOIR-S Solve a positive definite symmetric system of linear
    CPOIR-C equations. Iterative refinement is used to obtain an error
    estimate.
SPOSL-S Solve the real symmetric positive definite linear system
DPOSL-D
CPOSL-C
SPPCO-S
DPPCO-D
CPPCO-C
SPPDI-S
DPPDI-D
CPPDI-C
SPPFA-S Factor a real symmetric positive definite matrix stored in
DPPFA-D
CPPFA-C
SPPSL-S Solve the real symmetric positive definite system using
DPPSL-D the factors computed by SPPCO or SPPFA.
CPPSL-C
D2B2. Positive definite banded
SPBCO-S Factor a real symmetric positive definite matrix stored in
DPBCO-D band form and estimate the condition number of the matrix.
CPBCO-C
SPBFA-S Factor a real symmetric positive definite matrix stored in
DPBFA-D band form.
CPBFA-C
SPBSL-S Solve a real symmetric positive definite band system
DPBSL-D using the factors computed by SPBCO or SPBFA.
CPBSL-C
D2B2A. Tridiagonal
```


BiConjugate Gradient Squared method with diagonal scaling.

| $\begin{aligned} & \text { SSDGMR-S } \\ & \text { DSDGMR-D } \end{aligned}$ | Diagonally Scaled GMRES Iterative Sparse Ax=b Solver. This routine uses the generalized minimum residual (GMRES) method with diagonal scaling to solve possibly non-symmetric linear systems of the form: $A x=b$. |
| :---: | :---: |
| SSDOMN-S | Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver. |
| DSDOMN-D | Routine to solve a general linear system $A x=b$ using the Orthomin method with diagonal scaling. |
| SSGS-S | Gauss-Seidel Method Iterative Sparse Ax = b Solver. |
| DSGS-D | Routine to solve a general linear system $A x=b$ using Gauss-Seidel iteration. |
| SSICCG-S | Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver. |
| DSICCG-D | Routine to solve a symmetric positive definite linear system $A x=b$ using the incomplete Cholesky Preconditioned Conjugate Gradient method. |
| SSILUR-S | Incomplete LU Iterative Refinement Sparse Ax = b Solver. |
| DSILUR-D | Routine to solve a general linear system $A x=b$ using the incomplete LU decomposition with iterative refinement. |
| SSJAC-S | Jacobi's Method Iterative Sparse Ax = b Solver. |
| DSJAC-D | Routine to solve a general linear system $A x=b$ using Jacobi iteration. |
| SSLUBC-S | Incomplete LU BiConjugate Gradient Sparse Ax=b Solver. |
| DSLUBC-D | Routine to solve a linear system $A x=b$ using the BiConjugate Gradient method with Incomplete LU decomposition preconditioning. |
| SSLUCN-S | Incomplete LU CG Sparse Ax=b Solver for Normal Equations. |
| DSLUCN-D | Routine to solve a general linear system $A x=b$ using the incomplete LU decomposition with the Conjugate Gradient method applied to the normal equations, viz., $A A^{\prime} y=b$, $x=A^{\prime} y$. |

SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver. DSLUCS-D Routine to solve a linear system $A x=b$ using the BiConjugate Gradient Squared method with Incomplete LU decomposition preconditioning.

SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
DSLUGM-D This routine uses the generalized minimum residual (GMRES) method with incomplete LU factorization for preconditioning to solve possibly non-symmetric linear systems of the form: $A x=b$.

SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver. DSLUOM-D Routine to solve a general linear system $A x=b$ using the Orthomin method with Incomplete LU decomposition.

D2C. Complex non-Hermitian matrices
D2C1. General

```
CGECO-C Factor a matrix using Gaussian elimination and estimate
SGECO-S the condition number of the matrix.
DGECO-D
```

| CGEDI-C | Compute the determinant and inverse of a matrix using the |
| :--- | :--- |
| SGEDI-S | factors computed by CGECO or CGEFA. |
| DGEDI-D | |
| CGEFA-C | Factor a matrix using Gaussian elimination. |
| SGEFA-S | |
| DGEFA-D | |
| CGEFS-C | Solve a general system of linear equations. |
| SGEFS-S | |
| DGEFS-D | |
| CGEIR-C | Solve a general system of linear equations. Iterative |
| SGEIR-S | refinement is used to obtain an error estimate. |
| CGESL-C | Solve the complex system A*X=B or CTRANS (A)*X=B using the |
| SGESL-S | factors computed by CGECO or CGEFA. |
| DGESL-D | |
| CQRSL-C | Apply the output of CQRDC to compute coordinate transfor- |
| SQRSL-S | mations, projections, and least squares solutions. |
| DQRSL-D | |
| CSICO-C | Factor a complex symmetric matrix by elimination with |
| SSICO-S | symmetric pivoting and estimate the condition number of the |
| DSICO-D | matrix. |
| CHICO-C | |
| CSPSL-C | Solve a complex symmetric system using the factors obtained |
| SSPSL-S | from CSPFA. |
| DSPSL-D | |

CHPSL-C
D2C2. Banded
CGBCO-C Factor a band matrix by Gaussian elimination and SGBCO-S estimate the condition number of the matrix.
DGBCO-D
CGBFA-C
SGBFA-S
DGBFA-D

CGBSL-C Solve the complex band system $A * X=B$ or CTRANS (A)*X=B using
SGBSL-S
DGBSL-D
CNBCO-C Factor a band matrix using Gaussian elimination and SNBCO-S DNBCO-D

CNBFA-C Factor a band matrix by elimination.
SNBFA-S DNBFA-D

CNBFS-C Solve a general nonsymmetric banded system of linear SNBFS-S DNBFS-D

CNBIR-C Solve a general nonsymmetric banded system of linear SNBIR-S equations. Iterative refinement is used to obtain an error estimate.

CNBSL-C Solve a complex band system using the factors computed by SNBSL-S CNBCO or CNBFA. DNBSL-D

D2C2A. Tridiagonal
CGTSL-C Solve a tridiagonal linear system. SGTSL-S DGTSL-D

D2C3. Triangular
CTRCO-C Estimate the condition number of a triangular matrix. STRCO-S DTRCO-D

CTRDI-C Compute the determinant and inverse of a triangular matrix. STRDI-S DTRDI-D

CTRSL-C Solve a system of the form $T * X=B$ or CTRANS $(T) * X=B$, where STRSL-S T is a triangular matrix. Here CTRANS (T) is the conjugate DTRSL-D transpose.

D2D. Complex Hermitian matrices
D2D1. General
D2D1A. Indefinite
CHICO-C Factor a complex Hermitian matrix by elimination with sym-

```
    SSICO-S metric pivoting and estimate the condition of the matrix.
    DSICO-D
    CSICO-C
    CHIDI-C
    SSIDI-S
    DSISI-D
    CSIDI-C
    CHIFA-C
    SSIFA-S
    DSIFA-D
    CSIFA-C
    CHISL-C
    SSISL-S
    DSISL-D
    CSISL-C
    CHPCO-C
    SSPCO-S
    DSPCO-D
    CSPCO-C
    CHPDI-C
    SSPDI-S
    DSPDI-D
    DSPDI-C
    CHPFA-C Factor a complex Hermitian matrix stored in packed form by
    SSPFA-S
    DSPFA-D
DSPFA-C
    CHPSL-C
    SSPSL-S
    DSPSL-D
    CSPSL-C
D2D1B. Positive definite
CCHDC-C Compute the Cholesky decomposition of a positive definite
SCHDC-S matrix. A pivoting option allows the user to estimate the
DCHDC-D
    condition number of a positive definite matrix or determine
    the rank of a positive semidefinite matrix.
CPOCO-
SPOCO-S
DPOCO-D
CPODI-C Compute the determinant and inverse of a certain complex
SPODI-S Hermitian positive definite matrix using the factors
DPODI-D computed by CPOCO, CPOFA, or CQRDC.
CPOFA-C Factor a complex Hermitian positive definite matrix.
SPOFA-S
DPOFA-D
CPOFS-C Solve a positive definite symmetric complex system of
SPOFS-S linear equations.
DPOFS-D
```


| DSDS-D | Routine to compute the inverse of the diagonal of a matrix

 stored in the SLAP Column format. |
| :--- | :--- |
| SSDSCL-S | Diagonal Scaling of system Ax $=$ b. |
| DSDSCL-D | This routine scales (and unscales) the system Ax = b |
| | by symmetric diagonal scaling. |
| SSICS-S | Incompl. Cholesky Decomposition Preconditioner SLAP Set Up. |
| DSICS-D | |
| | Routine to generate the Incomplete Cholesky decomposition, |

D3. Determinants
D3A. Real nonsymmetric matrices
D3A1. General
SGEDI-S Compute the determinant and inverse of a matrix using the DGEDI-D factors computed by SGECO or SGEFA.
CGEDI-C
D3A2. Banded
SGBDI-S Compute the determinant of a band matrix using the factors DGBDI-D computed by SGBCO or SGBFA. CGBDI-C

SNBDI-S Compute the determinant of a band matrix using the factors DNBDI-D computed by SNBCO or SNBFA. CNBDI-C

D3A3. Triangular
STRDI-S Compute the determinant and inverse of a triangular matrix. DTRDI-D
CTRDI-C
D3B. Real symmetric matrices
D3B1. General
D3B1A. Indefinite
SSIDI-S Compute the determinant, inertia and inverse of a real DSIDI-D symmetric matrix using the factors from SSIFA.
CHIDI-C
CSIDI-C
SSPDI-S Compute the determinant, inertia, inverse of a real DSPDI-D symmetric matrix stored in packed form using the factors CHPDI-C from SSPFA. CSPDI-C

D3B1B. Positive definite
SPODI-S Compute the determinant and inverse of a certain real DPODI-D symmetric positive definite matrix using the factors CPODI-C computed by SPOCO, SPOFA or SQRDC.

SPPDI-S Compute the determinant and inverse of a real symmetric DPPDI-D positive definite matrix using factors from SPPCO or SPPFA. CPPDI-C

D3B2. Positive definite banded
SPBDI-S Compute the determinant of a symmetric positive definite DPBDI-D band matrix using the factors computed by SPBCO or SPBFA. CPBDI-C

D3C. Complex non-Hermitian matrices
D3C1. General
CGEDI-C Compute the determinant and inverse of a matrix using the SGEDI-S factors computed by CGECO or CGEFA.
DGEDI-D

```
CSIDI-C Compute the determinant and inverse of a complex symmetric
SSIDI-S matrix using the factors from CSIFA.
DSIDI-D
CHIDI-C
CSPDI-C Compute the determinant and inverse of a complex symmetric
SSPDI-S matrix stored in packed form using the factors from CSPFA.
DSPDI-D
CHPDI-C
```

D3C2. Banded

| CGBDI-C | Compute the determinant of a complex band matrix using the |
| :--- | :--- |
| SGBDI-S | factors from CGBCO or CGBFA. |
| DGBDI-D | |
| CNBDI-C | Compute the determinant of a band matrix using the factors |
| SNBDI-S | computed by CNBCO or CNBFA. |

D3C3. Triangular
CTRDI-C Compute the determinant and inverse of a triangular matrix. STRDI-S DTRDI-D

D3D. Complex Hermitian matrices
D3D1. General
D3D1A. Indefinite
CHIDI-C Compute the determinant, inertia and inverse of a complex SSIDI-S Hermitian matrix using the factors obtained from CHIFA. DSISI-D CSIDI-C

CHPDI-C Compute the determinant, inertia and inverse of a complex SSPDI-S Hermitian matrix stored in packed form using the factors DSPDI-D obtained from CHPFA. DSPDI-C

D3D1B. Positive definite

| CPODI-C | Compute the determinant and inverse of a certain complex |
| :--- | :--- |
| SPODI-S | Hermitian positive definite matrix using the factors |
| DPODI-D | computed by CPOCO, CPOFA, or CQRDC. |
| CPPDI-C | Compute the determinant and inverse of a complex Hermitian |
| SPPDI-S | positive definite matrix using factors from CPPCO or CPPFA. |

D3D2. Positive definite banded
CPBDI-C Compute the determinant of a complex Hermitian positive SPBDI-S definite band matrix using the factors computed by CPBCO or DPBDI-D CPBFA.

D4. Eigenvalues, eigenvectors
EISDOC-A Documentation for EISPACK, a collection of subprograms for solving matrix eigen-problems.

D4A. Ordinary eigenvalue problems ($\mathrm{Ax}=(\operatorname{lambda})$ * x)
D4A1. Real symmetric
RS-S

CH-C | Compute the eigenvalues and, optionally, the eigenvectors |
| :--- |
| of a real symmetric matrix. |

D4A2. Real nonsymmetric
RG-S Compute the eigenvalues and, optionally, the eigenvectors CG-C of a real general matrix.

SGEEV-S Compute the eigenvalues and, optionally, the eigenvectors CGEEV-C of a real general matrix.

D4A3. Complex Hermitian

| CH-C | Compute the eigenvalues and, optionally, the eigenvectors |
| :--- | :--- |
| RS-S | of a complex Hermitian matrix. |
| CHIEV-C | Compute the eigenvalues and, optionally, the eigenvectors |
| SSIEV-S | of a complex Hermitian matrix. |

D4A4. Complex non-Hermitian

| CG-C | Compute the eigenvalues and, optionally, the eigenvectors |
| :--- | :--- |
| RG-S | of a complex general matrix. |
| CGEEV-C | Compute the eigenvalues and, optionally, the eigenvectors |
| SGEEV-S | of a complex general matrix. |

D4A5. Tridiagonal

| B | Compute the eigenvalues of a symmetric tridiagonal matrix in a given interval using Sturm sequencing. |
| :---: | :---: |
| IMTQL1-S | Compute the eigenvalues of a symmetric tridiagonal matrix using the implicit $Q L$ method. |
| IMTQL2-S | Compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the implicit QL method. |
| IMTQLV-S | Compute the eigenvalues of a symmetric tridiagonal matrix using the implicit QL method. Eigenvectors may be computed later. |
| RATQR-S | Compute the largest or smallest eigenvalues of a symmetric tridiagonal matrix using the rational $Q R$ method with Newton correction. |
| S-S | e the eigenvalues |

of a real symmetric tridiagonal matrix.

| RT-S | Compute the eigenvalues and eigenvectors of a special real
 tridiagonal matrix. |
| :--- | :--- |
| TQL1-S | Compute the eigenvalues of symmetric tridiagonal matrix by
 the QL method. |
| TQL2-S | Compute the eigenvalues and eigenvectors of symmetric
 tridiagonal matrix. |
| TQLRAT-S | Compute the eigenvalues of symmetric tridiagonal matrix
 using a rational variant of the QL method. |
| TSTURM-S | Compute the eigenvalues of a symmetric tridiagonal matrix
 in a given interval using Sturm sequencing. |
| in a given interval and their associated eigenvectors by
 Sturm sequencing. | |

D4A6. Banded

```
BQR-S Compute some of the eigenvalues of a real symmetric
    matrix using the QR method with shifts of origin.
RSB-S Compute the eigenvalues and, optionally, the eigenvectors
    of a symmetric band matrix.
```

D4B. Generalized eigenvalue problems (e.g., $A x=(l a m b d a) * B x)$
D4B1. Real symmetric
RSG-S Compute the eigenvalues and, optionally, the eigenvectors of a symmetric generalized eigenproblem.

RSGAB-S Compute the eigenvalues and, optionally, the eigenvectors of a symmetric generalized eigenproblem.

RSGBA-S Compute the eigenvalues and, optionally, the eigenvectors of a symmetric generalized eigenproblem.

D4B2. Real general
RGG-S Compute the eigenvalues and eigenvectors for a real generalized eigenproblem.

D4C. Associated operations
D4C1. Transform problem
D4C1A. Balance matrix
BALANC-S Balance a real general matrix and isolate eigenvalues CBAL-C whenever possible.

D4C1B. Reduce to compact form
D4C1B1. Tridiagonal
BANDR-S Reduce a real symmetric band matrix to symmetric tridiagonal matrix and, optionally, accumulate orthogonal similarity transformations.

HTRID3-S Reduce a complex Hermitian (packed) matrix to a real

| | symmetric tridiagonal matrix by unitary similarity transformations. |
| :---: | :---: |
| HTRIDI-S | Reduce a complex Hermitian matrix to a real symmetric tridiagonal matrix using unitary similarity transformations. |
| TRED1-S | Reduce a real symmetric matrix to symmetric tridiagonal matrix using orthogonal similarity transformations. |
| TRED2-S | Reduce a real symmetric matrix to a symmetric tridiagonal matrix using and accumulating orthogonal transformations. |
| TRED3-S | Reduce a real symmetric matrix stored in packed form to symmetric tridiagonal matrix using orthogonal transformations. |

D4C1B2. Hessenberg
ELMHES-S Reduce a real general matrix to upper Hessenberg form COMHES-C using stabilized elementary similarity transformations.

ORTHES-S Reduce a real general matrix to upper Hessenberg form CORTH-C using orthogonal similarity transformations.

D4C1B3. Other
QZHES-S The first step of the QZ algorithm for solving generalized matrix eigenproblems. Accepts a pair of real general matrices and reduces one of them to upper Hessenberg and the other to upper triangular form using orthogonal transformations. Usually followed by QZIT, QZVAL, QZVEC.

QZIT-S The second step of the QZ algorithm for generalized eigenproblems. Accepts an upper Hessenberg and an upper triangular matrix and reduces the former to quasi-triangular form while preserving the form of the latter. Usually preceded by QZHES and followed by QZVAL and QZVEC.

D4C1C. Standardize problem
FIGI-S Transforms certain real non-symmetric tridiagonal matrix to symmetric tridiagonal matrix.

FIGI2-S Transforms certain real non-symmetric tridiagonal matrix to symmetric tridiagonal matrix.

REDUC-S Reduce a generalized symmetric eigenproblem to a standard symmetric eigenproblem using Cholesky factorization.

REDUC2-S Reduce a certain generalized symmetric eigenproblem to a standard symmetric eigenproblem using Cholesky factorization.

D4C2. Compute eigenvalues of matrix in compact form
D4C2A. Tridiagonal
BISECT-S Compute the eigenvalues of a symmetric tridiagonal matrix in a given interval using Sturm sequencing.

| IMTQL1-S | Compute the eigenvalues of a symmetric tridiagonal matrix using the implicit QL method. |
| :---: | :---: |
| IMTQL2-S | Compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the implicit QL method. |
| IMTQLV-S | Compute the eigenvalues of a symmetric tridiagonal matrix using the implicit QL method. Eigenvectors may be computed later. |
| RATQR-S | Compute the largest or smallest eigenvalues of a symmetric tridiagonal matrix using the rational $Q R$ method with Newton correction. |
| TQL1-S | Compute the eigenvalues of symmetric tridiagonal matrix by the QL method. |
| TQL2-S | Compute the eigenvalues and eigenvectors of symmetric tridiagonal matrix. |
| TQLRAT-S | Compute the eigenvalues of symmetric tridiagonal matrix using a rational variant of the QL method. |
| TRIDIB-S | Compute the eigenvalues of a symmetric tridiagonal matrix in a given interval using Sturm sequencing. |
| TSTURM-S | Find those eigenvalues of a symmetric tridiagonal matrix in a given interval and their associated eigenvectors by Sturm sequencing. |

D4C2B. Hessenberg
COMLR-C Compute the eigenvalues of a complex upper Hessenberg matrix using the modified LR method.

COMLR2-C Compute the eigenvalues and eigenvectors of a complex upper Hessenberg matrix using the modified LR method.

HQR-S Compute the eigenvalues of a real upper Hessenberg matrix COMQR-C using the QR method.

HQR2-S Compute the eigenvalues and eigenvectors of a real upper
COMQR2-C Hessenberg matrix using $Q R$ method.
INVIT-S Compute the eigenvectors of a real upper Hessenberg CINVIT-C matrix associated with specified eigenvalues by inverse iteration.

D4C2C. Other

> QZVAL-S The third step of the QZ algorithm for generalized eigenproblems. Accepts a pair of real matrices, one in quasi-triangular form and the other in upper triangular form and computes the eigenvalues of the associated eigenproblem. Usually preceded by QZHES, QZIT, and followed by QZVEC.

D4C3. Form eigenvectors from eigenvalues
BANDV-S Form the eigenvectors of a real symmetric band matrix associated with a set of ordered approximate eigenvalues
by inverse iteration.
$\left.\begin{array}{ll}\text { QZVEC-S } & \begin{array}{l}\text { The optional fourth step of the } Q Z \text { algorithm for } \\ \text { generalized eigenproblems. Accepts a matrix in }\end{array} \\ & \text { quasi-triangular form and another in upper triangular } \\ \text { and computes the eigenvectors of the triangular problem } \\ \text { and transforms them back to the original coordinates }\end{array}\right\}$

D4C4. Back transform eigenvectors

| BAKVEC-S | Form the eigenvectors of a certain real non-symmetric tridiagonal matrix from a symmetric tridiagonal matrix output from FIGI. |
| :---: | :---: |
| BALBAK-S | Form the eigenvectors of a real general matrix from the |
| CBABK2-C | eigenvectors of matrix output from BALANC. |
| ELMBAK-S | Form the eigenvectors of a real general matrix from the |
| COMBAK-C | eigenvectors of the upper Hessenberg matrix output from ELMHES. |
| ELTRAN-S | Accumulates the stabilized elementary similarity transformations used in the reduction of a real general matrix to upper Hessenberg form by ELMHES. |
| HTRIB3-S | Compute the eigenvectors of a complex Hermitian matrix from the eigenvectors of a real symmetric tridiagonal matrix output from HTRID3. |
| HTRIBK-S | Form the eigenvectors of a complex Hermitian matrix from the eigenvectors of a real symmetric tridiagonal matrix output from HTRIDI. |
| $\begin{aligned} & \text { ORTBAK-S } \\ & \text { CORTB-C } \end{aligned}$ | Form the eigenvectors of a general real matrix from the eigenvectors of the upper Hessenberg matrix output from ORTHES . |
| ORTRAN-S | Accumulate orthogonal similarity transformations in the reduction of real general matrix by ORTHES. |
| REBAK-S | Form the eigenvectors of a generalized symmetric eigensystem from the eigenvectors of derived matrix output from REDUC or REDUC2. |
| REBAKB-S | Form the eigenvectors of a generalized symmetric eigensystem from the eigenvectors of derived matrix output from REDUC2. |
| TRBAK1-S | Form the eigenvectors of real symmetric matrix from the eigenvectors of a symmetric tridiagonal matrix formed by TRED1. |
| TRBAK3-S | Form the eigenvectors of a real symmetric matrix from the eigenvectors of a symmetric tridiagonal matrix formed by TRED3. |

D5. QR decomposition, Gram-Schmidt orthogonalization
LLSIA-S Solve a linear least squares problems by performing a $Q R$ DLLSIA-D factorization of the matrix using Householder transformations. Emphasis is put on detecting possible rank deficiency.

SGLSS-S Solve a linear least squares problems by performing a $Q R$ DGLSS-D factorization of the matrix using Householder transformations. Emphasis is put on detecting possible rank deficiency.

SQRDC-S Use Householder transformations to compute the QR DQRDC-D factorization of $a n \mathrm{~N}$ by P matrix. Column pivoting is a CQRDC-C users option.

D6. Singular value decomposition
SSVDC-S Perform the singular value decomposition of a rectangular DSVDC-D matrix. CSVDC-C

D7. Update matrix decompositions
D7B. Cholesky
SCHDD-S Downdate an augmented Cholesky decomposition or the DCHDD-D triangular factor of an augmented $Q R$ decomposition.
CCHDD-C
SCHEX-S Update the Cholesky factorization $A=T R A N S(R) * R$ of A
DCHEX-D positive definite matrix A of order P under diagonal
CCHEX-C permutations of the form TRANS (E)*A*E, where E is a
permutation matrix.
SCHUD-S Update an augmented Cholesky decomposition of the
DCHUD-D triangular part of an augmented $Q R$ decomposition.
CCHUD-C

D9. Overdetermined or underdetermined systems of equations, singular systems, pseudo-inverses (search also classes D5, D6, K1a, L8a)

BNDACC-S Compute the LU factorization of a banded matrices using
DBNDAC-D sequential accumulation of rows of the data matrix.
Exactly one right-hand side vector is permitted.
BNDSOL-S Solve the least squares problem for a banded matrix using
DBNDSL-D sequential accumulation of rows of the data matrix.
Exactly one right-hand side vector is permitted.
HFTI-S Solve a linear least squares problems by performing a $Q R$
DHFTI-D factorization of the matrix using Householder
transformations.
LLSIA-S Solve a linear least squares problems by performing a QR
DLLSIA-D factorization of the matrix using Householder
transformations. Emphasis is put on detecting possible
rank deficiency.
LSEI-S Solve a linearly constrained least squares problem with
DLSEI-D equality and inequality constraints, and optionally compute
a covariance matrix.

| MINFIT-S | Compute the singular value decomposition of a rectangular matrix and solve the related linear least squares problem. |
| :---: | :---: |
| SGLSS-S | Solve a linear least squares problems by performing a QR |
| DGLSS-D | factorization of the matrix using Householder transformations. Emphasis is put on detecting possible rank deficiency. |
| SQRSL-S | Apply the output of SQRDC to compute coordinate transfor |
| DQRSL-D | mations, projections, and least squares solutions. |
| CQRSL-C | |
| ULSIA-S | Solve an underdetermined linear system of equations by |
| DULSIA-D | performing an LQ factorization of the matrix using |
| | Householder transformations. Emphasis is put on detecting possible rank deficiency. |

E. Interpolation

BSPDOC-A Documentation for BSPLINE, a package of subprograms for working with piecewise polynomial functions in B-representation.

E1. Univariate data (curve fitting)
E1A. Polynomial splines (piecewise polynomials)

| $\begin{aligned} & \text { BINT4-S } \\ & \text { DBINT4-D } \end{aligned}$ | Compute the B-representation of a cubic spline which interpolates given data. |
| :---: | :---: |
| $\begin{aligned} & \text { BINTK-S } \\ & \text { DBINTK-D } \end{aligned}$ | Compute the B-representation of a spline which interpolates given data. |
| BSPDOC-A | Documentation for BSPLINE, a package of subprograms for working with piecewise polynomial functions in B-representation. |
| PCHDOC-A | Documentation for PCHIP, a Fortran package for piecewise cubic Hermite interpolation of data. |
| $\begin{aligned} & \text { PCHIC-S } \\ & \text { DPCHIC-D } \end{aligned}$ | Set derivatives needed to determine a piecewise monotone piecewise cubic Hermite interpolant to given data.
 User control is available over boundary conditions and/or treatment of points where monotonicity switches direction. |
| $\begin{aligned} & \text { PCHIM-S } \\ & \text { DPCHIM-D } \end{aligned}$ | Set derivatives needed to determine a monotone piecewise cubic Hermite interpolant to given data. Boundary values are provided which are compatible with monotonicity. The interpolant will have an extremum at each point where monotonicity switches direction. (See PCHIC if user control is desired over boundary or switch conditions.) |
| $\begin{aligned} & \text { PCHSP-S } \\ & \text { DPCHSP-D } \end{aligned}$ | Set derivatives needed to determine the Hermite representation of the cubic spline interpolant to given data, with specified boundary conditions. |

E1B. Polynomials
POLCOF-S Compute the coefficients of the polynomial fit (including
DPOLCF-D Hermite polynomial fits) produced by a previous call to POLINT.

POLINT-S Produce the polynomial which interpolates a set of discrete DPLINT-D data points.

E3. Service routines (e.g., grid generation, evaluation of fitted functions) (search also class N5)

| $\begin{aligned} & \text { BFQAD-S } \\ & \text { DBFQAD-D } \end{aligned}$ | Compute the integral of a product of a function and a derivative of a B-spline. |
| :---: | :---: |
| $\begin{aligned} & \text { BSPDR-S } \\ & \text { DBSPDR-D } \end{aligned}$ | Use the B-representation to construct a divided difference table preparatory to a (right) derivative calculation. |
| $\begin{aligned} & \text { BSPEV-S } \\ & \text { DBSPEV-D } \end{aligned}$ | Calculate the value of the spline and its derivatives from the B-representation. |
| $\begin{aligned} & \text { BSPPP-S } \\ & \text { DBSPPP-D } \end{aligned}$ | Convert the B-representation of a B-spline to the piecewise polynomial (PP) form. |
| $\begin{aligned} & \text { BSPVD-S } \\ & \text { DBSPVD-D } \end{aligned}$ | Calculate the value and all derivatives of order less than NDERIV of all basis functions which do not vanish at X. |
| $\begin{aligned} & \text { BSPVN-S } \\ & \text { DBSPVN-D } \end{aligned}$ | Calculate the value of all (possibly) nonzero basis functions at X. |
| $\begin{aligned} & \text { BSQAD-S } \\ & \text { DBSQAD-D } \end{aligned}$ | Compute the integral of $a \mathrm{~K}$-th order B -spline using the B-representation. |
| $\begin{aligned} & \text { BVALU-S } \\ & \text { DBVALU-D } \end{aligned}$ | Evaluate the B-representation of a B-spline at X for the function value or any of its derivatives. |
| $\begin{aligned} & \text { CHFDV-S } \\ & \text { DCHFDV-D } \end{aligned}$ | Evaluate a cubic polynomial given in Hermite form and its first derivative at an array of points. While designed for use by PCHFD, it may be useful directly as an evaluator for a piecewise cubic Hermite function in applications, such as graphing, where the interval is known in advance. If only function values are required, use CHFEV instead. |
| $\begin{aligned} & \text { CHFEV-S } \\ & \text { DCHFEV-D } \end{aligned}$ | Evaluate a cubic polynomial given in Hermite form at an array of points. While designed for use by PCHFE, it may be useful directly as an evaluator for a piecewise cubic Hermite function in applications, such as graphing, where the interval is known in advance. |
| $\begin{aligned} & \text { INTRV-S } \\ & \text { DINTRV-D } \end{aligned}$ | Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of the X interval. |
| $\begin{aligned} & \text { PCHBS-S } \\ & \text { DPCHBS-D } \end{aligned}$ | Piecewise Cubic Hermite to B-Spline converter. |
| $\begin{aligned} & \text { PCHCM-S } \\ & \text { DPCHCM-D } \end{aligned}$ | Check a cubic Hermite function for monotonicity. |
| $\begin{aligned} & \text { PCHFD-S } \\ & \text { DPCHFD-D } \end{aligned}$ | Evaluate a piecewise cubic Hermite function and its first derivative at an array of points. May be used by itself for Hermite interpolation, or as an evaluator for PCHIM or PCHIC. If only function values are required, use PCHFE instead. |
| PCHFE-S | Evaluate a piecewise cubic Hermite function at an array of |

```
    DPCHFE-D points. May be used by itself for Hermite interpolation,
        or as an evaluator for PCHIM or PCHIC.
    PCHIA-S Evaluate the definite integral of a piecewise cubic
    DPCHIA-D Hermite function over an arbitrary interval.
    PCHID-S Evaluate the definite integral of a piecewise cubic
    DPCHID-D Hermite function over an interval whose endpoints are data
        points.
    PFQAD-S Compute the integral on (X1,X2) of a product of a function
DPFQAD-D F and the ID-th derivative of a B-spline,
    (PP-representation).
POLYVL-S Calculate the value of a polynomial and its first NDER
DPOLVL-D derivatives where the polynomial was produced by a previous
    call to POLINT.
PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
DPPQAD-D using the piecewise polynomial (PP) representation.
PPVAL-S Calculate the value of the IDERIV-th derivative of the
DPPVAL-D B-spline from the PP-representation.
F. Solution of nonlinear equations
F1. Single equation
F1A. Smooth
F1A1. Polynomial
F1A1A. Real coefficients
```

```
RPQR79-S Find the zeros of a polynomial with real coefficients.
```

RPQR79-S Find the zeros of a polynomial with real coefficients.
CPQR79-C
CPQR79-C
RPZERO-S Find the zeros of a polynomial with real coefficients.
RPZERO-S Find the zeros of a polynomial with real coefficients.
CPZERO-C
CPZERO-C
F1A1B. Complex coefficients
CPQR79-C Find the zeros of a polynomial with complex coefficients. RPQR79-S
CPZERO-C Find the zeros of a polynomial with complex coefficients. RPZERO-S
F1B. General (no smoothness assumed)
FZERO-S Search for a zero of a function $F(X)$ in a given interval DFZERO-D (B,C). It is designed primarily for problems where $F(B)$ and $F(C)$ have opposite signs.
F2. System of equations
F2A. Smooth

```
```

SNSQ-S Find a zero of a system of a N nonlinear functions in N

```
SNSQ-S Find a zero of a system of a N nonlinear functions in N
DNSQ-D variables by a modification of the Powell hybrid method.
DNSQ-D variables by a modification of the Powell hybrid method.
SNSQE-S An easy-to-use code to find a zero of a system of N
SNSQE-S An easy-to-use code to find a zero of a system of N
DNSQE-D nonlinear functions in N variables by a modification of
DNSQE-D nonlinear functions in N variables by a modification of
                                    the Powell hybrid method.
                                    the Powell hybrid method.
SOS-S Solve a square system of nonlinear equations.
```

SOS-S Solve a square system of nonlinear equations.

```
```

 DSOS-D
 F3. Service routines (e.g., check user-supplied derivatives)
CHKDER-S Check the gradients of M nonlinear functions in N
DCKDER-D variables, evaluated at a point X, for consistency
with the functions themselves.
G. Optimization (search also classes K, L8)
G2. Constrained
G2A. Linear programming
G2A2. Sparse matrix of constraints
SPLP-S Solve linear programming problems involving at
DSPLP-D most a few thousand constraints and variables.
Takes advantage of sparsity in the constraint matrix.
G2E. Quadratic programming
SBOCLS-S Solve the bounded and constrained least squares
DBOCLS-D problem consisting of solving the equation
E*X = F (in the least squares sense)
subject to the linear constraints
C*X = Y.
SBOLS-S Solve the problem
DBOLS-D E*X = F (in the least squares sense)
with bounds on selected X values.
G2H. General nonlinear programming
G2H1. Simple bounds
SBOCLS-S Solve the bounded and constrained least squares
DBOCLS-D problem consisting of solving the equation
E*X = F (in the least squares sense)
subject to the linear constraints
C*X = Y.
SBOLS-S Solve the problem
DBOLS-D E*X = F (in the least squares sense)
with bounds on selected X values.
G2H2. Linear equality or inequality constraints
SBOCLS-S Solve the bounded and constrained least squares
DBOCLS-D problem consisting of solving the equation
E*X = F (in the least squares sense)
subject to the linear constraints
C*X = Y.
SBOLS-S Solve the problem
DBOLS-D E*X = F (in the least squares sense)
with bounds on selected X values.
G4. Service routines
G4C. Check user-supplied derivatives
CHKDER-S Check the gradients of M nonlinear functions in N DCKDER-D variables, evaluated at a point X, for consistency with the functions themselves.

```
```

H. Differentiation, integration
H1. Numerical differentiation
CHFDV-S Evaluate a cubic polynomial given in Hermite form and its
DCHFDV-D first derivative at an array of points. While designed for
use by PCHFD, it may be useful directly as an evaluator
for a piecewise cubic Hermite function in applications,
such as graphing, where the interval is known in advance.
If only function values are required, use CHFEV instead.
PCHFD-S Evaluate a piecewise cubic Hermite function and its first
DPCHFD-D derivative at an array of points. May be used by itself
for Hermite interpolation, or as an evaluator for PCHIM
or PCHIC. If only function values are required, use
PCHFE instead.
H2. Quadrature (numerical evaluation of definite integrals)
QPDOC-A Documentation for QUADPACK, a package of subprograms for
automatic evaluation of one-dimensional definite integrals.
H2A. One-dimensional integrals
H2A1. Finite interval (general integrand)
H2A1A. Integrand available via user-defined procedure
H2A1A1. Automatic (user need only specify required accuracy)

| $\begin{aligned} & \text { GAUS8-S } \\ & \text { DGAUS8-D } \end{aligned}$ | Integrate a real function of one variable over a finite interval using an adaptive 8-point Legendre-Gauss algorithm. Intended primarily for high accuracy integration or integration of smooth functions. |
| :---: | :---: |
| $\begin{aligned} & \text { QAG-S } \\ & \text { DQAG-D } \end{aligned}$ | The routine calculates an approximation result to a given definite integral $I=$ integral of F over (A, B), hopefully satisfying following claim for accuracy ABS (I-RESULT) LE.MAX (EPSABS, EPSREL*ABS (I)) . |
| $\begin{aligned} & \text { QAGE-S } \\ & \text { DQAGE-D } \end{aligned}$ | The routine calculates an approximation result to a given definite integral $I=$ Integral of F over (A,B), hopefully satisfying following claim for accuracy ABS (I-RESLT).LE.MAX (EPSABS, EPSREL*ABS (I)). |
| $\begin{aligned} & \text { QAGS-S } \\ & \text { DQAGS-D } \end{aligned}$ | The routine calculates an approximation result to a given Definite integral $I=$ Integral of F over (A, B), Hopefully satisfying following claim for accuracy ABS (I-RESULT). LE. MAX (EPSABS, EPSREL*ABS (I)) . |
| $\begin{aligned} & \text { QAGSE-S } \\ & \text { DQAGSE-D } \end{aligned}$ | The routine calculates an approximation result to a given definite integral $I=$ Integral of F over (A, B), hopefully satisfying following claim for accuracy ABS (I-RESULT). LE.MAX (EPSABS, EPSREL*ABS (I)) . |
| $\begin{aligned} & \text { QNC79-S } \\ & \text { DQNC79-D } \end{aligned}$ | Integrate a function using a 7-point adaptive Newton-Cotes quadrature rule. |
| $\begin{aligned} & \text { QNG-S } \\ & \text { DQNG-D } \end{aligned}$ | The routine calculates an approximation result to a given definite integral $I=$ integral of F over (A, B), hopefully satisfying following claim for accuracy ABS (I-RESULT).LE.MAX (EPSABS, EPSREL*ABS (I)). |

```

H2A1A2. Nonautomatic


H2A1B. Integrand available only on grid
H2A1B2. Nonautomatic
```

AVINT-S Integrate a function tabulated at arbitrarily spaced
DAVINT-D abscissas using overlapping parabolas.
PCHIA-S Evaluate the definite integral of a piecewise cubic
DPCHIA-D Hermite function over an arbitrary interval.
PCHID-S Evaluate the definite integral of a piecewise cubic
DPCHID-D Hermite function over an interval whose endpoints are data
points.

```

H2A2. Finite interval (specific or special type integrand including weight functions, oscillating and singular integrands, principal value integrals, splines, etc.)
H2A2A. Integrand available via user-defined procedure H2A2A1. Automatic (user need only specify required accuracy)
```

BFQAD-S Compute the integral of a product of a function and a
DBFQAD-D derivative of a B-spline.
BSQAD-S Compute the integral of a K-th order B-spline using the
DBSQAD-D B-representation.
PFQAD-S Compute the integral on (X1,X2) of a product of a function
DPFQAD-D F and the ID-th derivative of a B-spline,
(PP-representation).
PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
DPPQAD-D using the piecewise polynomial (PP) representation.
QAGP-S The routine calculates an approximation result to a given
DQAGP-D definite integral I = Integral of F over (A,B),
hopefully satisfying following claim for accuracy
break points of the integration interval, where local
difficulties of the integrand may occur(e.g. SINGULARITIES,

```

DISCONTINUITIES), are provided by the user.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { QAGPE-S } \\
& \text { DQAGPE-D }
\end{aligned}
\] & \begin{tabular}{l}
Approximate a given definite integral \(I=\) Integral of \(F\) over (A,B), hopefully satisfying the accuracy claim: ABS (I-RESULT). LE.MAX (EPSABS, EPSREL*ABS (I)) . \\
Break points of the integration interval, where local difficulties of the integrand may occur (e.g. singularities or discontinuities) are provided by the user.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { QAWC-S } \\
& \text { DQAWC-D }
\end{aligned}
\] & The routine calculates an approximation result to a Cauchy principal value \(I=\) INTEGRAL of \(F * W\) over ( \(A, B\) ) \((W(X)=1 /((X-C), C . N E . A, C . N E . B)\), hopefully satisfying following claim for accuracy ABS (I-RESULT). LE.MAX (EPSABE, EPSREL*ABS (I)) . \\
\hline \begin{tabular}{l}
QAWCE-S \\
DQAWCE-D
\end{tabular} & The routine calculates an approximation result to a CAUCHY PRINCIPAL VALUE \(I=\) Integral of \(F * W\) over (A,B) \((W)(X)=1 /(X-C)\), (C.NE.A, C.NE.B), hopefully satisfying following claim for accuracy ABS (I-RESULT) .LE.MAX (EPSABS, EPSREL*ABS (I) ) \\
\hline \[
\begin{aligned}
& \text { QAWO-S } \\
& \text { DQAWO-D }
\end{aligned}
\] & ```
Calculate an approximation to a given definite integral
    I = Integral of F(X)*W(X) over (A,B), where
                W(X) = COS (OMEGA*X)
            or W(X) = SIN(OMEGA*X),
hopefully satisfying the following claim for accuracy
        ABS (I-RESULT).LE.MAX(EPSABS,EPSREL*ABS (I)).
``` \\
\hline \begin{tabular}{l}
QAWOE-S \\
DQAWOE-D
\end{tabular} & ```
Calculate an approximation to a given definite integral
 I = Integral of F(X)*W(X) over (A,B), where
 W(X) = COS (OMEGA*X)
 or W(X) = SIN(OMEGA*X),
hopefully satisfying the following claim for accuracy
 ABS (I-RESULT).LE.MAX(EPSABS,EPSREL*ABS (I)) .
``` \\
\hline \[
\begin{aligned}
& \text { QAWS-S } \\
& \text { DQAWS-D }
\end{aligned}
\] & \begin{tabular}{l}
The routine calculates an approximation result to a given definite integral \(I=\) Integral of \(F * W\) over (A, B), (where \(W\) shows a singular behaviour at the end points see parameter INTEGR). \\
Hopefully satisfying following claim for accuracy ABS (I-RESULT).LE.MAX (EPSABS, EPSREL*ABS (I)) .
\end{tabular} \\
\hline \begin{tabular}{l}
QAWSE-S \\
DQAWSE-D
\end{tabular} & \begin{tabular}{l}
The routine calculates an approximation result to a given definite integral \(I=\) Integral of \(F * W\) over ( \(A, B\) ), (where \(W\) shows a singular behaviour at the end points, see parameter INTEGR). \\
Hopefully satisfying following claim for accuracy ABS (I-RESULT) .LE.MAX (EPSABS, EPSREL*ABS (I)).
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { QMOMO-S } \\
& \text { DQMOMO-D }
\end{aligned}
\] & This routine computes modified Chebyshev moments. The K-th modified Chebyshev moment is defined as the integral over \((-1,1)\) of \(W(X) * T(K, X)\), where \(T(K, X)\) is the Chebyshev polynomial of degree \(K\). \\
\hline
\end{tabular}

H2A2A2. Nonautomatic
```

QC25C-S To compute I = Integral of F*W over (A,B) with
DQC25C-D error estimate, where W(X) = 1/(X-C)
QC25F-S To compute the integral I=Integral of F(X) over (A,B)
DQC25F-D Where W(X) = COS (OMEGA*X) Or (WX)=SIN (OMEGA*X)

```
and to compute J=Integral of \(A B S(F)\) over (A,B). For small value of OMEGA or small intervals (A, B) 15-point GAUSSKRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& Q C 25 S-S \\
& D Q C 25 S-D
\end{aligned}
\] & To compute \(I=\) Integral of \(F * W\) over ( \(B L, B R\) ), with error estimate, where the weight function \(W\) has a singular behaviour of ALGEBRAICO-LOGARITHMIC type at the points \(A\) and/or \(B .(B L, B R)\) is a part of ( \(A, B\) ). \\
\hline & \[
\begin{aligned}
& \text { QK15W-S } \\
& \text { DQK15W-D }
\end{aligned}
\] & \[
\begin{aligned}
\text { To compute } I= & \text { Integral of } F * W \text { over }(A, B), \text { with error } \\
& \text { estimate } \\
J= & \text { Integral of } A B S(F * W) \text { over }(A, B)
\end{aligned}
\] \\
\hline \multirow[t]{25}{*}{\[
\begin{aligned}
& \text { H2A3. } \\
& \text { H2A3A. } \\
& \text { H2A3A1. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Semi-infinite interval (including \(e^{* *}(-x)\) weight function)} \\
\hline & \multicolumn{2}{|l|}{Integrand available via user-defined procedure} \\
\hline & \multicolumn{2}{|l|}{Automatic (user need only specify required accuracy)} \\
\hline & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { QAGI-S } \\
& \text { DQAGI-D }
\end{aligned}
\]} & The routine calculates an approximation result to a given INTEGRAL I = Integral of \(F\) over (BOUND,+INFINITY) \\
\hline & & OR I = Integral of F over (-INFINITY, BOUND) \\
\hline & & OR I = Integral of F over (-INFINITY, +INFINITY) \\
\hline & & Hopefully satisfying following claim for accuracy \\
\hline & & ABS (I-RESULT) . LE. MAX (EPSABS, EPSREL*ABS (I)) . \\
\hline & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { QAGIE-S } \\
& \text { DQAGIE-D }
\end{aligned}
\]} & The routine calculates an approximation result to a given \\
\hline & & integral I = Integral of F over (BOUND, +INFINITY) \\
\hline & & or \(\mathrm{I}=\) Integral of F over (-INFINITY,BOUND) \\
\hline & & or \(\mathrm{I}=\) Integral of F over (-INFINITY,+INFINITY), \\
\hline & & hopefully satisfying following claim for accuracy \\
\hline & & ABS (I-RESULT).LE.MAX (EPSABS, EPSREL*ABS (I)) \\
\hline & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { QAWF-S } \\
& \text { DQAWF-D }
\end{aligned}
\]} & The routine calculates an approximation result to a given \\
\hline & & Fourier integral \\
\hline & & \(\mathrm{I}=\) Integral of \(\mathrm{F}(\mathrm{X}) * \mathrm{~W}(\mathrm{X})\) over ( \(\mathrm{A}, \mathrm{INFINITY}\) ) \\
\hline & & where \(W(X)=\operatorname{COS}(O M E G A * X)\) or \(W(X)=\) SIN (OMEGA*X). \\
\hline & & Hopefully satisfying following claim for accuracy \\
\hline & & ABS (I-RESULT).LE.EPSABS. \\
\hline & \multirow[t]{5}{*}{\begin{tabular}{l}
QAWFE-S \\
DQAWFE-D
\end{tabular}} & The routine calculates an approximation result to a \\
\hline & & given Fourier integral \\
\hline & & ```
I = Integral of F(X)*W(X) over (A,INFINITY)
    where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X),
``` \\
\hline & & hopefully satisfying following claim for accuracy \\
\hline & & ABS (I-RESULT) .LE.EPSABS. \\
\hline
\end{tabular}

H2A3A2. Nonautomatic
```

QK15I-S The original (infinite integration range is mapped
DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
it is the purpose to compute
I = Integral of transformed integrand over (A,B),
J = Integral of ABS(Transformed Integrand) over (A,B).

```

H2A4. Infinite interval (including e**(-x**2)) weight function)
H2A4A. Integrand available via user-defined procedure
H2A4A1. Automatic (user need only specify required accuracy)
```

QAGI-S The routine calculates an approximation result to a given
DQAGI-D INTEGRAL I = Integral of F over (BOUND,+INFINITY)
OR I = Integral of F over (-INFINITY,BOUND)
OR I = Integral of F over (-INFINITY,+INFINITY)

```
```

                    Hopefully satisfying following claim for accuracy
                        ABS (I-RESULT).LE.MAX(EPSABS,EPSREL*ABS (I)).
    QAGIE-S The routine calculates an approximation result to a given
DQAGIE-D integral I = Integral of F over (BOUND,+INFINITY)
or I = Integral of F over (-INFINITY,BOUND)
or I = Integral of F over (-INFINITY,+INFINITY),
hopefully satisfying following claim for accuracy
ABS (I-RESULT).LE.MAX(EPSABS,EPSREL*ABS (I))

```

H2A4A2. Nonautomatic
```

QK15I-S The original (infinite integration range is mapped
DQK15I-D onto the interval (0,1) and (A,B) is a part of (0,1).
it is the purpose to compute
I = Integral of transformed integrand over (A,B),
J = Integral of ABS(Transformed Integrand) over (A,B).

```
I. Differential and integral equations

I1. Ordinary differential equations
I1A. Initial value problems
I1A1. General, nonstiff or mildly stiff
I1A1A. One-step methods (e.g., Runge-Kutta)
DERKF-S Solve an initial value problem in ordinary differential
DDERKF-D equations using a Runge-Kutta-Fehlberg scheme.
I1A1B. Multistep methods (e.g., Adams' predictor-corrector)
DEABM-S Solve an initial value problem in ordinary differential DDEABM-D equations using an Adams-Bashforth method.

SDRIV1-S The function of SDRIV1 is to solve \(N\) (200 or fewer)
DDRIV1-D ordinary differential equations of the form
CDRIV1-C \(d Y(I) / d T=F(Y(I), T)\), given the initial conditions \(Y(I)=Y I . \quad\) SDRIV1 uses single precision arithmetic.

SDRIV2-S The function of SDRIV2 is to solve N ordinary differential
DDRIV2-D equations of the form \(d Y(I) / d T=F(Y(I), T)\), given the
CDRIV2-C initial conditions \(Y(I)=Y I\). The program has options to allow the solution of both stiff and non-stiff differential equations. SDRIV2 uses single precision arithmetic.

SDRIV3-S The function of SDRIV3 is to solve N ordinary differential DDRIV3-D equations of the form \(d Y(I) / d T=F(Y(I), T)\), given the CDRIV3-C initial conditions \(Y(I)=Y I\). The program has options to allow the solution of both stiff and non-stiff differential equations. Other important options are available. SDRIV3 uses single precision arithmetic.

SINTRP-S Approximate the solution at XOUT by evaluating the
DINTP-D polynomial computed in STEPS at XOUT. Must be used in conjunction with STEPS.

STEPS-S Integrate a system of first order ordinary differential DSTEPS-D equations one step.

I1A2. Stiff and mixed algebraic-differential equations
DEBDF-S Solve an initial value problem in ordinary differential DDEBDF-D equations using backward differentiation formulas. It is
intended primarily for stiff problems.
\begin{tabular}{ll}
SDASSL-S & This code solves a system of differential/algebraic \\
DDASSL-D & equations of the form \(G(T, Y, Y P R I M E)=0\). \\
SDRIV1-S & The function of SDRIV1 is to solve \(N\) (200 or fewer) \\
DDRIV1-D ordinary differential equations of the form \\
CDRIV1-C & dY(I)/dT \(=F(Y(I), T)\), given the initial conditions \\
& \(Y(I)=Y I . ~ S D R I V 1 ~ u s e s ~ s i n g l e ~ p r e c i s i o n ~ a r i t h m e t i c . ~\)
\end{tabular}

SDRIV2-S The function of SDRIV2 is to solve \(N\) ordinary differential
DDRIV2-D equations of the form \(d Y(I) / d T=F(Y(I), T)\), given the
CDRIV2-C initial conditions \(Y(I)=Y I\). The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. SDRIV2 uses single precision arithmetic.

SDRIV3-S The function of SDRIV3 is to solve N ordinary differential
DDRIV3-D equations of the form \(d Y(I) / d T=F(Y(I), T)\), given the
CDRIV3-C initial conditions \(Y(I)=Y I\). The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. Other important options are available. SDRIV3
 uses single precision arithmetic.

I1B. Multipoint boundary value problems
I1B1. Linear
\[
\begin{array}{ll}
\text { BVSUP-S } & \text { Solve a linear two-point boundary value problem using } \\
\text { DBVSUP-D } & \text { superposition coupled with an orthonormalization procedure } \\
\text { and a variable-step integration scheme. }
\end{array}
\]

I2. Partial differential equations
I2B. Elliptic boundary value problems
I2B1. Linear
I2B1A. Second order
I2B1A1. Poisson (Laplace) or Helmholz equation
I2B1A1A. Rectangular domain (or topologically rectangular in the coordinate system)

HSTCRT-S Solve the standard five-point finite difference approximation on a staggered grid to the Helmholtz equation in Cartesian coordinates.

HSTCSP-S Solve the standard five-point finite difference approximation on a staggered grid to the modified Helmholtz equation in spherical coordinates assuming axisymmetry (no dependence on longitude).

HSTCYL-S Solve the standard five-point finite difference approximation on a staggered grid to the modified Helmholtz equation in cylindrical coordinates.

HSTPLR-S Solve the standard five-point finite difference approximation on a staggered grid to the Helmholtz equation in polar coordinates.

HSTSSP-S Solve the standard five-point finite difference approximation on a staggered grid to the Helmholtz equation in spherical coordinates and on the surface of the unit sphere (radius of 1).

HW3CRT-S Solve the standard seven-point finite difference
\begin{tabular}{ll}
& \begin{tabular}{ll}
& approximation to the Helmholtz equation in Cartesian \\
& coordinates.
\end{tabular} \\
HWSCRT-S & \begin{tabular}{l}
Solves the standard five-point finite difference \\
approximation to the Helmholtz equation in Cartesian
\end{tabular} \\
& \begin{tabular}{ll}
coordinates.
\end{tabular} \\
HWSCSP-S & \begin{tabular}{l}
Solve a finite difference approximation to the modified
\end{tabular} \\
& \begin{tabular}{ll}
Helmholtz equation in spherical coordinates assuming
\end{tabular} \\
axisymmetry (no dependence on longitude).
\end{tabular}
```

J1A. One-dimensional
J1A1. Real
EZFFTB-S A simplified real, periodic, backward fast Fourier
transform.
EZFFTF-S Compute a simplified real, periodic, fast Fourier forward
transform.
EZFFTI-S Initialize a work array for EZFFTF and EZFFTB.
RFFTB1-S Compute the backward fast Fourier transform of a real
CFFTB1-C coefficient array.
RFFTF1-S Compute the forward transform of a real, periodic sequence.
CFFTF1-C
RFFTI1-S Initialize a real and an integer work array for RFFTF1 and
CFFTI1-C RFFTB1.
J1A2. Complex
CFFTB1-C Compute the unnormalized inverse of CFFTF1.
RFFTB1-S
CFFTF1-C Compute the forward transform of a complex, periodic
RFFTF1-S sequence.
CFFTI1-C Initialize a real and an integer work array for CFFTF1 and
RFFTI1-S CFFTB1.
J1A3. Trigonometric (sine, cosine)
COSQB-S Compute the unnormalized inverse cosine transform.
COSQF-S Compute the forward cosine transform with odd wave numbers.
COSQI-S Initialize a work array for COSQF and COSQB.
COST-S Compute the cosine transform of a real, even sequence.
COSTI-S Initialize a work array for COST.
SINQB-S Compute the unnormalized inverse of SINQF.
SINQF-S Compute the forward sine transform with odd wave numbers.
SINQI-S Initialize a work array for SINQF and SINQB.
SINT-S Compute the sine transform of a real, odd sequence.
SINTI-S Initialize a work array for SINT.

```

J4. Hilbert transforms
```

QAWC-S The routine calculates an approximation result to a
DQAWC-D Cauchy principal value I = INTEGRAL of F*W over (A,B)
(W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
following claim for accuracy
ABS (I-RESULT) .LE.MAX(EPSABE,EPSREL*ABS(I)).

```
```

QAWCE-S The routine calculates an approximation result to a
DQAWCE-D CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
(W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
following claim for accuracy
ABS (I-RESULT).LE.MAX(EPSABS,EPSREL*ABS (I))
QC25C-S To compute I = Integral of F*W over (A,B) with
DQC25C-D error estimate, where W(X) = 1/(X-C)
K. Approximation (search also class L8)
BSPDOC-A Documentation for BSPLINE, a package of subprograms for working with piecewise polynomial functions in B-representation.
K1. Least squares (L-2) approximation
K1A. Linear least squares (search also classes D5, D6, D9)
K1A1. Unconstrained
K1A1A. Univariate data (curve fitting)
K1A1A1. Polynomial splines (piecewise polynomials)

```
```

EFC-S Fit a piecewise polynomial curve to discrete data.

```
EFC-S Fit a piecewise polynomial curve to discrete data.
DEFC-D The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
FC-S Fit a piecewise polynomial curve to discrete data.
DFC-D The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
 Equality and inequality constraints can be imposed on the
 fitted curve.
K1A1A2. Polynomials
PCOEF-S Convert the POLFIT coefficients to Taylor series form. DPCOEF-D
POLFIT-S Fit discrete data in a least squares sense by polynomials DPOLFT-D in one variable.
K1A2. Constrained
K1A2A. Linear constraints
\begin{tabular}{|c|c|}
\hline EFC-S & Fit a piecewise polynomial curve to discrete da \\
\hline DEFC-D & The piecewise polynomials are represented as B-splines. The fitting is done in a weighted least squares sense. \\
\hline FC-S & Fit a piecewise polynomial curve to discrete data. \\
\hline DFC-D & \begin{tabular}{l}
The piecewise polynomials are represented as B-splines. \\
The fitting is done in a weighted least squares sense. \\
Equality and inequality constraints can be imposed on the fitted curve.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { LSEI-S } \\
& \text { DLSEI-D }
\end{aligned}
\] & Solve a linearly constrained least squares problem with equality and inequality constraints, and optionally compute a covariance matrix. \\
\hline SBOCLS-S & Solve the bounded and constrained least squares \\
\hline DBOCLS-D & problem consisting of solving the equation \(\mathrm{E} * \mathrm{X}=\mathrm{F}\) (in the least squares sense) subject to the linear constraints \\
\hline
\end{tabular}
```

$$
C * X=Y
$$

```
SBOLS-S Solve the problem
DBOLS-D E*X = F (in the least squares sense)
 with bounds on selected X values.
WNNLS-S Solve a linearly constrained least squares problem with
DWNNLS-D equality constraints and nonnegativity constraints on
 selected variables.
```

K1B. Nonlinear least squares
K1B1. Unconstrained

```
SCOV-S Calculate the covariance matrix for a nonlinear data
DCOV-D fitting problem. It is intended to be used after a
 successful return from either SNLS1 or SNLS1E.
```

K1B1A. Smooth functions
K1B1A1. User provides no derivatives
SNLSI-S Minimize the sum of the squares of $M$ nonlinear functions DNLS1-D in N variables by a modification of the Levenberg-Marquardt algorithm.

SNLS1E-S An easy-to-use code which minimizes the sum of the squares DNLS1E-D of M nonlinear functions in $N$ variables by a modification of the Levenberg-Marquardt algorithm.

K1B1A2. User provides first derivatives

```
SNLS1-S Minimize the sum of the squares of M nonlinear functions
DNLS1-D in N variables by a modification of the Levenberg-Marquardt
 algorithm.
SNLS1E-S An easy-to-use code which minimizes the sum of the squares
DNLS1E-D of M nonlinear functions in N variables by a modification
 of the Levenberg-Marquardt algorithm.
```

K6. Service routines (e.g., mesh generation, evaluation of fitted functions) (search also class N5)

```
 BFQAD-S Compute the integral of a product of a function and a
DBFQAD-D derivative of a B-spline.
DBSPDR-D Use the B-representation to construct a divided difference
BSPDR-S table preparatory to a (right) derivative calculation.
BSPEV-S Calculate the value of the spline and its derivatives from
DBSPEV-D the B-representation.
BSPPP-S Convert the B-representation of a B-spline to the piecewise
DBSPPP-D polynomial (PP) form.
BSPVD-S Calculate the value and all derivatives of order less than
DBSPVD-D NDERIV of all basis functions which do not vanish at X.
BSPVN-S Calculate the value of all (possibly) nonzero basis
DBSPVN-D functions at X.
BSQAD-S Compute the integral of a K-th order B-spline using the
DBSQAD-D B-representation.
```

```
BVALU-S Evaluate the B-representation of a B-spline at X for the
DBVALU-D function value or any of its derivatives.
INTRV-S Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
DINTRV-D such that XT(ILEFT) .LE. X where XT(*) is a subdivision
 of the X interval.
PFQAD-S Compute the integral on (X1,X2) of a product of a function
DPFQAD-D F and the ID-th derivative of a B-spline,
 (PP-representation).
PPQAD-S Compute the integral on (X1,X2) of a K-th order B-spline
DPPQAD-D using the piecewise polynomial (PP) representation.
PPVAL-S Calculate the value of the IDERIV-th derivative of the
DPPVAL-D B-spline from the PP-representation.
PVALUE-S Use the coefficients generated by POLFIT to evaluate the
DP1VLU-D polynomial fit of degree L, along with the first NDER of
 its derivatives, at a specified point.
```

L. Statistics, probability

L5. Function evaluation (search also class C)
L5A. Univariate
L5A1. Cumulative distribution functions, probability density functions
L5A1E. Error function, exponential, extreme value

```
ERF-S Compute the error function.
DERF-D
ERFC-S Compute the complementary error function.
DERFC-D
```

L6. Pseudo-random number generation
L6A. Univariate
L6A14. Negative binomial, normal
RGAUSS-S Generate a normally distributed (Gaussian) random number.
L6A21. Uniform
RAND-S Generate a uniformly distributed random number.
RUNIF-S Generate a uniformly distributed random number.
L7. Experimental design, including analysis of variance
L7A. Univariate
L7A3. Analysis of covariance
CV-S Evaluate the variance function of the curve obtained DCV-D by the constrained B-spline fitting subprogram FC.

L8. Regression (search also classes G, K)
L8A. Linear least squares (L-2) (search also classes D5, D6, D9)
L8A3. Piecewise polynomial (i.e. multiphase or spline)

$$
\begin{array}{ll}
\text { EFC-S } & \text { Fit a piecewise polynomial curve to discrete data. } \\
\text { DEFC-D } & \text { The piecewise polynomials are represented as B-splines. } \\
& \text { The fitting is done in a weighted least squares sense. }
\end{array}
$$

FC-S Fit a piecewise polynomial curve to discrete data.
DFC-D The piecewise polynomials are represented as B-splines.
The fitting is done in a weighted least squares sense.
Equality and inequality constraints can be imposed on the
fitted curve.
N. Data handling (search also class L2)
N1. Input, output

SBHIN-S	Read a Sparse Linear System in the Boeing/Harwell For
DBHIN-D	The matrix is read in and if the right hand side is also present in the input file then it too is read in. The matrix is then modified to be in the SLAP Column format.
SCPPLT-S	Printer Plot of SLAP Column Format Matrix.
DCPPLT-D	Routine to print out a SLAP Column format matrix in a "printer plot" graphical representation.
STIN-S	Read in SLAP Triad Format Linear System.
DTIN-D	Routine to read in a SLAP Triad format matrix and right hand side and solution to the system, if known.
STOUT-S	Write out SLAP Triad Format Linear System.
DTOUT-D	Routine to write out a SLAP Triad format matrix and right hand side and solution to the system, if known.

N6. Sorting
N6A. Internal
N6A1. Passive (i.e. construct pointer array, rank)
N6A1A. Integer
IPSORT-I Return the permutation vector generated by sorting a given
SPSORT-S array and, optionally, rearrange the elements of the array.
DPSORT-D The array may be sorted in increasing or decreasing order.
HPSORT-H A slightly modified quicksort algorithm is used.

N6A1B. Real
SPSORT-S Return the permutation vector generated by sorting a given DPSORT-D array and, optionally, rearrange the elements of the array. IPSORT-I The array may be sorted in increasing or decreasing order. HPSORT-H A slightly modified quicksort algorithm is used.

N6A1C. Character

$$
\begin{array}{ll}
\text { HPSORT-H } & \text { Return the permutation vector generated by sorting a } \\
\text { SPSORT-S } & \text { substring within a character array and, optionally, } \\
\text { DPSORT-D } & \text { rearrange the elements of the array. The array may be } \\
\text { IPSORT-I } & \text { sorted in forward or reverse lexicographical order. A } \\
& \text { slightly modified quicksort algorithm is used. }
\end{array}
$$

N6A2. Active N6A2A. Integer

IPSORT-SPSORT-S DPSORT-D HPSORT-H

ISORT-I SSORT-S

Return the permutation vector generated by sorting a given array and, optionally, rearrange the elements of the array. The array may be sorted in increasing or decreasing order. A slightly modified quicksort algorithm is used.

Sort an array and optionally make the same interchanges in an auxiliary array. The array may be sorted in increasing

```
DSORT-D or decreasing order. A slightly modified QUICKSORT
algorithm is used.
```

N6A2B. Real

SPSORT-S
DPSORT-D IPSORT-HPSORT-H

SSORT-S DSORT-D ISORT-I

Return the permutation vector generated by sorting a given array and, optionally, rearrange the elements of the array. The array may be sorted in increasing or decreasing order. A slightly modified quicksort algorithm is used.

Sort an array and optionally make the same interchanges in an auxiliary array. The array may be sorted in increasing or decreasing order. A slightly modified QUICKSORT algorithm is used.

N6A2C. Character
HPSORT-SPSORT-S DPSORT-D IPSORT-I

Return the permutation vector generated by sorting a substring within a character array and, optionally, rearrange the elements of the array. The array may be sorted in forward or reverse lexicographical order. A slightly modified quicksort algorithm is used.

N8. Permuting
SPPERM-S Rearrange a given array according to a prescribed DPPERM-D permutation vector. IPPERM-I HPPERM-H
R. Service routines

R1. Machine-dependent constants
I1MACH-I Return integer machine dependent constants.
R1MACH-S Return floating point machine dependent constants. D1MACH-D

R2. Error checking (e.g., check monotonicity)
GAMLIM-S Compute the minimum and maximum bounds for the argument in DGAMLM-D the Gamma function.

R3. Error handling
FDUMP-A Symbolic dump (should be locally written).
R3A. Set criteria for fatal errors
XSETF-A Set the error control flag.
R3B. Set unit number for error messages
XSETUA-A Set logical unit numbers (up to 5) to which error messages are to be sent.

XSETUN-A Set output file to which error messages are to be sent.
R3C. Other utility programs
NUMXER-I Return the most recent error number.

XERCLR-A	Reset current error number to zero.
XERDMP - A	Print the error tables and then clear them.
XERMAX-A	Set maximum number of times any error message is to be printed.
XERMSG-A	Process error messages for SLATEC and other libraries.
XGETF-A	Return the current value of the error control flag.
XGETUA-A	Return unit number(s) to which error messages are being sent.
XGETUN-A	Return the (first) output file to which error messages are being sent.

Z. Other

AAAAAA-A SLATEC Common Mathematical Library disclaimer and version.
BSPDOC-A Documentation for BSPLINE, a package of subprograms for working with piecewise polynomial functions in B-representation.

EISDOC-A Documentation for EISPACK, a collection of subprograms for solving matrix eigen-problems.

FFTDOC-A Documentation for FFTPACK, a collection of Fast Fourier Transform routines.

FUNDOC-A Documentation for FNLIB, a collection of routines for evaluating elementary and special functions.

PCHDOC-A Documentation for PCHIP, a Fortran package for piecewise cubic Hermite interpolation of data.

QPDOC-A Documentation for QUADPACK, a package of subprograms for automatic evaluation of one-dimensional definite integrals.

SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation. DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric positive definite linear systems, $A x=b, \quad u s i n g$ preconditioned iterative methods.

SECTION II. Subsidiary Routines
ASYIK Subsidiary to BESI and BESK
ASYJY Subsidiary to BESJ and BESY
BCRH Subsidiary to CBLKTR
BDIFF Subsidiary to BSKIN
BESKNU Subsidiary to BESK
BESYNU Subsidiary to BESY

BKIAS	Subsidiary to BSKIN
BKISR	Subsidiary to BSKIN
BKSOL	Subsidiary to BVSUP
BLKTR1	Subsidiary to BLKTRI
BNFAC	Subsidiary to BINT4 and BINTK
BNSLV	Subsidiary to BINT4 and BINTK
BSGQ8	Subsidiary to BFQAD
BSPLVD	Subsidiary to FC
BSPLVN	Subsidiary to FC
BSRH	Subsidiary to BLKTRI
BVDER	Subsidiary to BVSUP
BVPOR	Subsidiary to BVSUP
C1MERG	Merge two strings of complex numbers. Each string is ascending by the real part.
C9LGMC	```Compute the log gamma correction factor so that LOG(CGAMMA(Z)) = 0.5*LOG(2.*PI) + (Z-0.5)*LOG(Z) - Z + C9LGMC(Z).```
C9LN2R	Evaluate LOG(1+Z) from second order relative accuracy so that $\operatorname{LOG}(1+Z)=Z-Z * * 2 / 2+Z * * 3 * C 9 L N 2 R(Z)$.
CACAI	Subsidiary to CAIRY
CACON	Subsidiary to CBESH and CBESK
CASYI	Subsidiary to CBESI and CBESK
CBINU	Subsidiary to CAIRY, CBESH, CBESI, CBESJ, CBESK and CBIRY
CBKNU	Subsidiary to CAIRY, CBESH, CBESI and CBESK
CBLKT1	Subsidiary to CBLKTR
CBUNI	Subsidiary to CBESI and CBESK
CBUNK	Subsidiary to CBESH and CBESK
CCMPB	Subsidiary to CBLKTR
CDCOR	Subroutine CDCOR computes corrections to the Y array.
CDCST	CDCST sets coefficients used by the core integrator CDSTP.
CDIV	Compute the complex quotient of two complex numbers.
CDNTL	Subroutine CDNTL is called to set parameters on the first call to CDSTP, on an internal restart, or when the user has altered MINT, MITER, and/or $H$.


CDNTP	Subroutine CDNTP interpolates the $K$-th derivative of $Y$ at TOUT, using the data in the YH array. If $K$ has a value greater than $N Q$, the $N Q-t h$ derivative is calculated.
CDPSC	Subroutine CDPSC computes the predicted YH values by effectively multiplying the YH array by the Pascal triangle matrix when KSGN is +1 , and performs the inverse function when KSGN is -1 .
CDPST	Subroutine CDPST evaluates the Jacobian matrix of the right hand side of the differential equations.
CDSCL	Subroutine CDSCL rescales the YH array whenever the step size is changed.
CDSTP	CDSTP performs one step of the integration of an initial value problem for a system of ordinary differential equations.
CDZRO	CDZRO searches for a zero of a function $F(N, T, Y$, IROOT) between the given values $B$ and $C$ until the width of the interval ( $\mathrm{B}, \mathrm{C}$ ) has collapsed to within a tolerance specified by the stopping criterion,   ABS (B - C) .LE. 2.* (RW*ABS (B) + AE).
CFFTB	Compute the unnormalized inverse of CFFTF.
CFFTF	Compute the forward transform of a complex, periodic sequence.
CFFTI	Initialize a work array for CFFTF and CFFTB.
CFOD	Subsidiary to DEBDF
CHFCM	Check a single cubic for monotonicity.
CHFIE	Evaluates integral of a single cubic for PCHIA
CHKPR 4	Subsidiary to SEPX4
CHKPRM	Subsidiary to SEPELI
CHKSN 4	Subsidiary to SEPX4
CHKSNG	Subsidiary to SEPELI
CKSCL	Subsidiary to CBKNU, CUNK1 and CUNK2
CMLRI	Subsidiary to CBESI and CBESK
CMPCSG	Subsidiary to CMGNBN
CMPOSD	Subsidiary to CMGNBN
CMPOSN	Subsidiary to CMGNBN
CMPOSP	Subsidiary to CMGNBN
CMP TR3	Subsidiary to CMGNBN


CMP TRX	Subsidiary to CMGNBN
COMPB	Subsidiary to BLKTRI
COSGEN	Subsidiary to GENBUN
COSQB1	Compute the unnormalized inverse of COSQF1.
COSQF1	Compute the forward cosine transform with odd wave numbers.
CPADD	Subsidiary to CBLKTR
CPEVL	Subsidiary to CPZERO
CPEVLR	Subsidiary to CPZERO
CPROC	Subsidiary to CBLKTR
CPROCP	Subsidiary to CBLKTR
CPROD	Subsidiary to BLKTRI
CPRODP	Subsidiary to BLKTRI
CRATI	Subsidiary to CBESH, CBESI and CBESK
CS1S2	Subsidiary to CAIRY and CBESK
CSCALE	Subsidiary to BVSUP
CSERI	Subsidiary to CBESI and CBESK
CSHCH	Subsidiary to CBESH and CBESK
CSROOT	Compute the complex square root of a complex number.
CUCHK	Subsidiary to SERI, CUOIK, CUNK1, CUNK2, CUNI1, CUNI2 and CKSCL
CUNHJ	Subsidiary to CBESI and CBESK
CUNI1	Subsidiary to CBESI and CBESK
CUNI2	Subsidiary to CBESI and CBESK
CUNIK	Subsidiary to CBESI and CBESK
CUNK1	Subsidiary to CBESK
CUNK2	Subsidiary to CBESK
CUOIK	Subsidiary to CBESH, CBESI and CBESK
CWRSK	Subsidiary to CBESI and CBESK
D1MERG	Merge two strings of ascending double precision numbers.
D1MPYQ	Subsidiary to DNSQ and DNSQE
D1UPDT	Subsidiary to DNSQ and DNSQE


D9AIMP	Evaluate the Airy modulus and phase.
D9ATN1	Evaluate DATAN(X) from first order relative accuracy so that DATAN $(\mathrm{X})=\mathrm{X}+\mathrm{X} * * 3 *$ D9ATN1 ( X ).
D9B0MP	Evaluate the modulus and phase for the JO and YO Bessel functions.
D9B1MP	Evaluate the modulus and phase for the J1 and Y1 Bessel functions.
D9CHU	Evaluate for large $Z \quad Z * * A * U(A, B, Z)$ where $U$ is the logarithmic confluent hypergeometric function.
D9GMIC	Compute the complementary incomplete Gamma function for A near a negative integer and X small.
D9GMIT	Compute Tricomi's incomplete Gamma function for small arguments.
D9KNUS	Compute Bessel functions EXP (X)*K-SUB-XNU (X) and EXP (X)* K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
D9LGIC	Compute the log complementary incomplete Gamma function for large $X$ and for $A$.LE. $X$.
D9LGIT	Compute the logarithm of Tricomi's incomplete Gamma function with Perron's continued fraction for large $X$ and A . GE. X.
D9LGMC	```Compute the log Gamma correction factor so that LOG(DGAMMA(X)) = LOG(SQRT(2*PI)) + (X-5.)*LOG(X) - X + D9LGMC(X).```
D9LN2R	Evaluate LOG (1+X) from second order relative accuracy so that LOG $(1+X)=X-X * * 2 / 2+X * * 3 * D 9 L N 2 R(X)$
DASYIK	Subsidiary to DBESI and DBESK
DASYJY	Subsidiary to DBESJ and DBESY
DBDIFF	Subsidiary to DBSKIN
DBKIAS	Subsidiary to DBSKIN
DBKISR	Subsidiary to DBSKIN
DBKSOL	Subsidiary to DBVSUP
DBNFAC	Subsidiary to DBINT4 and DBINTK
DBNSLV	Subsidiary to DBINT4 and DBINTK
DBOLSM	Subsidiary to DBOCLS and DBOLS
DBSGQ8	Subsidiary to DBFQAD
DBSKNU	Subsidiary to DBESK
DBSYNU	Subsidiary to DBESY


DBVDER	Subsidiary to DBVSUP
DBVPOR	Subsidiary to DBVSUP
DCFOD	Subsidiary to DDEBDF
DCHFCM	Check a single cubic for monotonicity.
DCHFIE	Evaluates integral of a single cubic for DPCHIA
DCHKW	SLAP woRK/IWORK Array Bounds Checker.
	This routine checks the work array lengths and interfaces
	to the SLATEC error handler if a problem is found.


	value problem for a system of ordinary differential equations.
DDZRO	DDZRO searches for a zero of a function $F(N, T, Y$, IROOT) between the given values $B$ and $C$ until the width of the interval ( $B, C$ ) has collapsed to within a tolerance specified by the stopping criterion,   ABS ( $B$ - C) .LE. 2.* (RW*ABS (B) + AE).
DEFCMN	Subsidiary to DEFC
DEFE4	Subsidiary to SEPX4
DEFEHL	Subsidiary to DERKF
DEFER	Subsidiary to SEPELI
DENORM	Subsidiary to DNSQ and DNSQE
DERKFS	Subsidiary to DERKF
DES	Subsidiary to DEABM
DEXBVP	Subsidiary to DBVSUP
DFCMN	Subsidiary to FC
DFDJC1	Subsidiary to DNSQ and DNSQE
DFDJC3	Subsidiary to DNLS1 and DNLS1E
DFEHL	Subsidiary to DDERKF
DFSPVD	Subsidiary to DFC
DFSPVN	Subsidiary to DFC
DFULMT	Subsidiary to DSPLP
DGAMLN	Compute the logarithm of the Gamma function
DGAMRN	Subsidiary to DBSKIN
DH12	Subsidiary to DHFTI, DLSEI and DWNNLS
DHELS	Internal routine for DGMRES.
DHEQR	Internal routine for DGMRES.
DHKSEQ	Subsidiary to DBSKIN
DHSTRT	Subsidiary to DDEABM, DDEBDF and DDERKF
DHVNRM	Subsidiary to DDEABM, DDEBDF and DDERKF
DINTYD	Subsidiary to DDEBDF
DJAIRY	Subsidiary to DBESJ and DBESY
DLPDP	Subsidiary to DLSEI


DLSI	Subsidiary to DLSEI
DLSOD	Subsidiary to DDEBDF
DLSSUD	Subsidiary to DBVSUP and DSUDS
DMACON	Subsidiary to DBVSUP
DMGSBV	Subsidiary to DBVSUP
DMOUT	Subsidiary to DBOCLS and DFC
DMPAR	Subsidiary to DNLS1 and DNLS1E
DOGLEG	Subsidiary to SNSQ and SNSQE
DOHTRL	Subsidiary to DBVSUP and DSUDS
DORTH	Internal routine for DGMRES.
DORTHR	Subsidiary to DBVSUP and DSUDS
DPCHCE	Set boundary conditions for DPCHIC
DPCHCI	Set interior derivatives for DPCHIC
DPCHCS	Adjusts derivative values for DPCHIC
DPCHDF	Computes divided differences for DPCHCE and DPCHSP
DPCHKT	Compute B-spline knot sequence for DPCHBS.
DPCHNG	Subsidiary to DSPLP
DPCHST	DPCHIP Sign-Testing Routine
DPCHSW	Limits excursion from data for DPCHCS
DPIGMR	Internal routine for DGMRES.
DPINCW	Subsidiary to DSPLP
DPINIT	Subsidiary to DSPLP
DP INTM	Subsidiary to DSPLP
DP JAC	Subsidiary to DDEBDF
DPLPCE	Subsidiary to DSPLP
DPLPDM	Subsidiary to DSPLP
DPLPFE	Subsidiary to DSPLP
DPLPFL	Subsidiary to DSPLP
DPLPMN	Subsidiary to DSPLP
DPLPMU	Subsidiary to DSPLP
DPLPUP	Subsidiary to DSPLP


DPNNZR	Subsidiary to DSPLP
DPOPT	Subsidiary to DSPLP
DPPGQ8	Subsidiary to DPFQAD
DPRVEC	Subsidiary to DBVSUP
DPRWPG	Subsidiary to DSPLP
DPRWVR	Subsidiary to DSPLP
DPSIXN	Subsidiary to DEXINT
DQCHEB	This routine computes the CHEBYSHEV series expansion of degrees 12 and 24 of a function using $A$ FAST FOURIER TRANSFORM METHOD   $F(X)=\operatorname{SUM}(K=1, \ldots, 13)(\operatorname{CHEB} 12(K) * T(K-1, X))$,   $\mathrm{F}(\mathrm{X})=\operatorname{SUM}(\mathrm{K}=1, \ldots, 25)(\mathrm{CHEB} 24(\mathrm{~K}) * \mathrm{~T}(\mathrm{~K}-1, \mathrm{X}))$,   Where $T(K, X)$ is the CHEBYSHEV POLYNOMIAL OF DEGREE $K$.
DQELG	The routine determines the limit of a given sequence of approximations, by means of the Epsilon algorithm of P.Wynn. An estimate of the absolute error is also given. The condensed Epsilon table is computed. Only those elements needed for the computation of the next diagonal are preserved.
DQFORM	Subsidiary to DNSQ and DNSQE
DQPSRT	This routine maintains the descending ordering in the list of the local error estimated resulting from the interval subdivision process. At each call two error estimates are inserted using the sequential search method, top-down for the largest error estimate and bottom-up for the smallest error estimate.
DQRFAC	Subsidiary to DNLS1, DNLS1E, DNSQ and DNSQE
DQRSLV	Subsidiary to DNLS1 and DNLS1E
DQWGTC	This function subprogram is used together with the routine DQAWC and defines the WEIGHT function.
DQWGTF	This function subprogram is used together with the routine DQAWF and defines the WEIGHT function.
DQWGTS	This function subprogram is used together with the routine DQAWS and defines the WEIGHT function.
DREADP	Subsidiary to DSPLP
DREORT	Subsidiary to DBVSUP
DRKFAB	Subsidiary to DBVSUP
DRKFS	Subsidiary to DDERKF
DRLCAL	Internal routine for DGMRES.



	of the first kind of negative order stored in array PQA into Legendre functions of the first kind of positive order stored in array PQA. The original array is destroyed.
DXPNRM	To compute the values of Legendre functions for DXLEGF. This subroutine transforms an array of Legendre functions of the first kind of negative order stored in array PQA into normalized Legendre polynomials stored in array PQA. The original array is destroyed.
DXPQNU	To compute the values of Legendre functions for DXLEGF. This subroutine calculates initial values of $P$ or $Q$ using power series, then performs forward nu-wise recurrence to obtain $P(-M U, N U, X), Q(0, N U, X)$, or $Q(1, N U, X)$. The nu-wise recurrence is stable for $P$ for all $m u$ and for $Q$ for $m u=0,1$.
DXPSI	To compute values of the Psi function for DXLEGF.
DXQMU	To compute the values of Legendre functions for DXLEGF. Method: forward mu-wise recurrence for $Q(M U, N U, X)$ for fixed nu to obtain $Q(M U 1, N U, X), Q(M U 1+1, N U, X), \ldots, Q(M U 2, N U, X)$.
DXQNU	To compute the values of Legendre functions for DXLEGF.   Method: backward nu-wise recurrence for $Q(M U, N U, X)$ for fixed mu to obtain $\mathrm{Q}(\mathrm{MU1}, \mathrm{NU} 1, \mathrm{X}), \mathrm{Q}(\mathrm{MU1}, \mathrm{NU} 1+1, \mathrm{X}), \ldots$, Q (MU1, NU2, X) .
DY	Subsidiary to SEPELI
DY4	Subsidiary to SEPX4
DYAIRY	Subsidiary to DBESJ and DBESY
EFCMN	Subsidiary to EFC
ENORM	Subsidiary to SNLS1, SNLS1E, SNSQ and SNSQE
EXBVP	Subsidiary to BVSUP
EZFFT1	EZFFTI calls EZFFT1 with appropriate work array partitioning.
FCMN	Subsidiary to FC
FDJAC1	Subsidiary to SNSQ and SNSQE
FDJAC3	Subsidiary to SNLS1 and SNLS1E
FULMAT	Subsidiary to SPLP
GAMLN	Compute the logarithm of the Gamma function
GAMRN	Subsidiary to BSKIN
H12	Subsidiary to HFTI, LSEI and WNNLS
HKSEQ	Subsidiary to BSKIN
HSTART	Subsidiary to DEABM, DEBDF and DERKF
HSTCS1	Subsidiary to HSTCSP


HVNRM	Subsidiary to DEABM, DEBDF and DERKF
HWSCS1	Subsidiary to HWSCSP
HWSSS 1	Subsidiary to HWSSSP
I1MERG	Merge two strings of ascending integers.
IDLOC	Subsidiary to DSPLP
INDXA	Subsidiary to BLKTRI
INDXB	Subsidiary to BLKTRI
INDXC	Subsidiary to BLKTRI
INTYD	Subsidiary to DEBDF
INXCA	Subsidiary to CBLKTR
INXCB	Subsidiary to CBLKTR
INXCC	Subsidiary to CBLKTR
IPLOC	Subsidiary to SPLP
ISDBCG	Preconditioned BiConjugate Gradient Stop Test.   This routine calculates the stop test for the BiConjugate Gradient iteration scheme. It returns a non-zero if the error estimate (the type of which is determined by ITOL) is less than the user specified tolerance TOL.
ISDCG	Preconditioned Conjugate Gradient Stop Test. This routine calculates the stop test for the Conjugate Gradient iteration scheme. It returns a non-zero if the error estimate (the type of which is determined by ITOL) is less than the user specified tolerance TOL.
ISDCGN	Preconditioned CG on Normal Equations Stop Test. This routine calculates the stop test for the Conjugate Gradient iteration scheme applied to the normal equations. It returns a non-zero if the error estimate (the type of which is determined by ITOL) is less than the user specified tolerance TOL.
ISDCGS	Preconditioned BiConjugate Gradient Squared Stop Test. This routine calculates the stop test for the BiConjugate Gradient Squared iteration scheme. It returns a non-zero if the error estimate (the type of which is determined by ITOL) is less than the user specified tolerance TOL.
ISDGMR	Generalized Minimum Residual Stop Test.   This routine calculates the stop test for the Generalized Minimum RESidual (GMRES) iteration scheme. It returns a non-zero if the error estimate (the type of which is determined by ITOL) is less than the user specified tolerance TOL.
ISDIR	Preconditioned Iterative Refinement Stop Test.   This routine calculates the stop test for the iterative


	refinement iteration scheme. It returns a non-zero if the
	error estimate (the type of which is determined by ITOL)
	is less than the user specified tolerance TOL.
ISDOMN	
	Preconditioned Orthomin Stop Test.
	This routine calculates the stop test for the Orthomin
	iteration scheme. It returns a non-zero if the error
	lestimate (the type of which is determined by ITOL) is


LA05AD	Subsidiary to DSPLP
LA05AS	Subsidiary to SPLP
LA05BD	Subsidiary to DSPLP
LA05BS	Subsidiary to SPLP
LA05CD	Subsidiary to DSPLP
LA05CS	Subsidiary to SPLP
LA05ED	Subsidiary to DSPLP
LA05ES	Subsidiary to SPLP
LMPAR	Subsidiary to SNLS1 and SNLS1E
LPDP	Subsidiary to LSEI
LSAME	Test two characters to determine letter, except for case.
LSI	Subsidiary to LSEI
LSOD	Subsidiary to DEBDF
LSSODS	Subsidiary to BVSUP
LSSUDS	Subsidiary to BVSUP
MACON	Subsidiary to BVSUP
MC20AD	Subsidiary to DSPLP
MC20AS	Subsidiary to SPLP
MGSBV	Subsidiary to BVSUP
MINSO4	Subsidiary to SEPX4
MINSOL	Subsidiary to SEPELI
MPADD	Subsidiary to DQDOTA and DQDOTI
MPADD2	Subsidiary to DQDOTA and DQDOTI
MPADD 3	Subsidiary to DQDOTA and DQDOTI
MPBLAS	Subsidiary to DQDOTA and DQDOTI
MPCDM	Subsidiary to DQDOTA and DQDOTI
MPCHK	Subsidiary to DQDOTA and DQDOTI
MP CMD	Subsidiary to DQDOTA and DQDOTI
MPDIVI	Subsidiary to DQDOTA and DQDOTI
MPERR	Subsidiary to DQDOTA and DQDOTI


MPMAXR	Subsidiary to DQDOTA and DQDOTI
MPMLP	Subsidiary to DQDOTA and DQDOTI
MPMUL	Subsidiary to DQDOTA and DQDOTI
MPMUL2	Subsidiary to DQDOTA and DQDOTI
MPMULI	Subsidiary to DQDOTA and DQDOTI
MPNZR	Subsidiary to DQDOTA and DQDOTI
MPOVFL	Subsidiary to DQDOTA and DQDOTI
MP STR	Subsidiary to DQDOTA and DQDOTI
MPUNFL	Subsidiary to DQDOTA and DQDOTI
OHTROL	Subsidiary to BVSUP
OHTROR	Subsidiary to BVSUP
ORTHO4	Subsidiary to SEPX4
ORTHOG	Subsidiary to SEPELI
ORTHOL	Subsidiary to BVSUP
ORTHOR	Subsidiary to BVSUP
PASSB	Calculate the fast Fourier transform of subvectors of arbitrary length.
PASSB2	Calculate the fast Fourier transform of subvectors of length two.
PASSB3	Calculate the fast Fourier transform of subvectors of length three.
PASSB4	Calculate the fast Fourier transform of subvectors of length four.
PASSB5	Calculate the fast Fourier transform of subvectors of length five.
PASSF	Calculate the fast Fourier transform of subvectors of arbitrary length.
PASSF2	Calculate the fast Fourier transform of subvectors of length two.
PASSF3	Calculate the fast Fourier transform of subvectors of length three.
PASSF 4	Calculate the fast Fourier transform of subvectors of length four.
PASSF 5	Calculate the fast Fourier transform of subvectors of length five.
PCHCE	Set boundary conditions for PCHIC


PCHCI	Set interior derivatives for PCHIC
PCHCS	Adjusts derivative values for PCHIC
PCHDF	Computes divided differences for PCHCE and PCHSP
PCHKT	Compute B-spline knot sequence for PCHBS.
PCHNGS	Subsidiary to SPLP
PCHST	PCHIP Sign-Testing Routine
PCHSW	Limits excursion from data for PCHCS
PGSF	Subsidiary to CBLKTR
PIMACH	Subsidiary to HSTCSP, HSTSSP and HWSCSP
PINITM	Subsidiary to SPLP
PJAC	Subsidiary to DEBDF
PNNZRS	Subsidiary to SPLP
POISD2	Subsidiary to GENBUN
POISN2	Subsidiary to GENBUN
POISP 2	Subsidiary to GENBUN
POS3D1	Subsidiary to POIS3D
POSTG2	Subsidiary to POISTG
PPADD	Subsidiary to BLKTRI
PPGQ8	Subsidiary to PFQAD
PPGSF	Subsidiary to CBLKTR
PPPSF	Subsidiary to CBLKTR
PPSGF	Subsidiary to BLKTRI
PPSPF	Subsidiary to BLKTRI
PROC	Subsidiary to CBLKTR
PROCP	Subsidiary to CBLKTR
PROD	Subsidiary to BLKTRI
PRODP	Subsidiary to BLKTRI
PRVEC	Subsidiary to BVSUP
PRWPGE	Subsidiary to SPLP
PRWVIR	Subsidiary to SPLP


PSGF	Subsidiary to BLKTRI
PSIXN	Subsidiary to EXINT
PYTHAG	Compute the complex square root of a complex number without         destructive overflow or underflow.   QCHEB
	This routine computes the CHEBYSHEV series expansion
	of degrees 12 and 24 of a function using A


R9CHU	Evaluate for large $Z \quad Z * * A * U(A, B, Z)$ where $U$ is the logarithmic confluent hypergeometric function.
R9GMIC	Compute the complementary incomplete Gamma function for A near a negative integer and for small X.
R9GMIT	Compute Tricomi's incomplete Gamma function for small arguments.
R9KNUS	Compute Bessel functions EXP (X)*K-SUB-XNU (X) and EXP (X)* K-SUB-XNU+1 (X) for 0.0 .LE. XNU .LT. 1.0.
R9LGIC	Compute the log complementary incomplete Gamma function for large X and for A . LE. X .
R9LGIT	Compute the logarithm of Tricomi's incomplete Gamma function with Perron's continued fraction for large $X$ and A.GE. X.
R9LGMC	```Compute the log Gamma correction factor so that LOG(GAMMA (X)) = LOG(SQRT (2*PI)) + (X-.5)*LOG(X) - X + R9LGMC(X).```
R9LN2R	Evaluate LOG(1+X) from second order relative accuracy so that LOG $(1+X)=X-X * * 2 / 2+X * * 3 * R 9 L N 2 R(X)$.
RADB2	Calculate the fast Fourier transform of subvectors of length two.
RADB3	Calculate the fast Fourier transform of subvectors of length three.
RADB4	Calculate the fast Fourier transform of subvectors of length four.
RADB5	Calculate the fast Fourier transform of subvectors of length five.
RADBG	Calculate the fast Fourier transform of subvectors of arbitrary length.
RADF 2	Calculate the fast Fourier transform of subvectors of length two.
RADF3	Calculate the fast Fourier transform of subvectors of length three.
RADF 4	Calculate the fast Fourier transform of subvectors of length four.
RADF5	Calculate the fast Fourier transform of subvectors of length five.
RADFG	Calculate the fast Fourier transform of subvectors of arbitrary length.
REORT	Subsidiary to BVSUP
RFFTB	Compute the backward fast Fourier transform of a real coefficient array.


RFFTF	Compute the forward transform of a real, periodic sequence.
RFFTI	Initialize a work array for RFFTF and RFFTB.
RKFAB	Subsidiary to BVSUP
RSCO	Subsidiary to DEBDF
RWUPDT	Subsidiary to SNLS1 and SNLS1E
S1MERG	Merge two strings of ascending real numbers.
SBOLSM	Subsidiary to SBOCLS and SBOLS
SCHKW	SLAP WORK/IWORK Array Bounds Checker.   This routine checks the work array lengths and interfaces to the SLATEC error handler if a problem is found.
SCLOSM	Subsidiary to SPLP
SCOEF	Subsidiary to BVSUP
SDAINI	Initialization routine for SDASSL.
SDAJAC	Compute the iteration matrix for SDASSL and form the LU-decomposition.
SDANRM	Compute vector norm for SDASSL.
SDASLV	Linear system solver for SDASSL.
SDASTP	Perform one step of the SDASSL integration.
SDATRP	Interpolation routine for SDASSL.
SDAWTS	Set error weight vector for SDASSL.
SDCOR	Subroutine SDCOR computes corrections to the Y array.
SDCST	SDCST sets coefficients used by the core integrator SDSTP.
SDNTL	Subroutine SDNTL is called to set parameters on the first call to SDSTP, on an internal restart, or when the user has altered MINT, MITER, and/or $H$.
SDNTP	Subroutine SDNTP interpolates the K-th derivative of $Y$ at TOUT, using the data in the YH array. If $K$ has a value greater than $N Q$, the $N Q-t h$ derivative is calculated.
SDPSC	Subroutine SDPSC computes the predicted YH values by effectively multiplying the YH array by the Pascal triangle matrix when KSGN is +1 , and performs the inverse function when KSGN is -1 .
SDPST	Subroutine SDPST evaluates the Jacobian matrix of the right hand side of the differential equations.
SDSCL	Subroutine SDSCL rescales the YH array whenever the step size is changed.


SDSTP	SDSTP performs one step of the integration of an initial   value problem for a system of ordinary differential   equations.
	SDZRO searches for a zero of a function F (N, T, Y, IROOT)
	between the given values B and C until the width of the   interval (B, C) has collapsed to within a tolerance   specified by the stopping criterion,
	ABS(B - C) .LE. 2. (RW*ABS (B) + AE).


STWAY	Subsidiary to BVSUP
SUDS	Subsidiary to BVSUP
SVCO	Subsidiary to DEBDF
SVD	Perform the singular value decomposition of a rectangular matrix.
SVECS	Subsidiary to BVSUP
SVOUT	Subsidiary to SPLP
SWRITP	Subsidiary to SPLP
SXLCAL	Internal routine for SGMRES.
TEVLC	Subsidiary to CBLKTR
TEVLS	Subsidiary to BLKTRI
TRI3	Subsidiary to GENBUN
TRIDQ	Subsidiary to POIS3D
TRIS 4	Subsidiary to SEPX4
TRISP	Subsidiary to SEPELI
TRIX	Subsidiary to GENBUN
U11LS	Subsidiary to LLSIA
U11US	Subsidiary to ULSIA
U12LS	Subsidiary to LLSIA
U12US	Subsidiary to ULSIA
USRMAT	Subsidiary to SPLP
VNWRMS	Subsidiary to DEBDF
WNLIT	Subsidiary to WNNLS
WNLSM	Subsidiary to WNNLS
WNLT1	Subsidiary to WNLIT
WNLT2	Subsidiary to WNLIT
WNLT3	Subsidiary to WNLIT
XERBLA	Error handler for the Level 2 and Level 3 BLAS Routines.
XERCNT	Allow user control over handling of errors.
XERHLT	Abort program execution and print error message.
XERPRN	Print error messages processed by XERMSG.




BESK0	C10B1	BESK0E	C10B1
BESK1	C10B1	BESK1E	C10B1
BESKES	с10B3	*BESKNU	
BESKS	C10B3	BESY	C10A3
BESY0	C10A1	BESY1	C10A1
*BESYNU		BETA	C7B
BETAI	C7F	BFQAD	H2A2A1, E3, K6
BI	C10D	BIE	C10D
BINOM	C1	BINT4	E1A
BINTK	E1A	BISECT	D4A5, D4C2A
*BKIAS		*BKISR	
*BKSOL		*BLKTR1	
BLKTRI	I2B4B	BNDACC	D9
BNDSOL	D9	*BNFAC	
*BNSLV		BQR	D4A6
*BSGQ8		BSKIN	C10F
BSPDOC	E, E1A, K, Z	BSPDR	E3
BSPEV	E3, K6	*BSPLVD	
* BSPLVN		BSPPP	E3, K6
BSPVD	E3, K6	BSPVN	E3, K6
BSQAD	H2A2A1, E3, K6	* BSRH	
BVALU	E3, K6	*BVDER	
*BVPOR		BVSUP	I1B1
COLGMC	C7A	*C1MERG	
*C9LGMC	C7A	*C9LN2R	C4B
* CACAI		*CACON	
CACOS	C4A	CACOSH	C4C
CAIRY	C10D	CARG	A4A
CASIN	C4A	CASINH	C4C
*CASYI		CATAN	C4A
CATAN2	C4A	CATANH	C4C
CAXPY	D1A7	CBABK2	D4C4
CBAL	D4C1A	CBESH	C10A4
CBESI	C10B4	CBESJ	C10A4
CBESK	C10B4	CBESY	C10A4
CBETA	C7B	*CBINU	
CBIRY	C10D	*CBKNU	
*CBLKT1		CBLKTR	I2B4B
CBRT	C2	*CBUNI	
* CBUNK		CCBRT	C2
CCHDC	D2D1B	CCHDD	D7B
CCHEX	D7B	CCHUD	D7B
* CCMPB		CCOPY	D1A5
CCOSH	C4C	CCOT	C4A
CDCDOT	D1A4	*CDCOR	
* CDCST		* CDIV	
*CDNTL		*CDNTP	
CDOTC	D1A4	CDOTU	D1A4
* CDPSC		*CDPST	
CDRIV1	I1A2, I1A1B	CDRIV2	I1A2, I1A1B
CDRIV3	I1A2, I1A1B	*CDSCL	
* CDSTP		*CDZRO	
CEXPRL	C4B	*CFFTB	J1A2
CFFTB1	J1A2	*CFFTF	J1A2
CFFTF1	J1A2	* CFFTI	J1A2
CFFTI1	J1A2	* CFOD	
CG	D4A4	CGAMMA	C7A
CGAMR	C7A	CGBCO	D2C2
CGBDI	D3C2	CGBFA	D2C2
CGBMV	D1B4	CGBSL	D2C2
CGECO	D2C1	CGEDI	D2C1, D3C1


CGEEV	D4A4	CGEFA	D2C1
CGEFS	D2C1	CGEIR	D2C1
CGEMM	D1B6	CGEMV	D1B4
CGERC	D1B4	CGERU	D1B4
CGESL	D2C1	CGTSL	D2C2A
CH	D4A3	CHBMV	D1B4
CHEMM	D1B6	CHEMV	D1B4
CHER	D1B4	CHER2	D1B4
CHER2K	D1B6	CHERK	D1B6
* CHFCM		CHFDV	E3, H1
CHFEV	E3	* CHFIE	
CHICO	D2D1A	CHIDI	D2D1A, D3D1A
CHIEV	D4A3	CHIFA	D2D1A
CHISL	D2D1A	CHKDER	F3, G4C
*CHKPR4		*CHKPRM	
*CHKSN4		*CHKSNG	
CHPCO	D2D1A	CHPDI	D2D1A, D3D1A
CHPFA	D2D1A	CHPMV	D1B4
CHPR	D1B4	CHPR2	D1B4
CHPSL	D2D1A	CHU	C11
CINVIT	D4C2B	*CKSCL	
CLBETA	C7B	CLNGAM	C7A
CLNREL	C4B	CLOG10	C4B
CMGNBN	I2B4B	* CMLRI	
* CMPCSG		*CMPOSD	
* CMPOSN		*CMPOSP	
* CMP TR3		* CMPTRX	
CNBCO	D2C2	CNBDI	D3C2
CNBFA	D2C2	CNBFS	D2C2
CNBIR	D2C2	CNBSL	D2C2
COMBAK	D4C4	COMHES	D4C1B2
COMLR	D 4 C2B	COMLR2	D4C2B
* COMPB		COMQR	D4C2B
COMQR2	D4C2B	CORTB	D4C4
CORTH	D4C1B2	COSDG	C4A
*COSGEN		COSQB	J1A3
*COSQB1	J1A3	COSQF	J1A3
*COSQF1	J1A3	COSQI	J1A3
COST	J1A3	COSTI	J1A3
COT	C4A	*CPADD	
CPBCO	D2D2	CPBDI	D3D2
CPBFA	D2D2	CPBSL	D2D2
* CPEVL		*CPEVLR	
CPOCO	D2D1B	CPODI	D2D1B, D3D1B
CPOFA	D2D1B	CPOFS	D2D1B
CPOIR	D2D1B	CPOSL	D2D1B
CPPCO	D2D1B	CPPDI	D2D1B, D3D1B
CPPFA	D2D1B	CPPSL	D2D1B
CPQR79	F1A1B	*CPROC	
* CPROCP		*CPROD	
* CPRODP		CPSI	C7C
CPTSL	D2D2A	CPZERO	F1A1B
CQRDC	D5	CQRSL	D9, D2C1
* CRATI		CROTG	D1B10
*CS1S2		CSCAL	D1A6
*CSCALE		*CSERI	
CSEVL	C3A2	* CSHCH	
CSICO	D2C1	CSIDI	D2C1, D3C1
CSIFA	D2C1	CSINH	C4C
CSISL	D2C1	CSPCO	D2C1
CSPDI	D2C1, D3C1	CSPFA	D2C1



DCHEX	D7B	*DCHFCM		
DCHFDV	E3, H1	DCHFEV	E3	
*DCHFIE		*DCHKW	R2	
DCHU	C11	DCHUD	D7B	
DCKDER	F3, G4C	*DCOEF		
DCOPY	D1A5	DCOPYM	D1A5	
DCOSDG	C4A	DCOT	C4A	
DCOV	K1B1	DCPPLT	N1	
*DCSCAL		DCSEVL	C3A2	
DCV	L7A3	*DDAINI		
*DDAJAC		*DDANRM		
*DDASLV		DDASSL	I1A2	
*DDASTP		*DDATRP		
DDAWS	C8C	*DDAWTS		
*DDCOR		*DDCST		
DDEABM	I1A1B	DDEBDF	I1A2	
DDERKF	I1A1A	*DDES		
*DDNTL		*DDNTP		
*DDOGLG		DDOT	D1A4	
*DDPSC		*DDPST		
DDRIV1	I1A2, I1A1B	DDRIV2	I1A2, I1A1B	
DDRIV3	I1A2, I1A1B	*DDSCL		
*DDSTP		*DDZRO		
DE1	C5	DEABM	I1A1B	
DEBDF	I1A2	DEFC	K1A1A1, K1A2A,	L8A3
*DEFCMN		*DEFE4		
*DEFEHL		*DEFER		
DEI	C5	*DENORM		
DERF	C8A, L5A1E	DERFC	C8A, L5A1E	
DERKF	I1A1A	*DERKFS		
*DES		*DEXBVP		
DEXINT	C5	DEXPRL	C4B	
DFAC	C1	DFC	K1A1A1, K1A2A,	L8A3
*DFCMN		*DFDJC1		
*DFDJC3		*DFEHL		
*DFSPVD		*DFSPVN		
*DFULMT		DFZERO	F1B	
DGAMI	C7E	DGAMIC	C7E	
DGAMIT	C7E	DGAMLM	C7A, R2	
*DGAMLN	C7A	DGAMMA	C7A	
DGAMR	C7A	*DGAMRN		
DGAUS8	H2A1A1	DGBCO	D2A2	
DGBDI	D3A2	DGBFA	D2A2	
DGBMV	D1B4	DGBSL	D2A2	
DGECO	D2A1	DGEDI	D3A1, D2A1	
DGEFA	D2A1	DGEFS	D2A1	
DGEMM	D1B6	DGEMV	D1B4	
DGER	D1B4	DGESL	D2A1	
DGLSS	D9, D5	DGMRES	D2A4, D2B4	
DGTSL	D2A2A	*DH12		
*DHELS	D2A4, D2B4	*DHEQR	D2A4, D2B4	
DHFTI	D9	*DHKSEQ		
*DHSTRT		*DHVNRM		
DINTP	I1A1B	DINTRV	E3, K6	
*DINTYD		DIR	D2A4, D2B4	
*DJAIRY		DLBETA	C7B	
DLGAMS	C7A	DLI	C5	
DLLSIA	D9, D5	DLLTI2	D2E	
DLNGAM	C7A	DLNREL	C4B	
DLPDOC	D2A4, D2B4, Z	*DLPDP		
DLSEI	K1A2A, D9	*DLSI		


*DLSOD		*DLSSUD	
*DMACON		*DMGSBV	
*DMOUT		*DMPAR	
DNBCO	D2A2	DNBDI	D3A2
DNBFA	D2A2	DNBFS	D2A2
DNBSL	D2A2	DNLS 1	K1B1A1, K1B1A2
DNLS1E	K1B1A1, K1B1A2	DNRM2	D1A3B
DNSQ	F2A	DNSQE	F2A
*DOGLEG		*DOHTRL	
DOMN	D2A4, D2B4	*DORTH	D2A4, D2B4
*DORTHR		DP1VLU	K6
DPBCO	D2B2	DPBDI	D3B2
DPBFA	D2B2	DPBSL	D2B2
DPCHBS	E3	*DPCHCE	
*DPCHCI		DPCHCM	E3
*DPCHCS		*DPCHDF	
DPCHFD	E3, H1	DPCHFE	E3
DPCHIA	E3, H2A1B2	DPCHIC	E1A
DPCHID	E3, H2A1B2	DPCHIM	E1A
*DPCHKT	E3	*DPCHNG	
DPCHSP	E1A	*DPCHST	
*DPCHSW		DPCOEF	K1A1A2
DPFQAD	H2A2A1, E3, K6	*DPIGMR	D2A4, D2B4
*DPINCW		*DPINIT	
*DPINTM		*DPJAC	
DPLINT	E1B	*DPLPCE	
*DPLPDM		*DPLPFE	
*DPLPFL		*DPLPMN	
*DPLPMU		*DPLPUP	
*DPNNZR		DPOCH	C1, C7A
DPOCH1	C1, C7A	DPOCO	D2B1B
DPODI	D2B1B, D3B1B	DPOFA	D2B1B
DPOFS	D2B1B	DPOLCF	E1B
DPOLFT	K1A1A2	DPOLVL	E3
*DPOPT		DPOSL	D2B1B
DPPCO	D2B1B	DPPDI	D2B1B, D3B1B
DPPERM	N8	DPPFA	D2B1B
*DPPGQ8		DPPQAD	H2A2A1, E3, K6
DPPSL	D2B1B	DPPVAL	E3, K6
*DPRVEC		*DPRWPG	
*DPRWVR		DPSI	C7C
DPSIFN	C7C	*DPSIXN	
DPSORT	N6A1B, N6A2B	DPTSL	D2B2A
DQAG	H2A1A1	DQAGE	H2A1A1
DQAGI	H2A3A1, H2A4A1	DQAGIE	H2A3A1, H2A4A1
DQAGP	H2A2A1	DQAGPE	H2A2A1
DQAGS	H2A1A1	DQAGSE	H2A1A1
DQAWC	H2A2A1, J4	DQAWCE	H2A2A1, J4
DQAWF	H2A3A1	DQAWFE	H2A3A1
DQAWO	H2A2A1	DQAWOE	H2A2A1
DQAWS	H2A2A1	DQAWSE	H2A2A1
DQC25C	H2A2A2, J4	DQC25F	H2A2A2
DQC25S	H2A2A2	*DQCHEB	
DQDOTA	D1A4	DQDOTI	D1A4
*DQELG		*DQFORM	
DQK15	H2A1A2	DQK15I	H2A3A2, H2A4A2
DQK15W	H2A2A2	DQK21	H2A1A2
DQK31	H2A1A2	DQK41	H2A1A2
DQK51	H2A1A2	DQK61	H2A1A2
DQMOMO	H2A2A1, C3A2	DQNC79	H2A1A1
DQNG	H2A1A1	*DQPSRT	


DQRDC	D5	*DQRFAC	
DQRSL	D9, D2A1	*DQRSLV	
*DQWGTC		*DQWGTF	
*DQWGTS		DRC	C14
DRC3JJ	C19	DRC3JM	C19
DRC6J	C19	DRD	C14
*DREADP		*DREORT	
DRF	C14	DRJ	C14
*DRKFAB		*DRKFS	
*DRLCAL	D2A4, D2B4	DROT	D1A8
DROTG	D1B10	DROTM	D1A8
DROTMG	D1B10	*DRSCO	
DS2LT	D2E	DS2Y	D1B9
DSBMV	D1B4	DSCAL	D1A6
DSD2S	D2E	DSDBCG	D2A4, D2B4
DSDCG	D2B4	DSDCGN	D2A4, D2B4
DSDCGS	D2A4, D2B4	DSDGMR	D2A4, D2B4
DSDI	D1B4	DSDOMN	D2A4, D2B4
DSDOT	D1A4	DSDS	D2E
DSDSCL	D2E	DSGS	D2A4, D2B4
DSICCG	D2B4	DSICO	D2B1A
DSICS	D2E	DSIDI	D2B1A, D3B1A
DSIFA	D2B1A	DSILUR	D2A4, D2B4
DSILUS	D2E	DSINDG	C4A
DSISL	D2B1A	DSJAC	D2A4, D2B4
DSLI	D2A3	DSLI2	D2A3
DSLLTI	D2E	DSLUBC	D2A4, D2B4
DSLUCN	D2A4, D2B4	DSLUCS	D2A4, D2B4
DSLUGM	D2A4, D2B4	DSLUI	D2E
DSLUI2	D2E	DSLUI4	D2E
DSLUOM	D2A4, D2B4	DSLUTI	D2E
*DSLVS		DSMMI2	D2E
DSMMTI	D2E	DSMTV	D1B4
DSMV	D1B4	DSORT	N6A2B
DSOS	F2A	*DSOSEQ	
*DSOSSL		DSPCO	D2B1A
DSPDI	D2B1A, D3B1A	DSPENC	C5
DSPFA	D2B1A	DSPLP	G2A2
DSPMV	D1B4	DSPR	D1B4
DSPR2	D1B4	DSPSL	D2B1A
DSTEPS	I1A1B	*DSTOD	
*DSTOR1		*DSTWAY	
*DSUDS		*DSVCO	
DSVDC	D6	DSWAP	D1A5
DSYMM	D1B6	DSYMV	D1B4
DSYR	D1B4	DSYR2	D1B4
DSYR2K	D1B6	DSYRK	D1B6
DTBMV	D1B4	DTBSV	D1B4
DTIN	N1	DTOUT	N1
DTPMV	D1B4	DTPSV	D1B4
DTRCO	D2A3	DTRDI	D2A3, D3A3
DTRMM	D1B6	DTRMV	D1B4
DTRSL	D2A3	DTRSM	D1B6
DTRSV	D1B4	*DU11LS	
*DU11US		*DU12LS	
*DU12US		DULSIA	D9
*DUSRMT		*DVECS	
*DVNRMS		*DVOUT	
*DWNLIT		*DWNLSM	
*DWNLT1		*DWNLT2	
*DWNLT3		DWNNLS	K1A2A


*DWRITP		*DWUPDT	
*DX		*DX4	
DXADD	A3D	DXADJ	A3D
DXC210	A3D	DXCON	A3D
*DXLCAL	D2A4, D2B4	DXLEGF	C3A2, C9
DXNRMP	C3A2, C9	*DXPMU	C3A2, C9
*DXPMUP	C3A2, C9	*DXPNRM	C3A2, C9
*DXPQNU	C3A2, C9	*DXPSI	C7C
*DXQMU	C3A2, C9	*DXQNU	C3A2, C9
DXRED	A3D	DXSET	A3D
*DY		*DY4	
*DYAIRY		E1	C5
EFC	K1A1A1, K1A2A, L8A3	*EFCMN	
EI	C5	EISDOC	D4, Z
ELMBAK	D4C4	ELMHES	D4C1B2
ELTRAN	D4C4	*ENORM	
ERF	C8A, L5A1E	ERFC	C8A, L5A1E
*EXBVP		EXINT	C5
EXPREL	C4B	*EZFFT1	
EZFFTB	J1A1	EZFFTF	J1A1
EZFFTI	J1A1	FAC	C1
FC	K1A1A1, K1A2A, L8A3	*FCMN	
*FDJAC1		*FDJAC3	
FDUMP	R3	FFTDOC	J1, Z
FIGI	D4C1C	FIGI2	D4C1C
*FULMAT		FUNDOC	C, Z
FZERO	F1B	GAMI	C7E
GAMIC	C7E	GAMIT	C7E
GAMLIM	C7A, R2	*GAMLN	C7A
GAMMA	C7A	GAMR	C7A
*GAMRN		GAUS8	H2A1A1
GENBUN	I2B4B	* H12	
HFTI	D9	*HKSEQ	
HPPERM	N8	HPSORT	N6A1C, N6A2C
HQR	D4C2B	HQR2	D4C2B
* HStART		HSTCRT	I2B1A1A
* HSTCS1		HSTCSP	I2B1A1A
HSTCYL	I2B1A1A	HSTPLR	I2B1A1A
HSTSSP	I2B1A1A	HTRIB3	D4C4
HTRIBK	D4C4	HTRID3	D4C1B1
HTRIDI	D4C1B1	* HVNRM	
HW3CRT	I2B1A1A	HWSCRT	I2B1A1A
*HWSCS1		HWSCSP	I2B1A1A
HWSCYL	I2B1A1A	HWSPLR	I2B1A1A
*HWSSS1		HWSSSP	I2B1A1A
I1MACH	R1	*I1MERG	
ICAMAX	D1A2	ICOPY	D1A5
IDAMAX	D1A2	*IDLOC	
IMTQL1	D4A5, D4C2A	IMTQL2	D4A5, D4C2A
IMTQLV	D4A5, D4C2A	*INDXA	
*INDXB		*INDXC	
INITDS	C3A2	INITS	C3A2
INTRV	E3, K6	*INTYD	
INVIT	D4C2B	*INXCA	
*INXCB		*INXCC	
*IPLOC		IPPERM	N8
IPSORT	N6A1A, N6A2A	ISAMAX	D1A2
*ISDBCG	D2A4, D2B4	*ISDCG	D2B4
*ISDCGN	D2A4, D2B4	*ISDCGS	D2A4, D2B4
*ISDGMR	D2A4, D2B4	*ISDIR	D2A4, D2B4
*ISDOMN	D2A4, D2B4	ISORT	N6A2A


*ISSBCG	D2A4, D2B4	*ISSCG	D2B4
*ISSCGN	D2A4, D2B4	*ISSCGS	D2A4, D2B4
*ISSGMR	D2A4, D2B4	*ISSIR	D2A4, D2B4
*ISSOMN	D2A4, D2B4	ISWAP	D1A5
*IVOUT		* J4SAVE	
* JAIRY		*LA05AD	
*LA05AS		*LA05BD	
*LA05BS		*LA05CD	
*LA05CS		*LA05ED	
*LA05ES		LLSIA	D9, D5
*LMPAR		*LPDP	
*LSAME	R, N3	LSEI	K1A2A, D9
*LSI		*LSOD	
*LSSODS		*LSSUDS	
*MACON		*MC20AD	
*MC20AS		*MGSBV	
MINFIT	D9	*MINSO4	
*MINSOL		*MPADD	
*MPADD2		*MPADD3	
*MPBLAS		*MPCDM	
*MPCHK		*MP CMD	
*MPDIVI		*MPERR	
*MPMAXR		*MPMLP	
*MPMUL		*MPMUL2	
*MPMULI		*MPNZR	
*MPOVFL		*MPSTR	
*MPUNFL		NUMXER	R3C
*OHTROL		*OHTROR	
ORTBAK	D4C4	ORTHES	D4C1B2
*ORTHO4		*ORTHOG	
*ORTHOL		*ORTHOR	
ORTRAN	D4C4	*PASSB	
*PASSB2		*PASSB3	
*PASSB4		*PASSB5	
*PASSF		*PASSF2	
*PASSF3		*PASSF 4	
*PASSF5		PCHBS	E3
*PCHCE		*PCHCI	
PCHCM	E3	*PCHCS	
*PCHDF		PCHDOC	E1A, Z
PCHFD	E3, H1	PCHFE	E3
PCHIA	E3, H2A1B2	PCHIC	E1A
PCHID	E3, H2A1B2	PCHIM	E1A
*PCHKT	E3	*PCHNGS	
PCHSP	E1A	*PCHST	
*PCHSW		PCOEF	K1A1A2
PFQAD	H2A2A1, E3, K6	*PGSF	
*PIMACH		*PINITM	
*PJAC		*PNNZRS	
POCH	C1, C7A	POCH1	C1, C7A
POIS3D	I2B4B	*POISD2	
*POISN2		*POISP2	
POISTG	I2B4B	POLCOF	E1B
POLFIT	K1A1A2	POLINT	E1B
POLYVL	E3	*POS3D1	
*POSTG2		*PPADD	
*PPGQ8		*PPGSF	
*PPPSF		PPQAD	H2A2A1, E3, K6
*PPSGF		*PPSPF	
PPVAL	E3, K6	*PROC	
*PROCP		*PROD	


*PRODP		*PRVEC	
*PRWPGE		*PRWVIR	
*PSGF		PSI	C7C
PSIFN	C7C	*PSIXN	
PVALUE	K6	*PYTHAG	
QAG	H2A1A1	QAGE	H2A1A1
QAGI	H2A3A1, H2A4A1	QAGIE	H2A3A1, H2A4A1
QAGP	H2A2A1	QAGPE	H2A2A1
QAGS	H2A1A1	QAGSE	H2A1A1
QAWC	H2A2A1, J4	QAWCE	H2A2A1, J4
QAWF	H2A3A1	QAWFE	H2A3A1
QAWO	H2A2A1	QAWOE	H2A2A1
QAWS	H2A2A1	QAWSE	H2A2A1
QC25C	H2A2A2, J4	QC25F	H2A2A2
QC25S	H2A2A2	*QCHEB	
*QELG		*QFORM	
QK15	H2A1A2	QK15I	H2A3A2, H2A4A2
QK15W	H2A2A2	QK21	H2A1A2
QK31	H2A1A2	QK41	H2A1A2
QK51	H2A1A2	QK61	H2A1A2
QMOMO	H2A2A1, C3A2	QNC79	H2A1A1
QNG	H2A1A1	QPDOC	H2, Z
*QPSRT		*QRFAC	
*QRSOLV		*QS2I1D	N6A2A
* QS2I1R	N6A2A	*QWGTC	
*QWGTF		*QWGTS	
QZHES	D4C1B3	QZIT	D4C1B3
QZVAL	D4C2C	QZVEC	D4C3
R1MACH	R1	*R1MPYQ	
*R1UPDT		*R9AIMP	C10D
*R9ATN1	C4A	*R9CHU	C11
*R9GMIC	C7E	*R9GMIT	C7E
*R9KNUS	C10B3	*R9LGIC	C7E
*R9LGIT	C7E	*R9LGMC	C7E
*R9LN2R	C4B	R9PAK	A6B
R9UPAK	A6B	*RADB2	
*RADB3		*RADB4	
*RADB5		*RADBG	
*RADF2		*RADF3	
*RADF4		*RADF5	
*RADFG		RAND	L6A21
RATQR	D4A5, D4C2A	RC	C14
RC3JJ	C19	RC3JM	C19
RC6J	C19	RD	C14
REBAK	D4C4	REBAKB	D4C4
REDUC	D4C1C	REDUC2	D4C1C
*REORT		RF	C14
*RFFTB	J1A1	RFFTB1	J1A1
*RFFTF	J1A1	RFFTF1	J1A1
*RFFTI	J1A1	RFFTI1	J1A1
RG	D4A2	RGAUSS	L6A14
RGG	D4B2	RJ	C14
*RKFAB		RPQR79	F1A1A
RP ZERO	F1A1A	RS	D4A1
RSB	D4A6	*RSCO	
RSG	D4B1	RSGAB	D4B1
RSGBA	D4B1	RSP	D4A1
RST	D4A5	RT	D4A5
RUNIF	L6A21	*RWUPDT	
*S1MERG		SASUM	D1A3A
SAXPY	D1A7	SBCG	D2A4, D2B4



SPPFA	D2B1B	SPPSL	D2B1B
SPSORT	N6A1B, N6A2B	SPTSL	D2B2A
SQRDC	D5	SQRSL	D9, D2A1
*SREADP		*SRLCAL	D2A4, D2B4
SROT	D1A8	SROTG	D1B10
SROTM	D1A8	SROTMG	D1B10
SS2LT	D2E	SS2Y	D1B9
SSBMV	D1B4	SSCAL	D1A6
SSD2S	D2E	SSDBCG	D2A4, D2B4
SSDCG	D2B4	SSDCGN	D2A4, D2B4
SSDCGS	D2A4, D2B4	SSDGMR	D2A4, D2B4
SSDI	D1B4	SSDOMN	D2A4, D2B4
SSDS	D2E	SSDSCL	D2E
SSGS	D2A4, D2B4	SSICCG	D2B4
SSICO	D2B1A	SSICS	D2E
SSIDI	D2B1A, D3B1A	SSIEV	D4A1
SSIFA	D2B1A	SSILUR	D2A4, D2B4
SSILUS	D2E	SSISL	D2B1A
SSJAC	D2A4, D2B4	SSLI	D2A3
SSLI2	D2A3	SSLLTI	D2E
SSLUBC	D2A4, D2B4	SSLUCN	D2A4, D2B4
SSLUCS	D2A4, D2B4	SSLUGM	D2A4, D2B4
SSLUI	D2E	SSLUI2	D2E
SSLUI4	D2E	SSLUOM	D2A4, D2B4
SSLUTI	D2E	SSMMI 2	D2E
SSMMTI	D2E	SSMTV	D1B4
SSMV	D1B4	SSORT	N6A2B
SSPCO	D2B1A	SSPDI	D2B1A, D3B1A
SSPEV	D4A1	SSPFA	D2B1A
SSPMV	D1B4	SSPR	D1B4
SSPR2	D1B4	SSPSL	D2B1A
SSVDC	D6	SSWAP	D1A5
SSYMM	D1B6	SSYMV	D1B4
SSYR	D1B4	SSYR2	D1B4
SSYR2K	D1B6	SSYRK	D1B6
STBMV	D1B4	STBSV	D1B4
STEPS	I1A1B	STIN	N1
*STOD		*STOR1	
STOUT	N1	STPMV	D1B4
STPSV	D1B4	STRCO	D2A3
STRDI	D2A3, D3A3	STRMM	D1B6
STRMV	D1B4	STRSL	D2A3
STRSM	D1B6	STRSV	D1B4
*STWAY		*SUDS	
*SVCO		*SVD	
*SVECS		*SVOUT	
*SWRITP		*SXLCAL	D2A4, D2B4
*TEVLC		*TEVLS	
TINVIT	D4C3	TQL1	D4A5, D4C2A
TQL2	D4A5, D4C2A	TQLRAT	D4A5, D4C2A
TRBAK1	D4C4	TRBAK3	D4C4
TRED1	D4C1B1	TRED2	D4C1B1
TRED3	D4C1B1	*TRI3	
TRIDIB	D4A5, D4C2A	*TRIDQ	
*TRIS 4		*TRISP	
*TRIX		TSTURM	D4A5, D4C2A
*U11LS		*U11US	
*U12LS		* U12US	
ULSIA	D9	*USRMAT	
*VNWRMS		*WNLIT	
*WNLSM		*WNLT1	


*WNLT2		*WNLT3	
WNNLS	K1A2A	XADD	A3D
XADJ	A3D	XC210	A3D
XCON	A3D	* XERBLA	R3
XERCLR	R3C	* XERCNT	R3C
XERDMP	R3C	* XERHLT	R3C
XERMAX	R3C	XERMSG	R3C
* XERPRN	R3C	*XERSVE	R3
XGETF	R3C	XGETUA	R3C
XGETUN	R3C	XLEGF	C3A2, C9
XNRMP	C3A2, C9	*XPMU	C3A2, C9
* XPMUP	C3A2, C9	* XPNRM	C3A2, C9
* XPQNU	C3A2, C9	*XPSI	C7C
*XQMU	C3A2, C9	*XQNU	C3A2, C9
XRED	A3D	XSET	A3D
XSETF	R3A	XSETUA	R3B
XSETUN	R3B	*YAIRY	
* ZABS		*ZACAI	
* ZACON		ZAIRY	C10D
*ZASYI		ZBESH	C10A4
ZBESI	C10B4	ZBESJ	C10A4
ZBESK	C10B4	ZBESY	C10A4
*ZBINU		ZBIRY	C10D
* ZBKNU		*ZBUNI	
* ZBUNK		* ZDIV	
* ZEXP		*ZKSCL	
*ZLOG		*ZMLRI	
* ZMLT		*ZRATI	
*ZS1S2		*ZSERI	
* ZSHCH		*ZSQRT	
* ZUCHK		*ZUNHJ	
*ZUNI1		*ZUNI2	
* ZUNIK		*ZUNK1	
* ZUNK2		*ZUOIK	
* ZWRSK			

