khhkkkhhkkkhhhkhkkhhhkhhhkhdhdxdhhhdhdxddhhdhdxddhddhdxddhrddhxddxrdhk*x*
* *
* Gui de to the SLATEC Common Mat hematical Library *
* *
khhkkkhhkkkhhhkhkkhhhkhhhkhdhdxdhhhdhdxddhhdhdxddhddhdxddhrddhxddxrdhk*x*

Kirby W Fong
Nat i onal Magnetic Fusi on Energy Conputer Center
Law ence Livernore National Laboratory

Thomas H. Jefferson
Qperating Systens Division
Sandi a National Laboratories Livernore

Toki hi ko Suyehiro
Conputing and Mat hemati cs Research Division
Law ence Livernore National Laboratory

Lee Walton
Net wor k Anal ysi s Division
Sandi a National Laboratories Al buquerque

July 1993

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhhdhhdhkrhhrkhrx*

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON 10.
SECTI ON 11.
SECTI ON 12.
SECTI ON 13.
SECTI ON 14.

CONOURWNE

APPENDI X A.
APPENDI X B.
APPENDI X C.
APPENDI X D.
APPENDI X E.

Tabl e of Contents

ABSTRACT

BACKGROUND

VEMBERS OF THE SLATEC COVMON MATHEMATI CAL LI BRARY SUBCOWMM TTEE
OBTAI NI NG THE LI BRARY

CODE SUBM SSI ON PROCEDURES

CCODI NG GUI DELI NES- - GENERAL REQUI REMENTS FOR SLATEC
SCURCE CODE FORVAT

PROLOGUE FORVAT FOR SUBPROGRAMS

EXAMPLES OF PROLOGUES

SLATEC QUI CK CHECK PHI LOSCPHY

SPECI FI C PROGRAMM NG STANDARDS FOR SLATEC QUI CK CHECKS
QUI CK CHECK DRI VERS (MAI N PROGRAMS)

QUI CK CHECK SUBROUTI NE EXAMPLE

QUI CK CHECK MAI N PROGRAM EXAMPLE

GAMS (AND SLATEC) CLASSI FI CATI ON SCHEME
MACHI NE CONSTANTS

ERROR HANDLI NG

DI STRI BUTI ON FI LE STRUCTURE

SUGGESTED FORMAT FOR A SLATEC SUBPROGRAM

ACKNOWN.EDGEMENT
REFERENCES

khkkkkhhkhkkhkhhkhkkhhhkkhkhhhkhhhkhhhhkhhhkhdhhkhhkhkhdhhkdhhkhdhhhkdhhkhhrxhkdhhddrxhkdhhkddrxhkhhrrkddxhkhxxkx*x

SECTION 1. ABSTRACT

This docunent is a guide to the SLATEC Conmon Mat hemati cal Library (CWM) [1].
The SLATEC CML is witten in FORTRAN 77 (ANSI standard FORTRAN as defined by
ANSI X3.9-1978, reference [6]) and contai ns general purpose nathematical and
statistical routines. Included in this docunent are a Library description
code submi ssion procedures, and a detail ed description of the source file
format. This report serves as a guide for programrers who are preparing codes

for inclusion in the library. It also provides the information needed to
process the source file automatically for purposes such as extracting
docunentation or inserting usage nonitoring calls. This guide will be updated

periodically, so be sure to contact a SLATEC CML subcomi ttee nenber to ensure
you have the | atest version

R I R I I I I S I I I I R S I I R I R I I I R O I R I O I R R

SECTION 2. BACKGROUND

SLATEC is the acronymfor the Sandia, Los Al anps, Air Force Weapons Laboratory
Techni cal Exchange Conmittee. This organization was formed in 1974 by the
conputer centers of Sandia National Laboratories Al buquerque, Los Al anps

Nati onal Laboratory, and Air Force Wapons Laboratory to foster the exchange of
technical information. The parent comittee established several subconmittees
to deal with various conputing specialties. The SLATEC Conmon Mat hemati ca

Li brary (CM.) Subcommittee decided in 1977 to construct a mat hemati cal FORTRAN
subprogramlibrary that could be used on a variety of conputers at the three
sites. Aprimary inmpetus for the library devel opnent was to provi de portable,
non-proprietary, mathematical software for nenmber sites’ superconputers.

In 1980 the conputer centers of Sandia National Laboratories Livernore and the
Law ence Livernore National Laboratory were admtted as nmenbers of the parent
committee and subconmittees. Law ence Livernore National Laboratory, unlike the
others, has two separate conputer centers: the National Mgnetic Fusion Energy
Conputer Center (NMFECC) and the Livernore Computer Center (LCC). 1In 1981 the
Nati onal Bureau of Standards (now the National Institute of Standards and
Technol ogy) and the Oak Ri dge National Laboratory were invited to participate
inthe math library subcomittee because of their great interest in the

proj ect.

Version 1.0 of the CM. was released in April 1982 with 114,328 records and 491
user-callable routines. In My 1984 Version 2.0, with 151, 864 records and 646
user-callabl e routines was released. This was followed in April 1986 by
Version 3.0 with 196,013 records and 704 user-callable routines. Version 3.1
foll owed in August 1987 with 197,931 records and 707 user-callable routines
and Version 3.2 in August 1989 with 203,587 records and 709 user-call able
routines. The committee released Version 4.0 in Decenber 1992 with 298, 954
records and 901 user-callable routines. Finally, on July 1, 1993, Version 4.1
was rel eased with 290,907 records and 902 user-call able routines.

The sol e docunentation provided by SLATEC for the routines of the SLATEC

Library is via coment |ines in the source code. Although the library cones
wi th portabl e docunentation prograns to hel p users access the docunentation in
the source code, various installations may w sh to use their own docunentation
progranms. To facilitate automatic extracti on of documentation or further
processi ng by other conputer prograns, the source file for each routine nust
be arranged in a precise format. This docunment describes that format for the
benefit of potential library contributors and for those interested in
extracting library docunmentation fromthe source code.

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTION 3. WMEMBERS OF THE SLATEC COVMMON NMATHENMATI CAL LI BRARY SUBCOWM TTEE

Current nenber sites and voting nmenbers of the subcommittee are the
fol | owi ng.

Air Force Phillips Laboratory, Kirtland (PLK) Regi nal d Cl enens

Law ence Livernore National Laboratory (LCC) Fred N. Fritsch

Law ence Livernore National Laboratory (NERSC) St eve Buoni ncontri

Los Al anps National Laboratory (LANL) W Robert Bol and
(Chai r man)

Nati onal Institute of Standards and Technol ogy (NI ST) Daniel W Lozier

Oak Ridge National Laboratory (ORNL) Thomas H. Rowan
Sandi a National Laboratories/California (SNL/CA) Thomas H. Jefferson
Sandi a National Laboratories/New Mexico (SNL/NM Sue Goudy

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTION 4. OBTAI NI NG THE LI BRARY

The Library is in the public domain and distributed by the Energy Science
and Technol ogy Software Center.

Energy Sci ence and Technol ogy Software Center
P. O Box 1020
Gak Ridge, TN 37831

Tel ephone 615-576- 2606
E-mai|l estsc%l. adoni s. ntout er @eus. osti . gov

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTI ON 5. CCDE SUBM SSI ON PROCEDURES

The SLATEC Library is continuously searching for portable high-quality routines

witten in FORTRAN 77 that woul d be of interest to the menber sites. The
subcommittee nmeets several tines annually with the nmenber sites rotating as
neeting hosts. At these nmeetings new routines are introduced, discussed, and
eventual ly voted on for inclusion in the library. Some of the factors that are
considered in deciding whether to accept a routine into the Library are the
fol | owi ng:

1. Usefulness. Does the routine fill a void in the Library? WIIl the routine
have wi despread appeal ? WIIl it add a new capability?

2. Robustness. Does the routine give accurate results over a w de range of
probl ens? Does it diagnose errors? |Is the routine well tested?

3. Mintainability. |Is the author willing to respond to bugs in the routine?
Does the source code foll ow good progranm ng practices?

4. Adherence to SLATEC standards and codi ng gui delines. These standards
are described further in this guide and include such things as the order
of subprogram arguments, the presence of a correctly formatted prol ogue at
the start of each routine, and the nam ng of routines.

5. Good docunentation. 1s clear, concise conputer readable docunentation
built into the source code?

6. Freely distributable. |Is the programin the public domain?

A typical subm ssion procedure begins with contact between an author and a
Library conmttee nenber. Prelimnary discussions with the nenber are
encouraged for initial screening of any code and to gain insight into the
wor ki ngs of SLATEC. This nenber chanpions the routine to be considered. The
code is introduced at a neeting where the author or conmttee nmenber describes
the code and explains why it would be suitable for SLATEC. Copies of the code
are distributed to all conmittee nenbers. Hopefully, the code al ready adheres
to SLATEC standards. However, nost codes do not. At this first forma

di scussion, the committee nenbers are able to provide sonme useful suggestions
for improving the code and revising it for SLATEC.

Bet ween neetings, changes are made to the code and the nodified code is
distributed in nmachine readable format for testing. The code is then

consi dered at a subsequent neeting, to be voted on and accepted. However,
because conmittee nenbers and authors do not al ways see eye to eye, and because
time constraints affect all, the code is usually discussed at several neetings.

I f codes adhered to the progranm ng practices and formatting described in this
guide, the time for acceptance could be greatly reduced.

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhhdhhdhkrhhrkhrx*

SECTI ON 6. CCDI NG GUI DELI NES- - GENERAL REQUI REMENTS FOR SLATEC

A software collection of the size of the SLATEC Library that is designed to run
on a variety of conputers denands uniformty in handling nmachi ne dependenci es,
in handling error conditions, and in installation procedures. Thus, while the
decision to add a new subroutine to the library depends nostly on its quality
and whether it fills a gap in the library, these are not the only

consi derations. Programm ng style nust also be considered, so that the library

as a whol e behaves in a consistent manner. W now list the stylistic and
docunent ati onal reconmendati ons and requirenents for routines to be
i ncorporated into the library.

1. The SLATEC Library is intended to have no restriction on its distribution
therefore, new routines nust be in the public domain. This is generally
not a problem since nost authors are proud of their work and would Iike
their routines to be used w dely.

2. Routines nmust be witten in FORTRAN 77 (ANSI standard FORTRAN as
defined by ANSI X3.9-1978, reference [6]). Care nust be taken so that
machi ne dependent features are not used.

3. To enhance naintainability codes are to be nodular in structure. Codes
nmust be conposed of reasonably small subprograms which in turn are made
up of easily understandabl e bl ocks.

4. Equivalent routines of different precision are to ook the sane where
possi ble. That is, the logical structure, statement nunbers, variable
nanes, etc. are to be as close to identical as possible. This inplies
that generic intrinsics nust be used instead of specific intrinsics.
Ext raneous use of |INT, REAL and DBLE are strongly di scouraged; use
nm xed- node expressions in accordance with the Fortran 77 standard.

5. New routines nust build on existing routines in the Library, unless
there are conpelling reasons to do otherwi se. For exanple, the SLATEC
Li brary contains the LI NPACK and El SPACK routines, so new routines
shoul d use the existing linear system and ei gensystemroutines rather
t han introduce new ones.

6. System or machi ne dependent val ues must be obtained by calling routines
DIMACH, |1MACH, and RLMACH. The SLATEC Li brary has adopted these routines
fromthe Bell Laboratories’ PORT Library [2] [3]. See Appendix B
for a description of these machi ne dependent routines.

7. The SLATEC Library has a set of routines for handling error nessages.
Each user-callable routine, if it can detect errors, nust have as one
of its argunents an error flag, whose value upon exiting the routine
i ndi cates the success or failure of the routine. It is acceptable for a
routine to set the error flag and RETURN;, however, if the routine w shes
to wite an error nmessage, it nmust call XERVSG (see Appendix C) rather
than use WRITE or PRINT statenents. In general, all errors (even serious
ones) shoul d be designated as "recoverable" rather than "fatal," and the
routine should RETURN to the user. This pernits the user to try an
alternate strategy if a routine decides a particular calculation is
i nappropriate. A description of the entire original error handling
package appears in reference [4].

8. Each user-callable routine (and subsidiary routine if appropriate) mnust
have a snmall denonstration routine that can be used as a quick check. This
denpnstration routi ne can be nore exhaustive, but in general, it should be
structured to provide a "pass" or "fail" answer on whether the library
routi ne appears to be functioning properly. A nore detailed description
of the required format of the quick checks appears later in this docunent.

9. Comon bl ocks and SAVEd vari abl es nust be avoided. Use subprogram
argunents for interprogram communication. The use of these constructs
of ten obstructs multiprocessing.

Variables that are statically allocated in nenory and are used as

wor ki ng storage cannot be used sinmultaneously by several processors.
SAVEd vari abl es and comon bl ock variables are nost likely to fall into
this category. Such variables are acceptable if they are DATA | oaded or
set at run time to values that are to be read (but not witten) since it
does not matter in what order nultiple processors read the val ues.
However, such variabl es should not be used as working storage since no
processor can use the work space while some other processor is using it.
Li brary routines should ask the user to provide any needed work space
by passing it in as an argunent. The user is then responsible for

gi ving each processor a different work space even though each processor
may be executing the sane library routine.

10. Conpl ete sel f-contained docunentati on nust be supplied as coments in
user-cal l abl e routines. This docunmentation nust be self-contained because
SLATEC provi des no other docunentation for using the routines. This
docunentation is called the "prologue" for the routine. The rigid prologue
format for user-callable routines is described below. The prol ogue nust
tell the user howto call the routine but need not go into algorithmc
details since such expl anations often require diagranms or non- ASCl
synmbol s. Subsidiary routines are those called by other library routines
but which are not intended to be called directly by the user. Subsidiary
routi nes al so have prol ogues, but these prol ogues are considerably | ess
el aborate than those of user-callable routines.

11. No output should be printed. Instead, information should be returned
to the user via the subprogram argunents or function values. |If there is
some overriding reason that printed output is necessary, the user nust be
able to suppress all output by means of a subprograminput vari able.

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTION 7. SCQURCE CODE FORVAT

In this section and the two sections on prol ogues, we use the caret (")
character to indicate a position in which a single blank character nust
appear. Upper case letters are used for information that appears literally.
Lower case is used for material specific to the routine.

1. The first line of a subprogram nust start with one of:

SUBROUTI NE*name”(ar g1, ~arg2, *. .. argn)

FUNCTI ONMnane”(ar g1, *arg2, *...argn)
COVPLEX"FUNCTI ONMnane”(ar g1, “arg2, ... argn)
DOUBLEMPRECI SI ON'FUNCTI ONMnane”(ar g1, “arg2, ~. .. argn)
| NTEGER* FUNCTI O\ nane”(ar g1, ~arg2, ~. .. argn)
REALMFUNCTI ONMname” (ar g1, *arg2, *. .. argn)

LOGE CALMFUNCTI ONMnane”(ar gl, “arg2, ™. .. argn)
CHARACTER *I en] “FUNCTI ON*nane”(ar g1, ~arg2, ~...argn)

Each of the above lines starts in colum 7. |If there is an argunent
list, then there is exactly one blank after the subprogram nane and
after each comma (except if the comma appears in colum 72). There is
no enmbedded bl ank in any formal paraneter, after the |leading |eft
parent hesis, before the trailing right parenthesis, or before any
conma. Formal paraneters are never split across lines. Any line to be
continued nmust end with a commm

For continuation lines, any |legal continuation character may be used in

10.

11.

12.

colum 6, colums 7-9 nust be bl ank and argunents or formal paraneters
start in colum 10 of a continuation line and continue up to the right
parenthesis (or commma if another continuation line is needed). The
brackets in the CHARACTER decl arati on do not appear literally but

i ndicate the optional length specification described in the FORTRAN 77
st andar d.

The aut hor nust supply a prol ogue for each subprogram The prol ogue
nust be in the fornmat that will subsequently be described. The

prol ogue begins with the first |ine after the subprogram decl aration
(including continuation |lines for [ong argurment lists).

Except for the "C***" lines (to be described) in the prol ogue and
the "C**" |ine marking the first executable statenent, no other line
may begin with "C-**",

The first line of the prologue is the conmment |ine

Ct** BEA N*PROLOGUEMnane

where "nanme", starting in colum 21, is the name of the subprogram

The last line of a subprogramis the word "END' starting in colum 7.
Al'l al phabetic characters, except for those on coment |lines or in
character constants, nust be upper case, as specified by the FORTRAN 77
standard (see [6]).

In the prologue, the coment character in colum 1 nust be the upper
case "C'.

Al'l subprogram common bl ock, and any formal parameter nanmes nentioned in
t he prol ogue nmust be in upper case.

Nei t her FORTRAN statements nor comment |ines can extend beyond col um 72.
Colums 73 through 80 are reserved for identification or sequence numnbers.

Before the first executable statement of every subprogram user-callable
or not, is the line

C** FI RST"EXECUTABLE" STATEMENT**nane

where "name" (starting in colum 33) is the name of the subprogram
Only conment |ines may appear between the C**Fl RST EXECUTABLE
STATEMENT |ine and the first executable statenent.

The subprogram nane consi sts of a maxi mum of six characters. Authors
shoul d choose unusual and distinctive subprogram nanes to mnimnze
possi bl e nanme conflicts. Double precision routines should begin with
"D'. Subprograns of type conplex should begin with "C'. The letter "Z"
is reserved for future use by possible double precision conpl ex
subprogranms. No ot her subprograns should begin with either "D', "C', or
"Zz".

The recommended order for the fornal paraneters is:
1. Nanes of external subprograns.
2. Input variables.

3. Variables that are both input and output (except error flags).

4. Qutput variables.

5. Wbrk arrays.

6. FError flags.

However ,

array di mensi oni ng paraneters should imrediately foll ow the
associ ated array nane.

R I R I I I I I I R S I I R I R I R O R I O R R

SECTI ON 8.

PROLOGUE FORVAT FOR SUBPROGRAMS

Each subprogram has a section called a prol ogue that gives standardized

i nformation about the routine.
subsi di ary subprogramis one that
subprogramonly and i s not

The prol ogue consists of comrent
is usually called by another SLATEC Library
neant to be called by a user’s routine. The

[ines only.

A

prol ogue for a user-callable subprogramis nore extensive than the prol ogue for
a subsidiary subprogram

14 secti ons,

conmon bl ock is present.
prograns and in the quick check routines.

Sever al

order described in the table bel ow

CoOoNOOTA~WNE

*** Not e:

In the prol ogue section descriptions that follow,
char acter

Section

BEG N PROL
SUBSI DI ARY
PURPCSE

LI BRARY
CATEGORY
TYPE
KEYWORDS
AUTHOR

OGUE

SLATEC

DESCRI PTI ON

SEE ALSO
REFERENCES

ROUTI NES CALLED
COVMMON BLOCKS
REVI SI ON HI STORY
END PROLOGUE

User-cal | abl e

Requi r ed
Not present
Requi r ed
Requi r ed
Requi r ed
Requi r ed
Requi r ed
Requi r ed
Requi r ed
Opt i onal
Requi r ed
Requi r ed

Requi red***

Requi r ed
Requi r ed

in subsidiary

The sections are always in the

Subsi di ary

Requi r ed
Requi r ed
Requi r ed
Requi r ed
Opt i onal
Requi r ed
Opt i onal
Requi r ed
Opt i onal
Opt i onal
Opt i onal
Requi r ed

Requi red***

Requi r ed
Requi r ed

Qui ck Checks

Requi r ed
Opt i onal
Requi r ed
Requi r ed
Opt i onal
Requi r ed
Opt i onal
Requi r ed
Opt i onal
Opt i onal
Opt i onal
Requi r ed

Requi red***

Requi r ed
Requi r ed

The COVMON BLOCKS section appears in a subprogram prol ogue

if and only if the subprogram contains a comobn bl ock

1. BEG N PROLOGUE

This section is a single line that
declaration and its continuation |ines.

C*** BEG N*PROLOGUEMnane

where "nane"

(beginning in columm 21)

It

is

the caret
is used for enphasis to indicate a required bl ank character

(")

i medi ately foll ows the subprogram

is the name of the subprogram

The prol ogue for a user-callable subprogramhas up to
of which 12 are required and one is required if and only if a
of these sections are optiona

SUBSI DI ARY
This section is the single |ine

Cx**SUBSI DI ARY

and indicates the routine in which this appears is not intended to be
user-cal |l abl e.

PURPCSE

This section gives one to six lines of information on the purpose of the
subprogram The letters may be in upper or |ower case. There are no bl ank
lines in the purpose section; i.e., there are no lines consisting solely of
a"C incolum 1. The format for the first line and any continuation
lines is

C*** PURPCSEM i nf or mat i on
CANANNNNNNNNNDr e | nformati on

Information begins in colum 14 of the first Iine and no earlier than
colum 14 of continuation |ines.

LI BRARY SLATEC

The section is a single line used to show that the routine is a part
of the SLATEC library and, optionally, to indicate other libraries,
col l ections, or packages (sublibraries) of which the routine is a part
or fromwhich the routine has been derived. The format is

C** LI BRARYAMAMSLATEC
or
C+** LI BRARYAANSLATECM (subl i b1, Asubl i b2, ~. .. subli bn)

The leading |l eft parenthesis is inmrediately followed by the first nenber
of the Iist. Each nmenber, except for the last, is imediately followed by
a comma and a single blank. The last nenber is inmediately followed by
the trailing right parenthesis.

CATEGORY

This section is a list of classification systemcategories to which

this subprogram m ght reasonably be assigned. There nust be at | east
one list item The first category listed is terned the prinary
category, and others, if given, should be listed in nonotonically
decreasi ng order of inportance. Categories nmust be chosen fromthe
classification scheme listed in Appendix A The required format for the
initial line and any continuation lines is

C-** CATEGORY""cat 1, “cat 2, “cat 3, *. .. catn,
CANNANAANNANNANNcont | nued | i st

Al'l al phabetic characters are in upper case.

Itens in the list are separated by the two characters, comma and space.

If the list will not fit on one line, the |ine my be ended at a comma
(with zero or nore trailing spaces), and be continued on the next |ine.
The list and any continuations of the Iist begin with a nonblank character
in colum 15.

TYPE

This section gives the datatype of the routine and indicates which
routines, including itself, are equivalent (except possibly for type) to
the routine. The format for this section is

Cr**TYPEM AN out i ne_type”(equi val ence |i st
Crnannannnnanncont i nued equi val ence i st
Crnnnnnnnnnanncont i nued equi val ence i st)

Routine_type, starting in colum 15, is the data type of the routine,
and is either SINGLE PRECI SI ON, DOUBLE PRECI SI ON, COVPLEX, | NTEGER
CHARACTER, LOG CAL, or ALL. ALL is a pseudo-type given to routines that
could not reasonably be converted to sone other type. Their purpose is
typel ess. An exanple would be the SLATEC routine that prints error
nessages.

Equi valence list is a list of the routines (including this one) that are
equivalent to this one, but perhaps of a different type. Each itemin the
list consists of a routine nanme followed by the "-" character and then
followed by the first letter of the type (except use "H' for type
CHARACTER) of the equivalent routine. The order of the itens is S, D, C,
I, H L and A

The initial itemin the list is imrediately preceded by a blank and a

| eft parenthesis and the final itemis imediately followed by a right
parenthesis. |Items in the list are separated by the two characters,
conma and space. If the list will not fit on one line, the Iine may be
ended at a comma (wWith zero or nore trailing spaces), and be conti nued
on the next line. The list and any continuations of the list begin with
a nonbl ank character in colum 15.

Al'l al phabetic characters in this section are in upper case.
Exanpl e
C**TYPE SI NGLE PRECI SI ON (ACOSH S, DACOSH D, CACCsH- Q)

KEYWORDS

This section gives keywords or keyphrases that can be used by
information retrieval systens to identify subprograms that pertain to
the topic suggested by the keywords. There nust be at | east one
keyword. Keywords can have enbedded bl anks but may not have | eading or
trailing blanks. A keyword cannot be continued on the next line; it
nmust be short enough to fit on one line. No keyword can have an enbedded
conma. Characters are limted to the FORTRAN 77 character set (in
particular, no |ower case letters). There is no comma after the | ast

keyword in the list. It is suggested that keywords be in either
al phabetical order or decreasing order of inportance. The format for
the initial line and any continuation lines is

C** KEYWORDSM M i st
CANNANAANNANNANNcont | nued | i st

Itens in the list are separated by the two characters, comma and space.

If the list will not fit on one Iine, the |line nay be ended at a coma
(with zero or nore trailing spaces), and be continued on the next |ine.
The list and any continuations of the Iist begin with a nonblank character
in colum 15.

AUTHOR

This required section gives the author’s nane. There nust be at |east one
aut hor, and there may be coauthors. At least the last nane of the author
must be given. The first nane (or initials) is optional. The conpany,
organi zation, or affiliation of the author is also optional. The brackets
bel ow i ndicate optional information. Note that if an organization is to be

10.

11.

listed, the renmmi nder of the author’s nane nmust also be given. |If the
remai nder of the author’s nane is given, the last nane is i mediately
followed by a corma. |f the organization is given, the first name (or
initials) is imediately followed by a comma. The remainder of the nane
and the organi zati on nane may have enbedded bl anks. The remai nder of the
nane nay not have enbedded commas. This nmakes it possible for an
information retrieval systemto count conmas to identify the renai nder of
t he nane and the nane of an organi zation. Additional information about the
aut hor (e.g., address or tel ephone nunber) may be given on subsequent
lines. The tenplates used are

Cr** AUTHORMM ast - name[, Mirst-name[,(org)]]
CANANNNNNNNNNNANDF e | nf or mat i on
CANANNNNNNNNNNNDF e | nfor mat i on

CAANANNANNNNAN gst - name[, Mfirst-name[,(org)]]
CANANNANNANANN D e | nf ormati on

Each author’s name starts in colum 13. Continued information starts in
col um 15.

DESCRI PTI ON

This section is a description giving the program abstract, method used,
argunent descriptions, dinension infornmation, consultants, etc. The
description of the argunents is in exactly the sanme order in which the
argunents appear in the calling sequence. The description section may use
standard, 7-bit ASCI| graphic characters, i.e., the 94 printing characters
plus the blank. Nanes of subprograns, comon bl ocks, externals, and formal
paraneters are all in upper case. Nanmes of variables are also in upper
case. The first line of this section is "C-**DESCRI PTION' starting in
colum 1. All subsequent lines in this section start with a "C'" in columm
1 and no character other than a blank in columm 2. Lines with only a "C'
in colum 1 may be used to inprove the appearance of the description

A suggested format for the DESCRI PTION section is given in Appendix E

SEE ALSO

This section is used for listing other SLATEC routi nes whose prol ogues
contai n docunentation on the routine in which this section appears.
The formis

C** SEE ALSOname, “"nane, "nane

where each "nanme" is the nane of a user-callable SLATEC CM. subprogram
whose prol ogue provides a description of this routine. The nanmes are
given as a list (starting in colum 15), with successive nanes separated
by a comma and a single blank

REFERENCES
This section is for references. Any of the 94 ASCI| printing characters
plus the blank may be used. There may be nore than one reference. |If there

are no references, the section will consist of the single line
C* * * REFERENCES" (NONE)

If there are references, they will be in the follow ng fornat:

12.

13.

C*** REFERENCES"*r ef erence 1
CANANNANNANNANNANNcont | nuation of reference 1

CI\I\I\;\I\I\I\I\I\I\I\I\I\I\I\r ef er ence 2
CANNNANNNNNANNANANcont | nuat i on of reference 2

Information starts in colum 17 of the first line of a reference and no
earlier than colum 19 of continuation |lines.

Ref erences should be listed in either al phabetical order by |ast name or
order of citation. They should be in upper and | ower case, have initials
or first names ahead of |ast nanmes, and (for nmultiple authors) have

"and" ahead of the last author’s nane instead of just a coma. The first
word of the title of journal articles should be capitalized as should al
important words in titles of books, panmphlets, research reports, and
proceedings. Titles should be given w thout quotation marks. The names
of journals should be spelled out conpletely, or nearly so, because
software users may not be famliar with them

A conpl ete exanple of a journal reference is:

C F. N Fritsch and R E. Carlson, Mnotone piecew se
C cubic interpolation, SIAM Journal on Numerical Ana-
C lysis, 17 (1980), pp. 238-246.

A compl ete exanpl e of a book reference is:

C Carl de Boor, A Practical Guide to Splines, Applied
C Mat henmatics Series 27, Springer-Verlag, New York
C 1978.

ROUTI NES CALLED

This section gives the nanmes of routines in the SLATEC Cormon Mat hemati cal
Library that are either directly referenced or declared in an EXTERNAL
statement and passed as an argunent to a subprogram Note that the FORTRAN
intrinsics and other fornmal paraneters that represent externals are not
listed. A list is always given for routines called; however, if no routine
is called, the list will be the single item"(NONE)" where the parentheses
are included. |If there are genuine itens in the list, the itens are in

al phabetical order. The collating sequence has "0" through "9" first, then
"A" through "Z". The format is

C** ROUTI NES*CALLEDM*nane, *nane, *nane, *nane,
Cl\/\l\l\/\l\/\/\l\/\l\l\/\l\l\/\l\l\/\l\nan-e l\nan-e l\nan-e

Itens in the list are separated by the two characters, comma and space.

If the list will not fit on one line, the |ine my be ended at a comma
(with zero or nore trailing spaces), and be continued on the next |ine.
The list and any continuations of the Iist begin with a nonblank character
in colum 22.

COVMON BLOCKS

This section, that nay or may not be required, tells what common bl ocks are
used by this subprogram |If this subprogram uses no common bl ocks, this
section does not appear. |If this subprogram does use conmon bl ocks, this

section nmust appear. The list of common blocks is in exactly the sane
format as the list of routines called and uses the sane collating sequence.
In addition, the nane of blank common is "(BLANK)" where the parentheses
are included. Blank common should be last in the list if it appears. The
format for this section is

C*** COVMONN BLOCKSM M nhane, “"nane, “nhane, “"nane,

C/\nane’ /\nane' /\nanel\

The list starts in colum 22.

14. REVI SI ON HI STORY
This section provides a summary of the revisions nade to this code.
Revi sion dates and brief reasons for revisions are given. The format is

C***REVI S| ONVHI STORY”A (YYMVDD)

M Ayymdd™M A DATEMRI TTEN
Ccrryymdd/Arr evi sion descri ption
CAAANNANNANADDr e revi sion description
C/\/\/\/\/\/\/\/\/\/\/\. .

Crryymdd”Arr evi sion descri ption
CAAANNANNANANDr e revi sion description

CI\I\I\I\I\I\I\I\I\I\I_ .

C/\/\/\/\/\/\/\/\/\/\/\. .

where, for each revision, "yy" (starting in colum 5) is the last two
digits of the year, "m' is the nmonth (01, 02, ..., 12), and "dd" is the
day of the month (01, 02, ..., 31). Because this ANSI standard form for

the date nay not be fanmiliar to sonme people, the character string
"(YYMMVMDD)" (starting in columm 23) is included in the first Iine of the
section to assist in interpreting the sequence of digits. Each Iine of the
revi sion descriptions starts in colum 13. The second line of this section
contains the date the routine was witten, with the characters "DATE

WRI TTEN' beginning in colum 13. These itens nmust be in chronol ogi ca
order.

15. END PROLOGUE
The | ast section is the single line

Cr** END* PROLOGUEM *nane

where "nanme" is the name of the subprogram

khkkkkhhkhkkhkhhkhkkhhhkkhhhhkhhhkhhhhkhhhkkhdhhkhhhkhdhrhkhhhkhhhhkdhhhkhdrhkdhhddrxhkdhhkddxhkdhrrkddxhkhxkkx*x

SECTION 9. EXAMPLES OF PROLOGUES

Thi s section contains exanples of prologues for both user-callable

and subsidiary routines. The routines are not fromthe SLATEC CM. and

shoul d be used only as guidelines for preparing routines for SLATEC

Note that the C***DESCRI PTI ON sections follow the suggested LDOC fornat that
is described in Appendix E. Follow ng the suggested LDOC format with its

"C *"subsections helps to ensure that all necessary descriptive information is
provi ded.

SUBROUTI NE ADDXY (X, Y, Z, |ERR
C**BEG N PROLOGUE ADDXY
C***PURPCSE This routine adds two single precision nunbers together

C after forcing both operands to be stored in nenory.
C**LI BRARY SLATEC
C** CATEGORY A3A

C-**TYPE SI NGLE PRECI SI ON (ADDXY- S, DADDXY- D)
C**KEYWORDS ADD, ADDI TI ON, ARI THMETI C, REAL, SUM
C SUMVATI ON

C** AUTHOR Fong, K. W, (NWFECC)
Mai | Code L-560
Law ence Livernore National Laboratory
Post O fice Box 5509
Li vernore, CA 94550
Jefferson, T. H, (SNLL)
O g. 8235
Sandi a National Laboratories Livernore
Li vernore, CA 94550
Suyehiro, T., (LLNL)
Mai | Code L-316
Law ence Livernore National Laboratory
Post O fice Box 808
Livernore, CA 94550
** DESCRI PTI ON

*Usage:
| NTEGER | ERR
REAL X, Y, Z

CALL ADDXY (X, Y, Z, IERR
*Argunent s:

X :IN This is one of the operands to be added. It wll not
be nodi fied by ADDXY.

Y :IN This is the other operand to be added. It will not be
nodi fi ed by ADDXY.

Z :QUT This is the sumof X and Y. 1In case of an error,
this argunent will not be nodified.

| ERR. QUT This argunent will be set to O if ADDXY added the two
operands. It will be set to 1 if it appears the addition
woul d generate a result that m ght overfl ow

*Description:

ADDXY first divides X and Y by the |argest single precision nunber
and then adds the quotients. |If the absolute value of the sumis
greater than 1.0, ADDXY returns with ERR set to 1. O herwi se
ADDXY stores X and Y into an internal array and calls ADDZZ to add
them This increases the probability (but does not guarantee) that
operands and result are stored into nenory to avoid retention of
extra bits in overlength registers or cache.

**REFERENCES W M Gentleman and S. B. Marovich, Mre on al gorithns
that reveal properties of floating point arithmetic
units, Communications of the ACM 17 (1974), pp.
276-277.

C**ROUTI NES CALLED ADDZZ, R1NMACH, XERMSG

C***REVI S| ON H STORY (YYMVDD)

C 831109 DATE WRI TTEN

000QOO0O0O0000000000000000000000000000QOOO0OOOOOO0O0O00

C 880325 Mdified to nmeet new SLATEC prol ogue standards. Only
C coment |ines were nodified.
C 881103 Brought DESCRI PTION section up to Appendi x E standards.
C 921215 REFERENCE section nodified to reflect reconmended style.
C**END PROLOGUE ADDXY

DI MENSI ON R(3)
C**FI RST EXECUTABLE STATEMENT ADDXY

BIG = RIMACH(2)
C
C This is an exanple program not neant to be taken seriously. The
C following illustrates the use of XERVSG to send an error message.
C

IF ((ABS((XBIQ+(Y/BIG)-1.0) .GI. 0.0) THEN

lERR = 1

CALL XERMSG (' SLATEC , ' ADDXY', ’'Addition of the operands '//
* "is likely to cause overflow, IERR 1)

n

ELSE
IERR = 0
R(1) = X
R(2) =Y
CALL ADDZZ(R)
Z = R(3)
ENDI F
RETURN
END

SUBROUTI NE ADDZZ (R)
C***BEA N PROLOGUE ADDZZ
C**SUBSI DI ARY
C***PURPCSE Thi s routine adds two single precision nunbers.
C-**L| BRARY SLATEC
C-** AUTHOR Fong, K. W, (NWFECC)
Mai | Code L-560
Law ence Livernore National Laboratory
Post O fice Box 5509
Li vernore, CA 94550
Jefferson, T. H, (SNLL)
O g. 8235
Sandi a National Laboratories Livernore
Li vernore, CA 94550
Suyehiro, T., (LLNL)
Mai | Code L-316
Law ence Livernore National Laboratory
Post O fice Box 808
Li vernore, CA 94550
C-**SEE ALSO ADDXY
C-** ROUTI NES CALLED (NONE)
C***REVI SI ON H STORY (YYMVDD)
C 831109 DATE WRI TTEN
C 880325 Modified to neet new SLATEC prol ogue standards. Only
C coment |ines were nodified.
C***END PROLOGUE ADDZZ
DI MENSI ON R(3)
C-**F| RST EXECUTABLE STATEMENT ADDZZ
R(3) = R(1) + R(2)
RETURN
END

O000000000000

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTI ON 10. SLATEC QUI CK CHECK PHI LOSCPHY

The SLATEC Library is distributed with a set of test prograns that may be used
as an aid to insure that the Library is installed correctly. This set of test
progranms i s known as the SLATEC qui ck checks. The qui ck checks are not neant
to provide an exhaustive test of the Library. Instead they are designed to
protect against gross errors, such as an unsatisfied external. Because the
SLATEC Library runs on a great variety of conputers, the quick checks often
detect arithmetic difficulties with either particular Library routines or with
a particul ar conputational environment.

A list of the quick check guidelines foll ows.

1. A quick check should test a few problenms successfully solved by a
particular library subprogram It is not intended to be an extensive
test of a subprogram

2. A quick check should provide consistent and m ni mal output in nost
cases, including a "PASS" or "FAIL" indicator. However, nore detail ed
out put should be avail able on request to help track down problens in the
case of failures.

3. Sone reasonable error conditions should be tested by the quick check hy
purposeful ly referencing the routine incorrectly.

4. A quick check subprogramis expected to execute correctly on any machi ne
with an ANSI Fortran 77 conpiler and library. No test should have to be
ski pped to avoid an abort on a particul ar nmachi ne.

5. As distributed on the SLATEC tape, the quick check package consists of a
nunber of quick check main prograns and a noderate nunber of subprograns.
Each qui ck check main program nore frequently called a quick check driver,
calls one or nore quick check subprograms. Usually, a given driver
initiates the tests for a broadly related set of subprograms, e.g. for the
singl e precision Basic Linear Al gebra Subprogranms (BLAS). Each quick
check subprogramwi |l test one or nore closely related library routines of
the sane precision. For exanple, single precision routines and their
doubl e precision equivalents are not to be tested in the sane qui ck check
subpr ogram

6. The format of the quick check package does not rigidly dictate how it

must be executed on a particular machi ne. For exanmple, menory size of the
machi ne m ght preclude |oading all quick check nbdul es at once.

LR I R I I I I O R I S I I R I R I I R O I O I I R

SECTI ON 11. SPECI FI C PROGRAMM NG STANDARDS FOR SLATEC QUI CK CHECKS

Just as the routines in the SLATEC Cormon Mat hematical Library nmust neet
certain standards, so nust the quick checks. These standards are neant to
ensure that the quick checks adhere to the SLATEC qui ck check phil osophy and
to enhance maintainability. The list of these quick check standards foll ow.

1. Each nodule must test only a fewrelated |ibrary subprograns.

Each nodule nmust be in the formof a subroutine with three argunents.
For exanpl e:

SUBROUTI NE ADTST (LUN, KPRI NT, | PASS)

The first is an input argunment giving the unit nunber to which any out put
shoul d be witten. The second is an input argunent specifying the anopunt
of printing to be done by the quick check subroutine. The third is an
output flag indicating passage or failure of the subroutine.

LUN Unit nunber to which any output should be witten.
KPRINT = 0 No printing is done (pass/fail is presumably nonitored at a
hi gher level, i.e. in the driver). Error nmessages will not be

printed since the quick check driver sets the error handling
control flag to O, using CALL XSETF(0) when KPRINT = 0 or 1.

=1 No printing is done for tests which pass; a short nessage
(e.g., one line) is printed for tests which fail. Error
nmessages will not be printed since the quick check driver sets
the error handling control flag to 0, using CALL XSETF(O0)
when KPRINT = 0 or 1.

= 2 A short nmessage is printed for tests which pass; nore detail ed
information is printed for tests which fail. Error nessages
descri bing the reason for failure should be printed.

= 3 (Possibly) quite detailed information is printed for all tests.
Error nessages describing the reason for failure should be
printed.

| PASS

1
o

Indicates failure of the quick check subroutine (i.e., at |east
one test failed).

=1 Indicates that all tests passed in the quick check subroutine.

In the case of a subroutine whose purpose is to produce output (e.g., a
printer-plotter), output of a nore detail ed nature m ght be produced for
KPRI NT >= 1

The qui ck check nust execute correctly and conpletely using each val ue
of KPRINT. KPRINT is used only to control the printing and does not
affect the tests nade of the SLATEC routi ne.

The qui ck check subprograns nust be witten in ANSI Fortran 77 and
nmust nake use of | 1MACH, RLMACH, and D1MACH for pass/fail tolerances.

VWer e possible, conpute constants in a nachi ne i ndependent fashion. For
exanple, Pl = 4. * ATAN(1.0)

Using one library routine to test another is pernmitted, though this should
be done with care.

Known sol uti ons can be stored usi ng DATA or PARAMETER statenments. Sone
subprograns return a "solution" which is nore than one nunber - for
exanpl e, the eigenvalues of a matrix. |In these cases, take special care
that the quick check test passes for ALL orderings of the output which are
mat henatically correct.

VWere subprogranms are required by a routine being tested, they
shoul d acconpany the quick check. However, care should be taken so that

10.

11.

12.

no two such subprograns have the sane nane. Choosing esoteric or odd
nanes is a good idea. It is extrenely desirable that each such
subprogram contai n comments indicating which quick check needed it
(a C~**SEE ALSO | ine should be used).

Det ai | ed out put should be sel f-contained yet concise. No externa
reference material or additional computations should be required to
determ ne what, for exanple, the correct solution to the problemreally is.

For purposes of tracking down the cause of a failure, external reference
material or the nane of a (willing) qualified expert should be listed in
t he conment section of the quick check

Qui ck checks nust have SLATEC prol ogues and be adequately commented

and cleanly witten so that the average software librarian has sone hope
of tracking down problens. For exanple, if a test problemis known to
be tricky or if difficulties are expected for short word | ength

machi nes, an appropriate comment woul d be hel pful.

After deliberately calling a library routine with incorrect argunents,
i nvoke the function | ERR=NUMXER(NERR) to verify that the correct error
nunber was set. (NUMXER is a function in the SLATEC error handling
package that returns the nunber of the nbst recent error via both the
function value and the argunent.) Then CALL XERCLR to clear it before
this (or the next) quick check makes anot her error

A qui ck check should be witten in such a way that it will execute
identically if called several tinmes in the same program |In particular
there should be no nodification of DATA | oaded vari abl es whi ch cause the
qui ck check to start with the wong val ues on subsequent calls.

EE R S I R I I I I R I I R R I S S I R S S R S I I R S I R I I S

SECTI ON 12. QUI CK CHECK DRI VERS (MAI N PROGRAMS)

Many people witing quick checks are not aware of the environment in which the
i ndi vi dual quick check is called. The follow ng aspects of the quick check

drivers are illustrated by the exanple driver in Section 14.
1. Each quick check driver will call one or nore quick check subprograns.
2. The input and output units for the tests are set in the driver.
LIN = [IMACH(1) the input unit
LUN = | 1MACH(2) t he out put unit
The output unit is comunicated to the qui ck check subprograns
through the argument list. Al output should be directed to the unit LUN
that is in the argunent |ist.
3. Each quick check has three argunents LUN, KPRINT, and |PASS. The

neani ng of these arguments within the quick checks is detailed
t horoughly in the previous section

a. The quick check driver reads in KPRINT without a pronpt, and
passes KPRI NT as an argunment to each quick check it calls. KPRI NT nust
not be changed by any driver or quick check. The driver uses KPRINT to
hel p determ ne what output to wite.

b. The variable | PASS nust be set to 0 (for fail) or to 1 (for pass) by
each quick check before returning to the driver. Wthin the driver,
the variable NFAIL is set to 0. If IPASS = 0 upon return to the
driver, then NFAIL is incremented. After calling all the quick checks,
NFAIL will then have the nunber of quick checks which fail ed.

c. Quick check driver output should follow this chart:

NFAI L QUTPUT
not 0 driver wites fail message
0 driver wites pass nessage

4. There are calls to three SLATEC error handl er routines in each quick check
driver:

CALL XSETUN(LUN) Selects unit LUN as the unit to which
error nmessages will be sent.
CALL XSETF(1) Only fatal (not recoverable) error nessages
or XSETF(0) wi Il cause an abort. XSETF sets the

KONTROL variable for the error handler
routines to the value of the XSETF
argunent. A value of either 0 or 1 wll
make only fatal errors cause a program
abort. A value of 1 will allow printing
of error nessages, while a value of zero
will print only fatal error nessages.
CALL XERMAX(1000) I ncrease the nunber of tines any
singl e message may be printed.

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

SECTI ON 13. QUI CK CHECK SUBROUTI NE EXAMPLE

The foll owi ng program provides a very mniml check of the sanple routine
from Section 9.

SUBROUTI NE ADTST (LUN, KPRI NT, | PASS)
C-**BEA N PROLOGUE ADTST
C+**3SUBSI DI ARY
C**PURPOSE Qui ck check for SLATEC routi ne ADDXY
C-**L| BRARY SLATEC
C-** CATEGORY A3A
C-**TYPE SINGLE PRECI SI ON (ADTST-S, DADTST-D)
C**KEYWORDS QUI CK CHECK, ADDKXY,
C-** AUTHOR Suyehiro, Tok, (LLNL)
C Wal ton, Lee, (SNL)
C***ROUTI NES CALLED ADDXY, R1MACH
C**REVI SI ON HI STORY (YYMVDD)
C 880511 DATE WRI TTEN
C 880608 Revised to neet new prol ogue standards.
C***END PROLOGUE ADTST
C
C***F| RST EXECUTABLE STATEMENT ADTST

IF (KPRINT .GE. 2) WRITE (LUN, 99999)
99999 FORMAT (' OUTPUT FROM ADTST)

| PASS = 1
C
C EXAVPLE PROBLEM
X = 1.
Y = 2.
CALL ADDXY(X, Y, Z, |ERR)
EPS = RLMACH(4)
IF((ABS(Z-3.) .GT. EPS) .OR (IERR.EQ 1)) IPASS = 0
IF (KPRINT .GE. 2) THEN
WRI TE (LUN, 99995) X, Y, Z
99995 FORMAT (/' EXAMPLE PROBLEM',/’ X =’ ,E20.13,’ Y = ', E20.13,’ Z = ',
* E20.13)
ENDI F

IF ((IPASS .EQ 1) .AND. (KPRINT .GT. 1)) WRI TE (LUN, 99994)

IF ((IPASS .EQ 0) .AND. (KPRINT .NE. 0)) WRI TE (LUN, 99993)
99994 FmT(/’ ***************AwXY PASSED ALL TESTS***************’)
99993 FmI\/AT(/’ ***************Ame FAI LED SOVE TESTS***************’)

RETURN

END

R I R I I I I S I I I I R S I I R I R I I I R O I R I O I R R

SECTI ON 14. QUI CK CHECK NMAI N PROGRAM EXAMPLE

The following is an exanple nmain program which should be used to drive a quick
check. The nanes of the quick check subroutines it calls, ADTST and DADTST,
shoul d be replaced with the nane or nanes of real quick checks. The dumy
nanes of the SLATEC routines being tested, ADDXY and DADDXY, shoul d be

repl aced with the nanes of the routines which are actually being tested.

PROGRAM TESTO00
C**BEA N PROLOGUE TEST00
Ct** SUBSI DI ARY
C**PURPOSE Driver for testing SLATEC subprograns
C ADDXY DADDXY
C**LI BRARY SLATEC
C** CATEGORY A3
C**TYPE ALL (TESTOO- A)
C**KEYWORDS QUI CK CHECK DRI VER, ADDXY, DADDXY
C** AUTHOR Suyehiro, Tok, (LLNL)
C Wal ton, Lee, (SNL)
C*** DESCRI PTI ON

*Usage:
One input data record is required
READ (LI N, 990) KPRI NT
990 FORMAT (11)

*Argunent s:
KPRINT = 0 Quick checks - No printing.
Driver - Short pass or fail nessage printed.
1 Quick checks - No nessage printed for passed tests,
short nessage printed for failed tests.
Driver - Short pass or fail message printed.
2 Quick checks - Print short nessage for passed tests,

O000000000000

fuller information for failed tests.
Driver - Pass or fail nessage printed.

3 Quick checks - Print conplete quick check results.
Driver - Pass or fail nessage printed.

*Description:
Driver for testing SLATEC subprograns
ADDXY DADDXY

O00000000

C** REFERENCES (NONE)

C**ROUTI NES CALLED ADTST, DADTST, |1MACH, XERMAX, XSETF, XSETUN
C**REVI SI ON HI STORY (YYMVDD)

C 880511 DATE WRITTEN

C 880608 Revised to neet the new SLATEC prol ogue standards.

C 881103 Brought DESCRI PTION section up to Appendi x E standards.
C**END PROLOGUE TESTO00

C

C***FI RST EXECUTABLE STATEMENT TESTO0O0
LUN = | 1MACH(2)
LIN = 11MACH(1)
NFAIL = 0

C

C Read KPRINT paraneter

C

READ (LI N, 990) KPRI NT
990 FORMAT (I1)

CALL XSETUN(LUN)

IF (KPRINT .LE. 1) THEN
CALL XSETF(0)

ELSE
CALL XSETF(1)

ENDI F

CALL XERMAX(1000)

Test ADDXY

oXeXe

CALL ADTST(LUN, KPRINT, | PASS)
IF (IPASS .EQ 0O) NFAIL = NFAIL + 1

Test DADDXY

oXoXe

CALL DADTST(LUN, KPRI NT, | PASS)
IF (IPASS .EQ O) NFAIL = NFAIL + 1

IF (NFAIL .GT. 0) WRITE (LUN, 980) NFAIL
980 FORMAT (/' ******xxxxxxx WARNING -- ', |5,
* * TEST(S) FAILED | N PROGRAM TESTQQ ******kkkksxx1)
IF (NFAIL .EQ 0) WRI TE (LUN, 970)
970 FORMAT
K (] e TESTOO PASSED ALL TESTS-----ccc-mmmmn-- ")
END

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhhdhhdhkrhhrkhrx*

APPENDI X A. GAMS (AND SLATEC) CLASSI FI CATI ON SCHEME

SLATEC has adopted the GAMS (Cuide to Avail able Mathematical Software)
Cl assification Schene for Mathemmtical and Statistical Software,

refe

A
Al.
A2,
A3.
A3A.
A3B.
A3C.
A3D.
A4,
A4A.
A4B.
AAC,
AAD.
AS5.
ASA.
A5B.
AG.
AGA.
AGB.
AGC.
AT.
B

C.
C1.

fordel

rence [5].

Arithnetic, error
| nt eger
Rat i onal
Real
Single precisio
Doubl e precisio
Ext ended precis
Ext ended range
Conpl ex
Single precisio
Doubl e precisio
Ext ended precis
Ext ended range
I nterval
Real
Conpl ex
Change of repres
Type conversion
Base conversion
Deconposi tion,
Sequences (e.qg.
Nurber theory
El ementary and sp
I nt eger-val ued f
coefficient)
Powers, roots, r
Pol ynomi al s
Ot hogonal
Tri gonometric
Chebyshev, Leg
Laguerre
Hermte
Non- or t hogonal
El ementary trans
Tri gononetri c,
Exponential, lo
Hyperbolic, inv
Integrals of el
Exponenti al and
Cosi ne and sine
Ganma

GAMS (and SLATEC) d assification Scheme
for
Mat hemati cal and Statistical Software

Version 1.2 COctober 1983

anal ysi s
n
n
i on
n
n
i on
entati on

construction
conver gence accel eration)

ecial functions (search also class L5)

unctions (e.g., floor, ceiling, factorial

eci procal s

endr e

cendental functions

i nverse trigononetric

garithmc

erse hyperbolic

enmentary transcendental functions
logarithmic integrals

integrals

Ganme, | og gamma, reciprocal gamma

Beta, | og beta
Psi function
Pol yganma f unct

i on

I nconpl et e gamma

I nconpl ete beta
Ri emann zeta

bi nom al

C8. FError functions

C8A. FError functions, their inverses, integrals, including the nornal
di stribution function

C8B. Fresnel integrals

C8C. Dawson’s integral

C9. Legendre functions

C10. Bessel functions

C10A. J, Y, H (1), H(2)

Cl10Al. Real argunent, integer order

C10A2. Conpl ex argunent, integer order

Cl10A3. Real argunent, real order

C10A4. Conpl ex argunent, real order

C10A5. Conpl ex argunent, conpl ex order

cioB. 1, K

Cl0Bl. Real argunent, integer order

C10B2. Conpl ex argunent, integer order

Cl0B3. Real argunent, real order

Cl10B4. Conmpl ex argunent, real order

C10B5. Conpl ex argunent, conpl ex order

C10C. Kelvin functions

Cl10D. Airy and Scorer functions

ClO0E. Struve, Anger, and Weber functions

C10F. Integrals of Bessel functions

Cl1. Confluent hypergeonetric functions

Cl2. Coul onb wave functions

Cl13. Jacobian elliptic functions, theta functions

Cl4. Elliptic integrals

Cl5. Wierstrass elliptic functions

Cl16. Parabolic cylinder functions

Cl7. WMathieu functions

C18. Spheroi dal wave functions

C19. O her special functions

D. Linear Algebra

D1. Elementary vector and matrix operations

D1A. Elementary vector operations

D1A1. Set to constant

D1A2. M ni mrum and nmaxi num conponent s

D1A3. Norm

D1A3A. L-1 (sum of nagnitudes)

D1A3B. L-2 (Euclidean norn

D1A3C. L-infinity (maxi num nmagnitude)

D1A4. Dot product (inner product)

D1A5. Copy or exchange (swap)

D1A6. Miltiplication by scalar

D1A7. Triad (a*x+y for vectors x,y and scal ar a)

D1A8. Elenentary rotation (G vens transformation)

D1A9. Elenentary reflection (Househol der transformation)

D1A10. Convol utions

D1B. Elenmentary matrix operations

D1Bl1. Set to zero, to identity

D1B2. Norm

D1B3. Transpose

D1B4. Miltiplication by vector

D1B5. Addition, subtraction

D1B6. Miltiplication

D1B7. WMatrix pol ynom al

D1B8. Copy

D1B9. Storage npde conversion

D1B10. Elenmentary rotation (G vens transfornation)

D1B11. Elementary reflection (Househol der transformation)

D2. Solution of systems of |inear equations (including inversion, LU and

D2A.
D2A1.
D2A2.

D2A2A.

D2E.
D3.
D3A.
D3AL.
D3A2.

D3A2A.

D3A3.

D4A.

DAAL.
D4AA2.
D4A3.
DAAA.

rel ated deconpositions)
Real nonsynmmetric natrices

CGener al

Banded

Tri di agonal
Triangul ar

Spar se
Real symmetric matrices
Gener al

Indefinite

Positive definite
Positive definite banded
Tri di agonal
Spar se
Conpl ex non-Hernitian matrices
Cener al
Banded
Tri di agonal
Tri angul ar
Spar se
Conpl ex Hermitian matrices
Gener al
Indefinite
Positive definite
Positive definite banded
Tri di agonal
Spar se

Associ ated operations (e.g., matrix reorderings)

Det erm nants
Real nonsynmmetric natrices

CGener al

Banded

Tri di agonal
Triangul ar

Spar se
Real symmretric matrices
Gener al

Indefinite

Positive definite
Positive definite banded
Tri di agonal
Spar se
Conpl ex non-Hernitian matrices
CGener al
Banded
Tri di agonal
Tri angul ar
Spar se
Conpl ex Hermitian matrices
Gener al
Indefinite
Positive definite
Positive definite banded
Tri di agonal
Spar se
Ei genval ues, eigenvectors
O dinary eigenval ue problens (Ax = (I anbda)
Real symetric
Real nonsymetric
Conpl ex Hermitian
Conpl ex non-Herm tian

£ X)

D4A5. Tridi agona
D4A6. Banded
D4A7. Sparse

D4B. Ceneralized ei genval ue problens (e.g., Ax = (lamnbda)*Bx)

D4Bl1. Real symmetric

D4B2. Real genera

D4B3. Conplex Hermitian

D4B4. Conpl ex gener al

D4B5. Banded

D4C. Associ ated operations

DACL. Transform probl em

DACLA. Bal ance matrix

D4ClB. Reduce to conpact form

D4C1Bl1. Tridi agona

DAC1B2. Hessenberg

D4C1B3. O her

D4CLC. Standardi ze probl em

D4C2. Compute eigenval ues of matrix in conmpact form
DAC2A. Tridi agona

DAC2B. Hessenberg

D4C2C. O her

D4C3. Form eigenvectors from ei genval ues
DAC4A. Back transform ei genvectors

DAC5. Determ ne Jordan normal form

D5. QR deconposition, Gam Schnidt orthogonalization
D6. Singul ar val ue deconposition

D7. Update natrix deconpositions

D7A. LU
D7B. Chol esky
D7C. R

DrD. Singul ar val ue

D8. Oher matrix equations (e.g., AX+XB=C)

D9. Overdeterm ned or underdeterm ned systens of equations,
pseudo-i nverses (search al so classes D5, D6, Kla, L8a)

E. Interpolation

El. Univariate data (curve fitting)

E1A. Polynom al splines (piecew se polynoni als)

E1B. Pol ynom al s

E1C. Oher functions (e.g., rational, trigononetric)

E2. Miltivariate data (surface fitting)

E2A. Gidded

E2B. Scattered

si ngul ar systens,

E3. Service routines (e.g., grid generation, evaluation of fitted functions)

(search al so class N5)
F. Solution of nonlinear equations
F1. Single equation
F1A. Snooth
F1A1. Pol ynom al
F1A1A. Real coefficients
F1A1B. Conpl ex coefficients
F1A2. Nonpol ynom al
F1B. Ceneral (no snoot hness assuned)
F2. System of equations
F2A. Snoot h
F2B. Ceneral (no snpothness assumned)

F3. Service routines (e.g., check user-supplied derivatives)

G Optimzation (search also classes K, L8)
Gl. Unconstrai ned

GLA. Univariate

GLAL. Smooth function

GLA1A. User provides no derivatives

GLA1B. User provides first derivatives

GLA1C. User provides first and second derivatives

GLA2. General function (no snoot hness assuned)

GlB. Miltivariate

GlBl1. Snmooth function

GLB1A. User provides no derivatives

GlB1B. User provides first derivatives

GLB1C. User provides first and second derivatives

GLB2. General function (no snoot hness assuned)

&. Constrained

&A. Linear progranm ng

&A1. Dense matrix of constraints

@&A2. Sparse matrix of constraints

@&@B. Transportation and assi gnnents probl em

&C. Integer programm ng

&@Cl1. Zerol/one

@&C2. Covering and packi ng problens

&C3. Knapsack probl ens

@C4. WMatching probl ens

&C5. Routing, scheduling, |ocation problens

&2C6. Pure integer progranmm ng

&C7. M xed integer progranmm ng

@&@D. Network (for network reliability search class M

@&@D1. Shortest path

@&@D2. M ni mum spanni ng tree

&D3. Maxi mum fl ow

&D3A. Generalized networks

@&@2D3B. Networks with side constraints

@&@2D4. Test problem generation

@E. Quadratic progranm ng

&RE1. Positive definite Hessian (i.e. convex problem

&E2. Indefinite Hessian

@&@F. GCeonetric progranmm ng

&G Dynami c progranm ng

&H. Ceneral nonlinear progranm ng

&H1. Sinpl e bounds

&HLA. Snmooth function

@&@H1Al. User provides no derivatives

&H1A2. User provides first derivatives

&@H1A3. User provides first and second derivatives

@&@H1B. CGeneral function (no snoot hness assuned)

@&@H2. Linear equality or inequality constraints

&H2A. Snmooth function

&H2A1. User provides no derivatives

&@H2A2. User provides first derivatives

@&@H2A3. User provides first and second derivatives

@&@H2B. CGeneral function (no snoot hness assuned)

&H3. Nonlinear constraints

@&@H3A. Equality constraints only

&H3A1. Snooth function and constraints

&H3A1A. User provides no derivatives

&H3A1B. User provides first derivatives of function and constraints

@&@H3A1C. User provides first and second derivatives of function and
constraints

&@H3A2. Ceneral function and constraints (no snoot hness assuned)

&H3B. Equality and inequality constraints

&H3B1. Snooth function and constraints

@&@H3B1A. User provides no derivatives

&H3B1B. User provides first derivatives of function and constraints

&H3B1C. User provides first and second derivatives of function and
constraints

@&@H3B2. General function and constraints (no snoot hness assuned)

@1. dobal solution to nonconvex problens

&. Optinmal control

4. Service routines

HAA. Probleminput (e.g., matrix generation)

AB. Problemscaling

AC. Check user-supplied derivatives

AD. Find feasible point

(HAE. Check for redundancy

AF. O her

H Differentiation, integration

H1. Nunerical differentiation

H2. Quadrature (nunerical evaluation of definite integrals)

H2A. One-di nensional integrals

H2A1l. Finite interval (general integrand)

H2A1A. Integrand avail able via user-defined procedure

H2A1Al. Automatic (user need only specify required accuracy)

H2A1A2. Nonautonmatic

H2A1B. Integrand available only on grid

H2A1B1. Automatic (user need only specify required accuracy)

H2A1B2. Nonautonmatic

H2A2. Finite interval (specific or special type integrand including weight
functions, oscillating and singul ar integrands, principal value
integrals, splines, etc.)

H2A2A. Integrand avail able via user-defined procedure

H2A2A1. Autonatic (user need only specify required accuracy)

H2A2A2. Nonaut omatic

H2A2B. Integrand available only on grid

H2A2B1. Autonmatic (user need only specify required accuracy)

H2A2B2. Nonautonmatic

H2A3. Semi-infinite interval (including e**(-x) weight function)

H2A3A. Integrand avail able via user-defined procedure

H2A3A1l. Automatic (user need only specify required accuracy)

H2A3A2. Nonautonmatic

H2A4. Infinite interval (including e**(-x**2)) weight function)

H2A4A. Integrand avail able via user-defined procedure

H2A4Al. Autonmatic (user need only specify required accuracy)

H2A4A2. Nonautonmatic

H2B. Ml tidinensional integrals

H2B1. One or nore hyper-rectangul ar regions

H2B1A. Integrand avail able via user-defined procedure

H2B1Al. Autonatic (user need only specify required accuracy)

H2B1A2. Nonautomatic

H2B1B. Integrand available only on grid

H2B1B1. Autonmatic (user need only specify required accuracy)

H2B1B2. Nonautonatic

H2B2. Nonrectangul ar region, general region

H2B2A. Integrand avail able via user-defined procedure

H2B2A1. Automatic (user need only specify required accuracy)

H2B2A2. Nonautonatic

H2B2B. Integrand available only on grid

H2B2B1. Automatic (user need only specify required accuracy)

H2B2B2. Nonautonmatic

H2C. Service routines (conpute weight and nodes for quadrature fornulas)

I. Differential and integral equations

1. Odinary differential equations

I 1A. Initial value problens

| 1A1l. Ceneral, nonstiff or mldly stiff

| 1ALA. One-step nethods (e.g., Runge-Kutta)

| 1A1B. Miltistep methods (e.g., Adams’ predictor-corrector)

| 1A1C. Extrapol ation nethods (e.g., Bulirsch-Stoer)

I 1A2. Stiff and m xed al gebraic-differential equations
| 1B. Multipoint boundary val ue problens

| 1B1. Linear

I 1B2. Nonli near

| 1B3. Eigenvalue (e.g., SturmLiouville)

| 1C. Service routines (e.g., interpolation of solutions, error handling)
2. Partial differential equations
| 2A. Initial boundary val ue problens

| 2A1. Parabolic

| 2A1A. One spatial dinmension

| 2A1B. Two or nore spatial dinensions

| 2A2. Hyperbolic

I2B. Elliptic boundary val ue probl ens

| 2B1. Linear

| 2B1A. Second order

| 2B1A1. Poi sson (Lapl ace) or Hel mhol z equati on

| 2BLA1A. Rectangul ar donain (or topologically rectangular in the coordinate
system

| 2B1A1B. Nonrect angul ar domain

| 2B1A2. Ot her separabl e probl ens

| 2BLA3. Nonsepar abl e probl ens

| 2B1C. Hi gher order equations (e.g., biharnonic)

| 2B2. Nonli near

| 2B3. Ei genval ue

| 2B4. Service routines

| 2B4A. Domain triangulation (search also class P2a2cl)

| 2B4B. Sol ution of discretized elliptic equations

3. Integral equations

J. Integral transforms

J1. Fast Fourier transfornms (search class L10 for tine series anal ysis)

J1A. One-di nensi onal

J1A1. Real

J1A2. Conpl ex

J1A3. Trigononetric (sine, cosine)

J1B. Ml tidimensiona

J2. Convol utions

J3. Lapl ace transforms

J4. Hilbert transforns

K. Approximation (search also class L8)

K1. Least squares (L-2) approximation

K1A. Linear |east squares (search also classes D5, D6, D)

K1Al. Unconstrained

K1A1A. Univariate data (curve fitting)

K1A1Al. Polynom al splines (piecew se pol ynom al s)

K1A1A2. Pol ynom al s

K1A1A3. Oher functions (e.g., rational, trigononetric, user-specified)

K1A1B. Miltivariate data (surface fitting)

K1A2. Constrai ned

K1A2A. Linear constraints

K1A2B. Nonlinear constraints

K1B. Nonlinear |east squares

K1B1l. Unconstrai ned

K1B1A. Smooth functions

K1B1Al. User provides no derivatives

K1B1A2. User provides first derivatives

K1B1A3. User provides first and second derivatives

K1B1B. General functions

K1B2. Constrai ned

K1B2A. Linear constraints

K1B2B. Nonlinear constraints

K2. Mnimax (L-infinity) approxi mation

K3. Least absolute value (L-1) approxinmation

K4. QO her analytic approximtions (e.g., Taylor polynom al, Pade)

K5. Snoot hi ng

K6. Service routines (e.g., mesh generation, evaluation of fitted functions)
(search al so class N5)

L. Statistics, probability

L1. Data sunmarization

L1A. One univariate quantitative sanple

L1A1. Ungrouped data

L1A1A. Location

L1A1B. Dispersion

L1A1C. Shape

L1A1D. Distribution, density

L1A2. Ungrouped data with nissing val ues

L1A3. G ouped data

L1A3A. Location

L1A3B. Dispersion

L1A3C. Shape

L1C. One univariate qualitative (proportional) sanple

L1E. Two or nore univariate sanples or one nultivariate sanmple

L1E1. Ungrouped data

L1E1A. Location

L1E1B. Correlation

L1E2. Ungrouped data with mi ssing val ues

L1E3. G ouped data

L1F. Two or nore nultivariate sanples

L2. Data manipul ation (search also class N

L2A. Transform (search al so class N6 for sorting, ranking)

L2B. G oup

L2C. Sanple

L2D. Subset

L3. Graphics (search also class Q

L3A. Histograms

L3B. Distribution functions

L3C. Scatter diagrans

L3Cl. Y wvs. X

L3C2. Synbol plots

L3C3. Miltiple plots

L3C4. Probability plots

L3C4AB. Beta, binom al

L3C4C. Cauchy, chi-squared

L3C4AD. Doubl e exponenti al

L3C4AE. Exponential, extreme val ue

L3CAF. F distribution

L3CAG Ganmm, geonetric

L3C4AH. Hal f nor nal

L3CAL. Lanbda, |ogistic, |ognormal

L3CAN. Negative binom al, normal

L3CAP. Pareto, Poisson

L3CAT. t distribution

L3C4U. Uniform

L3CAW Wéi bul |

L3C5. Tinme series plots (X(i) vs. i, vertical, |ag)

L3D. EDA graphics

L4. Elenentary statistical inference, hypothesis testing

L4A. One univariate quantitative sanple

L4Al. Ungrouped data

L4A1A. Paraneter estimation

L4A1A2. Binomi al

L4A1A5. Extrene val ue

L4A1A14. Nor mal

L4A1A16. Poi sson

L4A1A21. Uniform

L4A1A23. Wi bul |

L4A1B. Distribution-free (nonparanetric) analysis
L4A1C. Goodness-of-fit tests

L4A1D. Tests on sequences of nunbers

LAALE. Density and distribution function estimation
L4A1F. Tolerance limts

L4A2. Ungrouped data with m ssing val ues

L4A3. G ouped data

L4A3A. Paraneter estimation

L4A3A14. Nor mal

L4B. Two or nore univariate quantitative sanples
L4B1. Ungrouped data

L4B1A. Paraneter estimation

L4B1A14. Nor mal

L4B1B. Distribution-free (nonparametric) analysis
L4B2. Ungrouped data with nissing val ues

L4B3. G ouped data

L4C. One univariate qualitative (proportional) sanmple
L4D. Two or nore univariate sanpl es

L4E. One nultivariate sanple

L4E1. Ungrouped data

L4E1A. Paraneter estimation

L4E1A14. Nor mal

L4E1B. Distribution-free (nonparametric) analysis
L4E2. Ungrouped data with m ssing val ues

LAE2A. Paraneter estimation

L4E2B. Distribution-free (nonparanmetric) analysis
L4E3. G ouped data

L4E3A. Paraneter estimation

L4E3A14. Nor mal

L4E3B. Distribution-free (nonparanmetric) analysis
L4E4. Two or nore nultivariate sanples

LAE4A. Paraneter estimation

L4E4A14. Nor mal

L5. Function evaluation (search also class C

L5A. Univariate

L5A1. Curul ative distribution functions, probability density functions
L5A1B. Beta, binom al

L5A1C. Cauchy, chi-squared

L5A1D. Doubl e exponenti al

L5A1E. Error function, exponential, extreme val ue
L5A1F. F distribution

L5A1G Ganmm, general, geonetric

L5A1H. Hal fnornmal, hypergeonetric

L5A1K. Kol npbgor ov- Sni r nov

L5A1L. Lanbda, logistic, |ognormal

L5AIN. Negative binom al, nornmal

L5A1P. Pareto, Poisson

L5A1T. t distribution

L5A1U. Uniform

L5A1IW Wéi bul |

L5A2. nverse cumul ative distribution functions, sparsity functions
L5A2B. Beta, binom al

L5A2C. Cauchy, chi-squared

L5A2D. Doubl e exponenti al

L5A2E. Exponential, extrene val ue

L5A2F. F distribution

L5A2G. Ganmm, general, geonetric

L5A2H. Hal f nor nal

L5A2L. Lanbda, logistic, |ognornal

L5A2N. Negative binonmial, normal, normal scores
L5A2P. Pareto, Poisson

L5A2T. t distribution

L5A2U. Uniform

L5A2W Wéi bul

L5B. Muiltivariate

L5B1. Curul ative distribution functions, probability density functions
L5B1IN. Nor nal

L6. Pseudo-random nunber generation

L6A. Univariate

L6A2. Beta, binom al, Bool ean

L6A3. Cauchy, chi-squared

L6A4. Doubl e exponenti al

L6A5. Exponential, extreme val ue

L6A6. F distribution

L6A7. Gammma, general (continuous, discrete) distributions, geonetric
L6A8. Hal fnormal, hypergeonetric

L6A9. Integers

L6A12. Lanbda, |ogical, |ogistic, |ognornma

L6A14. Negative binom al, normal

L6A15. Order statistics

L6A16. Pareto, pernutations, Poisson

L6A19. Sanples, stable distribution

L6A20. t distribution, tinme series, triangular
L6A21. Uniform

L6A22. Von M ses

L6A23. Wéi bul

L6B. Muiltivariate

L6B3. Contingency table, correlation matrix
L6B13. Multinom al

L6B14. Nornma

L6B15. Othogonal matrix

L6B21. Uniform

L6C. Service routines (e.g., seed)

L7. Experinmental design, including analysis of variance
L7A. Univariate

L7A1. One-way anal ysis of variance

L7A1A. Paranetric analysis

L7A1A1. Contrasts, nmultiple conparisons

L7A1A2. Anal ysis of variance conponents

L7A1B. Distribution-free (nonparametric) analysis
L7A2. Bal anced nul tiway design

L7A2A. Conplete

L7A2A1. Paranetric anal ysis

L7A2A1A. Two-way

L7A2A1B. Factori al

L7A2A1C. Nested

L7A2A2. Distribution-free (nonparanetric) analysis
L7A2B. I nconplete

L7A2B1. Paranetric anal ysis

L7A2B1A. Latin square

L7A2B1B. Lattice designs

L7A2B2. Distribution-free (nonparanetric) anal ysis
L7A3. Anal ysis of covariance

L7A4. Ceneral linear nodel (unbal anced design)
L7A4A. Paranetric analysis

L7A4B. Distribution-free (nonparametric) analysis
L7B. Muiltivariate

L8. Regression (search also classes G K)

L8A. Linear |least squares (L-2) (search also classes D5, D6, D9)

L8AL.
L8ALA.
L8A1AL
L8AL1AL
L8ALIAL
L8ALA2
L8A1B.
L8AlLC.
L8A1LD.
L8A2.
L8A2A.

L8A2AL.
L8A2A2.

L8A2B.

L8A2BL.
L8A2B2.

L8A3.
L8A4.
L8A4A.
L8A4AL
L8A4AL
L8A4AL
L8A4AL
L8A4AL
L8A4AL
L8A4A2
L8A4B.
L8A4D.
L8AS5.
L8AG.
L8A7.
L8AS.
L8A9.
L8A10.

Si npl e
O di nary
. Unwei ght ed
A. No mssing val ues
B. M ssing val ues
. Wi ghted
Through the origin
Errors in variabl es
Calibration (inverse regression)
Pol ynomi al
Not using orthogonal pol ynom als
Unwei ght ed
Wei ght ed
Usi ng ort hogonal polynom als
Unwei ght ed
Wi ght ed
Pi ecewi se polynomal (i.e. multiphase or spline)
Mul tiple
O di nary
. Unwei ght ed
A. No mssing val ues
B. M ssing val ues
C. Fromcorrelation data
D. Using principal components
E. Using preference pairs
. Wi ghted
Errors in variabl es
Logi stic
Variabl e sel ection
Regr essi on desi gn
Several multiple regressions
Mul tivariate
Di agnosti cs
Hypot hesi s testing, inference

L8A10A. Lack-of-fit tests
L8A10B. Analysis of residuals
L8A10C. Inference

L8B.
L8C.
L8D.
L8E.
L8F.
L8G
L8GL.
L8GLA.
L8GLB.
L8&2.
L8G2A.
L8G&2B.
L8H.

Bi ased (ridge)
Li near | east absolute value (L-1)
Li near m nimax (L-infinity)
Robust
EDA
Nonl i near
Unwei ght ed
Derivatives not supplied
Derivatives supplied
Wi ght ed
Derivatives not supplied
Derivatives supplied
Servi ce routines

L9. Categorical data analysis

L9A.
L9B.
L9C.
L9D.
L10.
L10A.
L10B.
L10C
L10D.
L10E.

2-by-2 tables
Two- way tabl es

Log- i near nodel

EDA (e.g., nedian polish)
Time series analysis (search also class L3c5 for tinme series graphics)
Transformations, transforns (search also class J1)

Snoot hing, filtering

Aut ocorrel ation anal ysis

Conpl ex denodul ati on

ARVA and ARI MA nodel ing and forecasting

L10E1. Model and paraneter estimation
L10E2. Forecasting

L10F. Spectral analysis

L10G Cross-correlation anal ysis
L10GlL. Paraneter estimation

L10&. Forecasting

L11. Correlation analysis

L12. Discrimnant analysis

L13. Factor analysis

L13A. Principal conponents analysis
L14. Cduster analysis

L14A. Unconstrai ned

L14A1. Nested

L14A1A. Joining (e.g., single |ink)
L14A1B. Divisive

L14A2. Non-nested

L14B. Constrai ned

L14B1. One-di mensi ona

L14B2. Two-di mensi ona

L14C. Display

L15. Life testing, survival analysis
M Sinul ati on, stochastic nodeling (search also classes L6, L10)
ML. Sinulation

MLA. Discrete

MLB. Conti nuous (Markov nodel s)
Queuei ng

. Reliability

MBA. Quality control

MBB. El ectrical network

58

M4. Project optimzation (e.g., PERT)

N. Data handling (search also class L2)

N1. [Input, output

N2. Bit mani pul ation

N3. Character nanipul ation

N4. Storage nanagenment (e.g., stacks, heaps, trees)
N5. Sear chi ng

N5A. Extrene val ue

N5B. Insertion position

N5C. On a key

N6. Sorting

N6A. I nternal

N6Al. Passive (i.e. construct pointer array, rank)
N6ALA. I nteger

N6A1B. Real

N6A1Bl. Single precision
N6A1B2. Doubl e precision
N6AL1C. Character

N6A2. Active

N6A2A. | nteger

N6A2B. Real

N6A2B1. Single precision
N6A2B2. Doubl e precision
N6A2C. Character

N6B. External

N7. Merging

N8. Permuting

O Synbolic conputation
P. Conputational geonetry (search also classes G Q
P1. One dinmension

P2. Two di nensions

P2A. Points, lines

P2A1. Rel ationships

P2A1A. Cosest and farthest points

P2A1B. Intersection

P2A2. Graph construction

P2A2A. Convex hul |

P2A2B. M ni mum spanni ng tree

P2A2C. Region partitioning

P2A2C1. Triangul ation

P2A2C2. Voronoi diagram

P2B. Polygons (e.g., intersection, hidden |ine problens)

P2C. Circles

P3. Three di nensions

P3A. Points, lines, planes

P3B. Pol yt opes

P3C. Spheres

P4. More than three di nensions

Q G aphics (search also classes L3, P)
Line printer plotting

R Service routines

R1. Machi ne-dependent constants

R2. Error checking (e.g., check nonotonicity)

R3. Error handling

R3A. Set criteria for fatal errors

R3B. Set unit number for error messages

R3C. Oher utility prograns

R4. Documentation retrieva

S. Software devel opnent tools

S1. Programtransformation

S2. Static analysis

S3. Dynamic anal ysis

Z. Oher

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhhdhhdhkrhhrkhrx*

APPENDI X B. MACHI NE CONSTANTS

The SLATEC Common Math Library uses three functions for keeping machi ne
constants. In order to keep the source code for the Library as portable as
possi bl e, no other Library routines should attenpt to DATA | oad machi ne
dependent constants. Due to the subtlety of trying to cal cul ate machi ne
constants at run time in a manner that yields correct constants for al
possi bl e conputers, no Library routines should attenpt to cal culate them
Routi nes | 1IMACH, RLMACH, and DIMACH in the SLATEC Conmon Math Library are
derived fromthe routines of these nanmes in the Bell Laboratories’ PORT Library
and shoul d be call ed whenever machi nes constants are needed. These functions
are DATA | oaded with carefully determ ned constants of type integer, single
preci sion, and doubl e precision, respectively, for a wi de range of conputers.
Each is called with one input argument to indicate which constant is desired.
The appropriate Fortran statenents are:

For integer constants:

I NTEGER | 1IMACH, |
I = 1 1IMACH(N) where 1 .LE. N .LE 16

For single precision constants:

REAL R1IMACH, R

R = RIMACH(N) where 1 .LE. N .LE 5
For doubl e precision constants:

DOUBLE PRECI S| ON DIMACH, D
D = DIMACH(N) where 1 .LE. N.LE. 5

The different constants that can be retrieved will be explained below after we
give a summary of the floating point arithnetic nodel which they characterize.

The PORT and SLATEC machi ne constant routines acknow edge that a conputer

can have some mnor flaws in howit performs arithmetic and that the purpose of
machi ne constant routines is to keep other library routines out of trouble.

For exanple, a computer may have a 48-bit coefficient, but due to round-off or
ot her deficiencies may be able to performonly 47-bit (or even 46-bit)
arithmetic reliably. A machine can al so nmi sbehave at the extreme ends of its
exponent range. The nmachine constants are chosen to describe a subset of the
floating point nunbers of a conputer on which operations such as addition
subtraction, nultiplication, reciprocation, and conparison work as your
intuition would expect. |If the actual performance of the machine is such that
results fall into the "expected" intervals of the subset floating point system
then the usual fornms of error analysis will apply. For details, see [7].

The machi ne constants normal |y cannot be determi ned by reading a computer’s
hardware reference manual. Such manuals tell the range and representation of
floating point nunbers but usually do not describe the errors in the floating
poi nt addition, subtraction, multiplication, reciprocation, or division units.
The constants for |1MACH RIMACH, and D1IMACH are found by doi ng extensive

testing using operands on which the hardware is nost likely to fail. Failure
is nmost likely to occur at the extrene ends of the exponent range and near
powers of the nunber base. |If such failures are relatively nminor, we can

choose nachi ne constants for | 1MACH, RLMACH, and DIMACH to restrict the domain
of floating point nunbers to a subset on which arithnetic operations work.

The subset npdel of floating point arithnetic is characterized by four
par anet ers:

B t he nunber base or radix. This is usually 2 or 16.

T t he nunber of digits in base B of the coefficient of the floating
poi nt nunber.

EM N the smallest (nost negative) exponent (power of B)
EMAX the | argest exponent (power of B)

A floating point nunber is nodel ed as FRACTI ON*(B**EXP) where EXP falls between
EM N and EMAX and the FRACTION is of the form

+or - (F(L)*B**(-1) + ... + f(T)*B**(-T))

with f(1) in the range 1 to B-1 inclusive and
f(2) through f(T) in the range 0 to B-1 inclusive.

In this nodel the fraction has the radix point at the left end. Sonme conputers
have their radix point at the right end so that when their representation is
mapped onto this nodel, they appear to have an unbal anced exponent range (i.e.
EM N is not close to the negative of EMAX). |f the conputer cannot correctly
calculate results near underflow, EMN is increased to a nore conservative
value. Likewise, if the computer cannot correctly calculate results near
overflow, EMAX is decreased. |If a base 2 machine with a 48-bit fraction is

unabl e to cal cul ate 48-bit

results due to hardware round-off, T may be set to

47 (or even 46) to account for the | oss of accuracy.

The conpl ete set of machine constants (including those not related to floating
point arithnetic) are:

I /0O Unit

| 1MACH(
| 1MACH(
| 1MACH(
| 1MACH(

Number s

1) = the FORTRAN unit nunber

2) = the FORTRAN unit number

3) = the FORTRAN unit nunber

4) = the FORTRAN unit nunber

Word Properties

| TMACH(
| TMACH(

I nt eger

| 1MACH(
| 1MACH(

| TMACH(

Fl oating Point Arithnetic

5) = the nunber of bits per

6) = the nunber of characters per

Arithnetic

7)

8)

t he base or

arithnetic.

9)

t he | argest

| IMACH(10) = the base or

of the floating point

for
for
for

for

t he
t he
t he

t he

standard i nput device.
standard out put device.
st andard punch devi ce.

standard error message device.

i nteger storage unit.

i nteger storage unit.

radi x for integer arithnetic.

the nunber of digits in radix |I1MACH(7) used in integer

magni t ude i nteger for which the nmachine and conpil er
performthe conplete set of arithnmetic operations.

radix for floating point arithmetic. This is the B

Single Precision Arithnetic

| TMACH(11)

| 1IMACH(12)

| 1MACH(13)

arithnetic.

t he nost

nodel .

the nunber of digits in radix |I1MACH(10) used in single precision

This is the T in the floating point nodel.

negati ve usabl e exponent short of underflow of radix

| IMACH(10) for a single precision nunber. This is the EMN in the
floating point nodel.

t he I argest

usabl e exponent short of overflow of radix | 1MACH(10)

for a single precision nunber.

poi nt

nodel .

Doubl e Precision Arithnetic

This is the EMAX in the floating

| IMACH(14) = the nunber of digits in radix | 1MACH(10) used in doubl e precision
This is the T of the floating point nodel

arithnetic.

| TMACH(15)

t he nost negative usabl e exponent short of underflow of radix
| IMACH(10) for a double precision number. This is the EMN of
the floating point nodel.

| IMACH(16) = the | argest usable exponent short of overflow of radi x | 1IMACH(10)
for a double precision nunber. This is the EMAX of the floating
poi nt nodel .

Speci al Single Precision Val ues

RIMACH(1) = B**(EMN-1). This is the smallest, positive, single precision
nunber in the range for safe, accurate arithnetic.

RIMACH(2) = B**EMAX*(1-B**(-T)). This is the largest, positive, single

preci sion nunber in the range for safe, accurate arithnetic.
RIMACH(3) B**(-T). This is the snallest relative spacing between two
adj acent single precision nunbers in the floating point nodel.
This constant is not machi ne epsilon; see bel ow for machine
epsi | on.

RIMACH(4) = B**(1-T). This is the largest relative spacing between two
adj acent single precision nunbers in the floating point nodel.
Any two single precision nunbers that have a greater relative
spaci ng than RLMACH(4) can be conpared correctly (with operators
like .EQ or .LT.). This constant is an upper bound on theoretical
machi ne epsilon.

RIMACH(5) = logarithmto base ten of the machine's floating point nunber base.

Speci al Doubl e Precision Val ues

DIMACH(1) = B**(EMN-1). This is the snallest, positive, double precision
nunbers in the range for safe, accurate arithnetic.

DIMACH(2) = B**EMAX*(1-B**(-T)). This is the largest, positive, double
precision nunber in the range for safe, accurate arithnetic.

DIMACH(3) = B**(-T). This is the smallest relative spacing between two
adj acent doubl e precision nunbers in the floating point nodel.
This constant is not machi ne epsilon; see bel ow for machine
epsi | on.

DIMACH(4) = B**(1-T). This is the largest relative spacing between two
adj acent doubl e precision nunbers in the floating point nodel.
Any two doubl e precision nunbers that have a greater relative
spaci ng than DLMACH(4) can be conpared correctly (with operators
like .EQ or .LT.). This constant is an upper bound on theoretical
machi ne epsil on.

D1IMACH(5) logarithmto base ten of the machine’'s floating point number base.
In theory, all of the RIMACH and D1MACH val ues can be cal cul ated from | 1MACH
val ues; however, they are provided (1) to save having to cal culate them and (2)
to avoid rousing any bugs in the exponentiation (** operator) or logarithm
routines.

Machi ne epsilon (the smallest nunmber that can be added to 1.0 or 1.0D0
that yields a result different from1.0 or 1.0D0) is not one of the special

val ues that comes fromthis nodel. |[|f the purpose of machine epsilonis to
deci de when iterations have converged, the proper constants to use are
RIMACH(4) or DIMACH(4). These may be slightly larger than machi ne epsilon
however, trying to iterate to snaller relative differences may not be possible
due to hardware round-off error

The Fortran standard requires that the anpunt of storage assigned to an | NTEGER
and a REAL be the sane. Thus, the nunmber of bits that can be used to represent
an | NTEGER wi I | al nost al ways be | arger than the nunber of bits in the mantissa
of a REAL. In converting froman |INTEGER to a REAL, sone nmachines will
correctly round or truncate, but sone will not. Authors are therefore advised
to check the magnitude of I NTEGERs and not attenpt to convert |NTEGERs to REALs
that can not be represented exactly as REALs. Simlar problens can occur when
converting | NTEGERs to DOUBLEs.

EIE R S I R I I I R I O R I R R I S I I R S R R S I S R R R I S

APPENDI X C. ERROR HANDLI NG

Aut hors of Library routines nmust use at least the first and preferably both of
the follow ng techniques to handle errors that their routines detect.

1. One argunent, preferably the last, in the calling sequence nust be an
error flag if the routine can detect errors. This is an integer variable
to which a value is assigned before returning to the caller. A value of
zero neans the routine conpleted successfully. A positive value (preferably
in the range 1 to 999) should be used to indicate potential, partial, or
total failure. Separate values should be used for distinct conditions so
that the caller can determ ne the nature of the failure. O course, the
possi bl e values of this error flag and their neanings nust be docunented in
t he description section of the prologue of the routine.

2. In addition to returning an error flag, the routine can supply nore
information by witing an error nessage via a call to XERVMBG XERMSG
has an error nunber as one of its argunents, and the same value that will
be returned in the error flag argunent nust be used in calling XERMSG

XERMBG i s part of the SLATEC Common Math Library error handling package

whi ch consists of a nunber of routines. It is not necessary for authors to

| earn about the entire package. Instead we sumrarize here a few aspects of the
package that an author nust know in order to use XERVSG correctly.

1. Although XERMSG supports three levels of severity (warning, recoverable
error, and fatal error), be sparing in the use of fatal errors. XERMSG
will termnate the programfor fatal errors but may return for recoverable
errors, and will definitely return after warni ng nessages. An error should
be designated fatal only if returning to the caller is likely to be
di sastrous (e.g. result in an infinite |oop).

2. The error handling package renenbers the value of the error nunber and has
an entry point whereby the user can retrieve the nost recent error nunber.
Successive calls to XERVSG repl ace this retained value. 1In the case of
war ni ng nessages, it is permssible to issue multiple warnings. In the
case of a recoverable error, no additional calls to XERVMSG nust be nade by
the Library routine before returning to the caller since the caller nust be
given a chance to retrieve and clear the error nunber (and error condition)
fromthe error handling package. |In particular, if the user calls Library
routine X and X calls a lower level Library Y, it is permissible for Y

to call XERMBG but after it returns to X, X nust be careful to note any
recoverable errors detected in Y and not nake any additional calls to
XERMBG in that case. In practice, it would be sinpler if subsidiary
routines did not call XERMSG but only returned error flags indicating a
serious problem Then the highest |evel Library routine could call XERMSG
just before returning to its caller. This also allows the highest |evel
routine the nost flexibility in assigning error nunbers and assures that
all possible error conditions are docunented in one prol ogue rather than
bei ng distributed through prol ogues of subsidiary routines.

Bel ow we describe only subroutine XERMSG. Qther routines in the error
handl i ng package are described in their prologues and in Reference [4].
The call to XERMSG | ooks |ike

Tenpl ate: CALL XERMSG (library, routine, nmessage, errornunber, |evel)

Exanpl e: CALL XERMSG (' SLATEC , ' MWPY',
1 "The order of the natrix exceeds the row dinmension’, 3, 1)

where the meani ng of the argunents is

library A character constant (or character variable) with the name of
the library. This will be ' SLATEC for the SLATEC Conmon Math
Li brary. The error handling package is general enough to be used
by many libraries sinmultaneously, so it is desirable for the
routine that detects and reports an error to identify the library
name as well as the routine namne.

routine A character constant (or character variable) with the nane of the
routine that detected the error. Usually it is the nane of the
routine that is calling XERMSG There are some instances where a
user callable library routine calls |lower |evel subsidiary
routines where the error is detected. 1In such cases it may be
nore informative to supply the name of the routine the user
call ed rather than the nane of the subsidiary routine that
detected the error

nessage A character constant (or character variable) with the text of the
error or warning nessage. In the exanple below, the nmessage is a
character constant that contains a generic nessage.

CALL XERMSG (' SLATEC , ' MWPY’
"The order of the matri x exceeds the row di mensi on’,
* 3, 1)

It is possible (and is sonetines desirable) to generate a

speci fic nessage--e.g., one that contains actual nuneric val ues.
Speci fic numeric val ues can be converted into character strings
using formatted WRI TE statenents into character variables. This
is called standard Fortran internal file I/O and is exenplified
inthe first three lines of the follow ng exanple. You can also
catenate substrings of characters to construct the error nessage.
Here is an exanpl e showi ng the use of both witing to an interna
file and catenating character strings.

CHARACTER*5 CHARN, CHARL
WRI TE (CHARN, 10) N
VWRI TE (CHARL, 10) LDA
10 FORMAT(I 5)
CALL XERMSG (' SLATEC , ' MWPY', 'The order’// CHARN /
* " of the matrix exceeds its row di nension of’//

* CHARL, 3, 1)

There are two subtleties worth nmentioning. One is that the //
for character catenation is used to construct the error nessage
so that no single character constant is continued to the next
line. This avoids confusion as to whether there are trailing

bl anks at the end of the line. The second is that by catenating
the parts of the nessage as an actual argunment rather than
encodi ng the entire nessage into one |arge character variable,
we avoi d having to know how | ong the nessage will be in order to
decl are an adequate length for that |arge character variable.
XERMBG calls XERPRN to print the message using multiple lines if
necessary. |If the nessage is very long, XERPRN will break it
into pieces of 72 characters (as requested by XERVMBG for
printing on nultiple lines. Al so, XERVSG asks XERPRN to prefix
each line with ' * ' so that the total line length could be 76
characters. Note also that XERPRN scans the error nessage
backwards to ignore trailing blanks. Another feature is that the
substring '$$ is treated as a new line sentinel by XERPRN. |f
you want to construct a nultiline nessage wi thout having to count
out multiples of 72 characters, just use '$$ as a separator

"$$’ obviously nust occur within 72 characters of the start of
each line to have its intended effect since XERPRN is asked to
wrap around at 72 characters in addition to |ooking for '3 .

error nunber An integer value that is chosen by the library routine’ s author
It nust be in the range 1 to 999. Each distinct error should
have its own error nunber. These error nunbers shoul d be
described in the machi ne readabl e docunentati on for the routine.
The error nunbers need be unique only within each routine, so it
is reasonable for each routine to start enunerating errors froml
and proceeding to the next integer

| evel An integer value in the range 0 to 2 that indicates the |eve
(severity) of the error. Their meanings are

0O A warning nessage. This is used if it is not clear that there
really is an error, but the user’s attention nmay be needed.

1 A recoverable error. This is used even if the error is so
serious that the routine cannot return any useful answer. |If
the user has told the error package to return after
recoverable errors, then XERVMBG will return to the Library
routi ne which can then return to the user’s routine. The user
may al so permit the error package to termnate the program
upon encountering a recoverable error

2 Afatal error. XERMSG Wi Il not return to its caller after it
receives a fatal error. This level should hardly ever be
used; it is nuch better to allow the user a chance to recover.
An exanpl e of one of the few cases in which it is pernissible
to declare a level 2 error is a reverse comunication Library
routine that is likely to be called repeatedly until it
i ntegrates across sone interval. |If there is a serious error
in the input such that another step cannot be taken and the
Library routine is called again w thout the input error having
been corrected by the caller, the Library routine wll
probably be called forever with inproper input. In this case,
it is reasonable to declare the error to be fatal

Each of the argunments to XERMBG is input; none will be nodified by XERVBG A

routine may make multiple calls to XERVMBG with warni ng | evel messages; however,
after a call to XERVSG with a recoverable error, the routine should return to
the user. Do not try to call XERMSG with a second recoverable error after the
first recoverable error because the error package saves the error number. The
user can retrieve this error nunber by calling another entry point in the error
handl i ng package and then clear the error nunber when recovering fromthe
error. Calling XERVMSG in succession causes the old error nunber to be
overwitten by the latest error nunmber. This is considered harmess for error
nunbers associated with warni ng nessages but nust not be done for error nunbers
of serious errors. After a call to XERMSG with a recoverable error, the user
nmust be given a chance to call NUMXER or XERCLR to retrieve or clear the error
nunber .

hkhkhkkhhkhkhhkhhhhhhhhhdhhhhhhdhhhdhhhdhhhdhdhhddhhddhdhhhdhhhdhhhdhhdhhhdhhhddhddrhddrdhddrdrrdrrdrxsk

APPENDI X D. DI STRI BUTI ON FI LE STRUCTURE

The source files of the SLATEC library distribution tape are ASCI| text files.
Each |ine image consists of exactly 80 characters. The first file of the tape
is text file describing the contents of the tape.

The SLATEC source code file has the follow ng characteristics.

1. Al subprograms in the file are in al phabetic order. The collating
sequence is 0 through 9 and then A through Z.

2. Before each subprogram of nane for exanple XYZ, there is a line starting
incolum 1 with

*DECK XYZ

This allows the source file to be used as input for a source code
mai nt enance program

3. No coments other than the *DECK |ines appear between subprograns.

khkkkkhhkhkkhkhhkhkkhhhkkhkhhhkhhhkkhhhhkhhhkkhdhhkhhhhdhrhkdhhkkhdhhhkdhhkhdrhkdhhhdrxhkdhkhkddxhkdrrkddkxrkhhxkkx*x

APPENDI X E. SUGGESTED FORVAT FOR A SLATEC SUBPROGRAM

A tenpl ate enbodyi ng the suggested format for a SLATEC subprogramis given
bel ow. As el sewhere in this GQuide, the caret (") denotes a required bl ank
character. These should be replaced with blanks AFTER filling out the
tenplate. The tenplate itself begins with the *DECK |ine, below All
occurrences of "NAME' are to be replaced with the actual nane of the

subprogram of course. |Itens in brackets [] are either explanations or
optional information. Lines that do not have Cor * in colum 1 are
expl anatory remarks that are intended to be deleted by the programrer. In al

cases where "or" is used, exactly one of the indicated forms nust occur

Lines that begin with C** are standard SLATEC |ines. These nust be in the

i ndi cated order. See Section 8 of this Guide for information on required vs
optional lines. |In all but the C~**DESCRI PTI ON section, the exact spacing and
punctuation are as mandated by this Guide. Spacing within this section is only
suggestive, except as noted below. The SLATEC standard nandates that no ot her

conmments may begin "C**", Al other |ines between the C***BEG N*PROLOGUE
and the C***END'"PROLOGUE nust be coment lines with "C* in colums 1-2

Wthin the C~**DESCRI PTI ON section, lines that begin with "C**" are for the
LLNL LDOC standard [9]. |If present, these lines nust be exactly as given here.
They should be in the indicated order. Al other lines in this section nust
have "C*" in columms 1-3.

In the Argunents subsection, each argunent nust be followed by exactly one
argunent qualifier. The qualifier nust be preceded by a colon and fol |l owed
by at |east one blank. The allowable qualifiers and their nmeanings foll ow

Qualifier Meani ng

1IN i nput variable. Mist be set by the user prior to the cal
(unl ess otherw se indicated). Mist NOT be changed by the
routi ne under any circunstances.

;QuUT out put variable. Values will be set by the routine.

Must be initialized before first usage in the routine.

I NOUT input/output variable. Mist be set by the user prior to
the call (as indicated in argunent description); val ue(s)
may be set or changed by the routine.

: VWORK wor kspace. Sinply working storage required by the routine.
Need not be set prior to the call and will not contain
i nformati on neani ngful to the user on return. (Sone
routines require the contents of a work array to remain
unchanged between successive calls. Such usage shoul d be
careful ly explained in the argunment description.)

. EXT external procedure. The actual argunment nust be the nane of
a SUBROUTI NE, FUNCTI ON, or BLOCK DATA subprogram It mnust
appear in an EXTERNAL statenent in the calling program The
argunent description follow ng should precisely specify the
expected cal |l i ng sequence.

: DUMMY dunmry argunent. Need not be set by user; will not be
referenced by the routine. [Use discouraged!]

To avoid potential problens with automatic formatti ng of argunent descriptions,
none of these key words shoul d appear anywhere else in the text inmediately
preceded by a col on.

NOTES:
1. Make a tenplate by copying the foll owi ng "*DECK*NAME" through
"ANAAAANEND |ines, inclusive, fromthis QGuide.
2. You will probably want to customi ze this tenplate by filling
in the C**AUTHOR section and addi ng other things you customarily
include in your prologues. |If all of your routines are in the sane
category(ies), you may wish to fill in the C** CATEGORY and

Cr**KEYWORDS sections, too. Be sure to elimnate the brackets [].
3. Be sure to delete the "C**SUBSIDI ARY" line if this is a user-
cal | abl e routi ne.

* DECKN NAVE
AAAANAASUBROUTI NEANAVE[A (ARGL[, AARG2[, A, .. 11)] or
AAAAAAEUNCTI ONCNAVEA (ARGL[, "ARG2[, *. . .11) or
AAAARACOVPLEX® FUNCTI ONMNAVEM (ARGL , ~ARG2[, ~. .. 11) or
ANAAAA DOUBLEN PRECH SIO\I"FUNCTIO\I"NAI\/E"(ARGl[AARGZ[L M. 11) or
AAAAAA | NTEGERM FUNCTI ONYNAMVEN (ARGL[, "ARG2[, A. . . 11) or
AAAARAREALAFUNCTI ONMNAVE® (ARGL[, AARG2[, ~. . 1]) or
AAANANLOG CALAFUNCTI ONYNAMVEN (ARGL[, “ARG2[, *. . . 11) or

ANAAANCHARACTER] * | en] ~FUNCTI ON*NAVEM (ARGL[, “ARR[, ... 1])

C+** BEA N* PROLOGUE" " NAVE

C+** SUBSI DI ARY

Cr** PURPCSEMBri ef (1-6 lines) sunmary of the purpose of this routine.
CAAANNANNANAN(To best fit LDOC standards, first |line should be suitable
Crnnnnnnnnnnnfor a table of contents entry for this routine.)

C** L| BRARYAMASLATEC] ~(Package)]

C*** CATEGORYM CAT1[, "CAT2]

C** TYPEMANAAS] NGLE PRECI SI ONM (NAME- S, A DNAMVE- D)

C+** KEYWORDSMKEYL[, "KEY2[,

C/\/\/\/\/\/\l\l\l\l\l\l\l\]

Cr** AUTHORM*Last - nane[, *Fi r st - name[, *(Organi zation)]] |
CAnANNANAANANNNDYr e | nformation] [

crnnnnnnnnnngacond- | ast - nanme[, AFirst-nanme[, *(Organi zation)]]|
CAAANNANNANANNNDr e | nformation]]

Ct** DESCRI PTI ON

C/\/\

Cr*Usage:

CrM This subsection should have declarations for all argunments to the
crn routine and a nodel call of the routine. Use the actual nanes of
crn the arguments here. ldeally, arguments should be named in a way
crn t hat suggests their neaning.

Cr The followi ng exanple illustrates the use of dumy identifiers (in
crn | ower case) to indicate that the required size of an array is
crn some function of the values of the other argunents. This may not
crn be | egal Fortran, but should be easier for a know edgeabl e user
crn to understand than giving the required size sonmewhere el se.

CI\I\

cn INTEGER M N, MDIMA, | ERR

crn PARAMETER (nfcns = 6, nwks = 3*nfcns+Mt7)

crn REAL X(nmax), A(MI MA nmax), FCNS(nfcns), VWKS(nwks)
CI\I\

cn CALL NAME (M N, X, A M MA, FCNS, VWKS, |ERR)

CI\I\

Cr* Argunent s:

Cr Argunents shoul d be described in exactly the sane order as in the
crn CALL list. Include any restrictions, etc.

Cr The following illustrates the recommended form of argunment descrip-
crn tions for the exanple given above. Note the use of qualifiers.
CI\I\

crn M TN is the nunmber of data points.

CI\I\

crn N TN is the number of unknowns. (Must have O.It.Nle.M.)
CI\I\

crn X N is areal array containing ...

crn (The di nensioned length of X nust be at |east N.)

C/\l\

crn A I NOUTA should contain ... on input; will be destroyed on

crn return. (The second di nension of A nust be at |east N.)
CI\I\

crn MDI MA: I N is the first dinmension of array A

crn (Must have Mle.NDIMA)

C/\/\

crn FCNS: QUTA will contain the six summary functions based on ...
Cl\l\
crn VWKS: WORK" is a real array of working storage. |Its length is a

crn function of the length of FCNS and t he nunmber of data
crn points, as indicated above.

C/\/\

crn |ERR QUTN is an error flag with the follow ng possible val ues:
crn Nor mal return:

crn IERR = 0 (no errors)

crn WArni ng error

chn IERR > 0 neans what ?

chn "Recover abl e" errors:

cn IERR =-1 if M< 1 or N< 1.
chn IERR =-2 if M> NDIMA .

chn | ERR =-3 neans what ?

CI\ N

CM* Funct i on”Ret ur n*Val ues:
CrM This subsection is present only in a FUNCTI ON subprogram
CM In case of an integer- or character-valued function with a discrete
crn set of values, list all possible return values, with their
crn meani ngs, in the following form [The colon is significant.]
crn val ue : neani ng
crn O herwi se, sonething of the followi ng sort is acceptable.
crn SQRT : the square root of X
C/\/\
Cr*Descri ption:
Cr One or nore paragraphs describing the intended routine use,
crn dependenci es on other routines, etc. Specific algorithm
crn descriptions could go here, if appropriate.
Cr The enphasis should be on information useful to a user (as opposed
crn to devel oper or nmmintainer) of the routine.
CI\I\
CM* Exanpl es:
CM Detail ed exanpl es of usage would go here, if desired
Cl\l\
Cr* Accur acy:
CrM This optional subsection contains notes on the accuracy or
crn precision of the results conputed by the routine.
Cl\l\
Cr*Cauti ons:
Cr List any known problens or potentially hazardous side effects
crn that are not ot herw se described, such as not being safe for
crn nmul ti processi ng or exceptional cases for argunents.
crn (ldeally, there should be none in a SLATEC routine!)
C/\/\
Cr*See™Al so
CrM This subsection would contain notes that refer to other library
crn routines that interrelate to this routine in inportant ways.
crn Exampl es include a solver for a LU factorization routine or an
crn eval uator for an interpolation or approxi mati on routine.
CM This subsection nay anplify information in the C**SEE ALSO
crn section, bel ow, which should appear only if the prol ogue of the
crn listed routine(s) contains docunentation for this routine.
CI\I\
Cr*Long”Descri ption:
Cr An optional subsection containing nuch nore detailed i nformation
C/\/\
C** SEENALSOMRTNL[, *"RTN2[,
Cl\l\l\l\l\/\/\/\l\l\l\l\l\R‘I’Nn]]
C* * * REFERENCES" " (NONE) or
Cr** REFERENCES*"1. Reference 1 ..
CANNNNNNNNNNNNNNNNCont | nuat i on of reference 1
CANANANNNANANANAD - Ref erence 2 ..
CAAANNANNANANNANANCont | nuat i on of reference 2.
C*** ROUTI NES" CALLED"* (NONE) or
C+** ROUTI NES" CALLEDMRTNL[, "RTN2[
C/\/\/\/\/\/\/\/\/\/\/\/\l\l\l\l\l\l\l\l\R‘I’Nn]]
[Do not include standard Fortran intrinsics or externals.]
C*** COVMON BLOCKSMANMBLOCKL [, “BLOCK2]
C*** REVI SI ONVHI STORY~ ™ (YYMVDD)

[This section should contain a record of the origin and]

[nodification history of this routine
CrAA871105M DATEMRI TTEN

crang801217Various editorial changes. (Version 6)
crang8811027"Converted to new SLATEC format. (Version 7)
crang8ll1282™Various editorial changes. (Version 8)
CI\
C* ** END" PROL OGUE" " NAME
C
C*Internal Notes:
C Inplenentation notes that explain details of the routine s design
C or coding, tricky dependencies that mght trip up a maintainer
C | ater, environnental assunptions made, alternate designs that
C wer e consi dered but not used, etc.
C Details on contents of comon bl ocks referenced, |ocks used, etc.
C woul d go here.
C Enphasis is on I NTERNALLY useful information.
C
C**End
C
C Additional comments that are not appropriate even for an interna
C docunent, but which the progranmer feels should precede decl arations.
C
C Declare argunents
C

< Decl arations >
C
C Declare |l ocal variables.
C

< Decl arations >

C

C*** F| RSTAEXECUTABLEN STATEMENTAN NAMVE
< Body of NAME >

I\I\I\I\I\I\END

khkkkkhhkhkkhkhhkhkkhhhkkhhhhkhhhkhhhhkhhhkkhdhhhkhhhhdhhkdhhkhdhhhkdhhhkddrhkdhhkkddrxhkdhdhkddxhkdhrdddxrkhhxxkx*x

ACKNOWN.EDGEMENT

Frederick N
Lawr ence Livernore
who wrote Appendi x E and made corrections and comments on

The aut hors wi sh to acknow edge the assistance provided by Dr.
Fritsch of the Computing and Mat hematics Research Division
Nat i onal Laboratory,
t he manuscri pt.

EIE R S I R R I I I I R I R I R I S I I R S R S I I S R R I S

REFERENCES

[1] W H Vandevender and K. H Haskell
library, SIGNUM Newsletter, 17, 3 (Septenber

The SLATEC nmat henmati cal
1982),

subrouti ne
pp. 16-21.

The PORT mat hemmti cal subroutine
Software, 4, 2 (June 1978), pp.

[2] P. A Fox,
[ibrary,
104- 126.

A. D. Hall and N. L. Schryer,
ACM Transacti ons on Mat hematica

[3]

[4]

[5]

[6]

[7]

[8]

P. A Fox, A. D. Hall and N. L. Schryer, Al gorithm528: framework for a
portable library, ACM Transactions on Mathematical Software, 4, 2 (June
1978), pp. 177-188.

R E. Jones and D. K. Kahaner, XERROR, the SLATEC error-handling package,
Software - Practice and Experience, 13, 3 (March 1983), pp. 251-257.

R F. Boisvert, S. E. Howe and D. K Kahaner, GAMS: a franework for the
managenent of scientific software, ACM Transactions on Mat henati cal
Software, 11, 4 (Decenber 1985), pp. 313-355.

American National Standard Programm ng Language FORTRAN, ANSI X3.9-1978,
Anerican National Standards Institute, 1430 Broadway, New York, New York
10018, April 1978.

W S. Brown, A sinple but realistic nmodel of floating point conmputation,
ACM Transactions on Mathenmatical Software, 7, 4 (Decenber 1981), pp.
445- 480.

F. N Fritsch, SLATEC/ LDOC prol ogue: tenplate and conversion program
Report UCI D-21357, Rev.1, Lawence Livernore National Laboratory,
Li vernmore, California, Novenber 1988.

