OSGi Working Group
OSGi Compendium

Release 8.1
December 2022

500SGi

Copyright © 2000, 2024 Eclipse Foundation
LICENSE

Eclipse Foundation Specification License - v1.0

By using and/or copying this document, or the Eclipse Foundation document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, pro-
vided that you include the following on ALL copies of the document, or portions thereof, that you use:

+ link or URL to the original Eclipse Foundation document.

- All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual represen-
tation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc. <<url to this li-
cense>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided
in any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this li-
cense, except anyone may prepare and distribute derivative works and portions of this document in software
that implements the specification, in supporting materials accompanying such software, and in documentation
of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of deriva-
tive works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOEF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written prior permission. Title to copy-
right in this document will at all times remain with copyright holders.

157

157.1
157.2
157.3
157.4
157.5
157.6
157.7
157.8
157.9
157.10
157.11
157.12
157.13
157.14

Table of Contents

Typed Event Service Specification 5
31T Y Ui] 5
B NS, L 6
PUDIISRING EVENTS.t e ettt et e e e ettt et et et et e 8
RECEIVING EVENTS. . ot e ettt ettt e e e ettt e e e e et e et et e e e e 11
The Typed EVENt BUS SEIVICE. . .. u ettt ettt ettt et e Tt et e e et e et e et e et et e vt e eaeeeaeeaaees 17
MONIEOTING EVENTS. . ..ottt e e e e et e e e e e e eeeae e 17
LT - 19
SBCUTIEY. « + e e ettt ettt e ettt ettt et et e e e et e e e e et e e et e e e e e e e e e et 20
OTE.0SEI.SEIVICEAYPEABVENL. . . ottt ettt ettt et ettt ettt e e et et et e e e e e eaaeas 21
0rg.0sgi.service.typedevent.annotations. ettt 27
OTg.0Sg1.SEIVICE Y PEABVENEIMONILON. L. i\t ettt ettt et ettt et et et e et et e et e e eeeeeeaaaes 28
OTg.05gi.SerViCe.typedeVent.PrOPEItYIYPES. .« . tine ettt ettt et ettt et e e et 31
[0S =L oY T 33
(0T L U SR 33

OSGi Compendium Release 8.1

Page 3

OSGi Compendium Release 8.1

Page 4

Typed Event Service Specification Version 1.1 Introduction

157

157.1

157.1.1

Typed Event Service Specification

\ersion 1.1

Introduction

Eventing systems are a common part of software programs, used to distribute information between
parts of an application. To address this, the ??? was created as one of the earliest specifications de-
fined by the OSGi Compendium. The design and usage of the Event Admin specification, however,
makes certain trade-offs that do not fit well with modern application design:

Type Safety - Events are sent and received as opaque maps of key-value pairs. The “schema” of an
event is therefore ill-defined and relies on “magic strings” being used correctly to locate data, and
on careful handling of data values with unknown types.

Unhandled Events - Events that are sent but have no interested Event Consumers are silently dis-
carded. There is no way to know that an event was not handled, short of disrupting the system by
registering a handler for allevents.

Observability - There is no simple, non-invasive way to monitor the flow of events through the
system. The ability to monitor and profile applications using Event Admin is therefore relatively
limited.

Adding these features to the original ??? specification is not feasible without breaking backward
compatibility for clients. Therefore this specification exists to provide an alternative eventing mod-
el which supports these different requirements by making different design trade-offs.

Essentials

Event- A set of data created by an Event Source, encapsulated as an object and delivered to one or
more Event Consumers.

Event Schema - A definition of the expected data layout within an event, including the names of
data fields and the types of data that they contain.

Event Topic- A String identifying the topic of an Event, effectively defining the Event Schema and
the purpose of the event.
Event Source- A software component which creates and sends events.
Event Consumer - A software component which receives events.
DTO- A Data Transfer Object as per the OSGi DTO Specification.

. Event Bus- A software component used by an Event Source and responsible for delivering Events
to Event Consumers.

OSGi Compendium Release 8.1 Page 5

Events Typed Event Service Specification Version 1.1
Figure 157.1 Class and Service overview
Event Source an Event
Impl Consumer Impl
send «DTO»> ¢
event L _— _|Event receive
event
|
«service>> . «service>>
TypedEventBus ! 9-N TypedEventHandler
Typed Event Impl
157.1.2 Entities

157.2

157.2.1

« - Typed Event Bus - A service registered by the Typed Event implementation that can be passed an
Event object and that will distribute that event to any suitable Event Handler Services.
Event Handler - A service registered by an Event Consumer suitable for receiving Event data from
the Typed Event Bus.

Events

In this specification an Event is a set of string keys associated with data values. The defined set of al-

lowable keys and permitted value types for the keys in an Event is known as the Event Schema. Both
the Event Source and Event Consumers must agree on a schema, or set of compatible schemas, in or-
der for events to be consumed correctly.

Type Safe Events

A Type Safe Event is one in which the Event Schema is defined as a Java class. Using a Java class pro-
vides a formal definition of the schema - event data uses field names in the class as the keys, and
each field definition defines the permitted type of the value.

Type Safe Event classes are expected to either:
Conform to OSGi DTO rules - the architecture of OSGi DTOs is described in ???. All methods, all

static fields, and any non public instance fields of an event object must be ignored by the Typed
Event Service when processing the Event data.

Page 6

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Events

157.2.1.1

157.2.2

157.2.3

« Be[1] Java Records. Event classes that are Java Records can be identified as they are subclasses of
java.lang.Record. The Event data consists of the record components. All other parts of a record
must be ignored by the Typed Event Service when processing the Event data.

Some implementations of the Typed Event Service may support Type Safe Event classes that do not
conform to these rules, transforming them as needed in an implementation specific way. This is per-
mitted by this specification, however consumers which rely on this behaviour may not be portable
between different implementations of this specification.

Nested Data Structures

OSGi DTOs are permitted to have data values which are also DTOs, allowing nested data structures
to be created. This is also allowed for Type Safe Events, but with the same restriction that the event
data must be a tree. There is no restriction on the depth of nesting permitted.

Untyped Events

An Untyped Event is one in which thereis no Java class defining the Event Schema. In this case the
event data is defined using a Map type with String keys and values limited to types acceptable as
fields in a DTO, excepting:

- DTO types - an untyped event may not have DTOs inside it as these form part of a typed schema.

- Maps are only permitted if they follow the rules for Untyped events, that is having String keys
and DTO restricted value types excluding DTOs.

Untyped Event instances are capable of representing exactly the same data as present in a Type Safe
Event instance, and are also subject to the same restrictions, that is the data must be a tree. Nested
data should be included as sub-maps within the event map, and these sub-maps may in turn contain
nested data.

Non Standard Type Safe Events

Some Event schemas may be represented by an existing type which does not match the rules for ac-
ceptable type safe event classes. In this case there are two main options:

. Create a DTO or record representation of the event schema, and convert from the existing type
into the new representation in code.

. Convert the event data into an Untyped Event representation using nested Maps.

For example, the following code demonstrates how an object following the JavaBeans pattern can be
converted into a DTO type or an untyped map:

public class ExampleJavaBean {
private String message;

public String getMessage() { return message; }

public void setMessage(String message) { this.message = message; }

}

public class ExampleEvent {
public String message;

}

@Component
public class ExampleEventSource {
private ExampleEvent createEventFromJavaBean(ExampleJavaBean bean) {

OSGi Compendium Release 8.1 Page 7

Publishing Events

Typed Event Service Specification Version 1.1

157.2.4

157.2.4.1

157.2.4.2

157.3

157.3.1

return Converters.standardConverter().convert(bean)
.to(ExampleEvent.class);

}

private Map<String, Object> createMapFromJavaBean(ExampleJavaBean bean) {
return Converters.standardConverter (). convert(bean)
.to(new TypeReference<Map<String, Object>>(){});

}
Event Mutability and Thread Safety

The Typed Event Service is inherently multi-threaded. Events may be published from multiple
threads, and event data may be delivered to consumers on multiple threads. Event Sources and
Event Consumers must therefore assume that event data is shared between threads from the mo-
ment that it is first passed to the TypedEventBus.

Typed Event Mutability

Typed Events, and in particular DTO types, provide a simple yet powerful mechanism for defining
an Event Schema in a type-safe way. However their use of mutable public fields means that they are
potentially dangerous when shared between threads. Event Sources and Event Consumers should
assume that their event instances are shared between threads and therefore not mutate the event da-
ta after publication or receipt.

If an Event Handler does need to make changes to an incoming event then it must copy the event
data into a new DTO instance. Note that any nested DTO values in the event data must also be
copied if they are to be mutated.

Untyped Event Mutability

When an event source publishes untyped event data, it passes a Map instance to the Typed
Event Bus. The Typed Event Bus is not required to take a copy of this Map, and therefore the
event source must not change the Map, or any data structures within the Map, after the call to
deliverUntyped(String,Map).

Untyped Events are delivered as implementations of the Map interface. Bundles consuming untyped
events should not rely on the event object being any particular implementation of Map, and should
treat the event object as immutable. The Typed Event Bus implementation may make copies of the
event data, or enforce the immutability of the map, before passing the event data to an Event Han-
dler.

Publishing Events

To publish an event, the Event Source must retrieve the Typed Event Bus service from the OSGi ser-
vice registry. The Event Source then creates an event object and calls one of the Typed Event Bus
service's methods to publish the event. Event publication is asynchronous, meaning that when a
call to the Typed Event Bus returns there is no guarantee that all, or even any, listeners have been no-
tified.

Event Topics

Events are always published to a topic. The topic of an event defines the schema of the event. Topics
exist in order to give Event Consumers information about the schema of the event, and the opportu-
nity to register for just the events they are interested in. When a topic is designed, its name should
not include any other information, such as the publisher of the event or the data associated with the
event, those parts are intended to be stored in the event properties.

Page 8

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Publishing Events

157.3.2

The topic therefore serves as a first-level filter for determining which handlers should receive the
event. Typed Event service implementations use the structure of the topic to optimize the dispatch-
ing of the events to the handlers. The following example code demonstrates how to send an event to
a topic.

public class ExampleEvent {
public String message;

}
a@Component
public class ExampleEventSource {
dReference
TypedEventBus bus;
public void sendEvent() {
ExampleEvent event = new ExampleEvent();
event.message = "The time is "+ LocalDateTime.now();
bus.deliver ("org/osgi/example/ExampleEvent", event);
}
}

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (/' \uoo2F). More precisely, the topic must conform to the following grammar:

Il For further information see General Syntax Definitions in Core
topictoken :: (jletterordigit | '-') +
topic ::= topictoken ('/' topictoken) *

Topics should be designed to become more specific when going from left to right. Consumers can
provide a prefix that matches a topic, using the preferred order allows a handler to minimize the
number of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (/' \uoo2F) instead
of the full stop (. \uoo2E).

This specification uses the convention fully/qualified/package/ClassName/ACTION. If necessary, a
pseudo-class-name is used.

Automatically Generated Topics

In many cases the name of a topic contains no information other than defining the schema of the
events sent on that topic. Therefore, when publishing a Typed Event to the Typed Event Bus, the
Typed Eventimplementation is able to automatically generate a topic name based on the the type of
the event object being published.

For the deliver(Object) method on the Typed Event Bus where no topic string is provided, the imple-
mentation must create a topic string using the fully qualified class name of the event object. To con-
vert the class name into a valid topic the full stop . separators must be converted into solidus / sepa-
rators. A non-normative example implementation follows:

public void deliver(Object event) {
String topicName = event.getClass().getName().replace('.", '/');

this.deliver (topicName, event);

OSGi Compendium Release 8.1 Page 9

Publishing Events

Typed Event Service Specification Version 1.1

157.3-3

157.3.4

}

The following example demonstrates how an Event Source can make use of an automatically gener-
ated topic name.

package org.osgi.example;

public class ExampleEvent {
public String message;
}

a@Component

public class ExampleEventSource {
@Reference
TypedEventBus bus;

public void sendEvent() {
ExampleEvent event = new ExampleEvent();
event.message = "The time is " + LocalDateTime.now();

/1 This event will be delivered to the
Il topic "orglosgi/example/ExampleEvent"
bus.deliver (event);

}
Thread Safety

The TypedEventBus implementation must be thread safe and allow for simultaneous event publica-
tion from multiple threads. For any given source thread, events must be delivered in the same order

as they were published by that thread. Events published by different threads, however, may be deliv-
ered in a different order from the one in which they were published.

For example, if thread A publishes events 1, 2and 3, while thread B publishes events 4, 5and 6, then
the events may be delivered:

. 1,2,3,4,56
4,1,2,5 6,3
and so on

but events will never be delivered 1, 2, 6, 4, 5, 3

Typed Event Publishers

Typical Event Sources publish single events at irregular intervals. These event sources are best
served by using the deliver methods on the TypedEventBus. Some Event Sources, however, produce
bursts of events, or frequent, regular events to a topic. In these cases there can be overhead associat-
ed with validating the topic and security context each time an event is published.

ATypedEventPublisheris associated with a single topic which is set during creation. All events pub-
lished using the TypedEventPublisher are delivered to that topic. A TypedEventPublisher can be ob-
tained from the TypedEventBus using one of the createPublisher methods.

A TypedEventPublisheris AutoCloseable and the isOpen method may be used to determine
whether it has been closed. Once closed the object may no longer be used to publish events, and all
event delivery methods will throw IllegalStateException.

public class ExampleEvent {
public String message;

Page 10

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Receiving Events

157.4

157.4.1

}
@Component
public class ExampleEventSource {
@Reference
TypedEventBus bus;
public void sendEvents() {
try(TypedEventPublisher<ExampleEvent> publisher
= bus.createPublisher ("my/topic/name", ExampleEvent.class)) {
for(int i = 0; 1 < 100; i++) {
ExampleEvent event = new ExampleEvent();
event.message = "The event is " + i;
publisher.deliver (event);
}
}
}
}

Because the topic for a TypedEventPublisheris defined at creation time the implementation may on-
ly validate it once. Also, the TypedEventBus implementation must check the caller's permission to
publish to the topic during the call to createPublisher, but should not check it again for each deliv-
ery. Note that this means an Event Source must not share a TypedEventPublisher outside its own bun-
dle.

Receiving Events

Event Consumers can receive events by registering an appropriate Event Handler service in the Ser-
vice Registry. This is a TypedEventHandler to receive events as type-safe objects, or an UntypedEven-
tHandler to receive events as untyped Map structures.

Published events are then delivered, using the whiteboard pattern, to any Event Handler service
which has registered interest in the topic to which the event was published.

Receiving Typed Events

Typed Events are received by registering a TypedEventHandler implementation. This service has a
single method notify which receives the String topic name and Object event data. The TypedEven-
tHandler implementation must be registered as a service in the service registry using the TypedE-
ventHandler interface.

The TypedEventHandler interface is parameterized, and so it is expected that the implementation
reifies the type parameter into a specific type. In this case the Typed Event implementation must
adapt the Event object into the type defined by the TypedEventHandler implementation. Implemen-
tations of this specification are free to choose their own adaptation mechanism, however it must
guarantee at least the same functionality as ???.

A simple example of receiving a typed event follows:

public class ExampleEvent {
public String message;
}

a@Component

OSGi Compendium Release 8.1 Page 11

Receiving Events

Typed Event Service Specification Version 1.1

public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvent> {
ad0verride
public void notify(String topic, ExampleEvent event) {
System.out.println("Received event: " + event.message);
}
}

If the TypedEventHandler implementation is unable to reify the type, or the required type is more
specific than the reified type, then the Typed Event Handler must be registered with the event.type
service property. This property has a string value containing the fully-qualified type name of the
type that the Typed Event Handler expects to receive. This type must be loaded by the Typed Event
implementation using the classloader of the bundle which registered the Typed Event Handler ser-
vice. The loaded type must then be used as the target type when converting events. For example:

public class ExampleEvent {
public String message;

}

public class SpecialisedExampleEvent extends ExampleEvent {
public int sequenceld = Integer.MIN_VALUE;
}

@Component
@EventType (SpecialisedExampleEvent.class)
public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvents {
@0verride
public void notify(String topic, ExampleEvent event) {
System.out.println("Received event: " + event.message);

/'l The event will always be of type SpecialisedExampleEvent

System.out.println("Event sequence id was " +
((SpecialisedExampleEvent) event).sequenceld);

}

By default the reified type of the TypedEventHandler will be used as the target topic for the Event
Handler. If the event.type property is set then this is used as the default topic instead of the rei-
fied type. To use a specific named topic the Typed Event Handler service may be registered with an
event.topics service property specifying the topic(s) as a String+ value.

public class ExampleEvent {
public String message;

}

a@Component
@EventTopics ({"foo", "foo/bar"})
public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvent> {
@Override
public void notify(String topic, ExampleEvent event) {
System.out.println("Event received on topic: " + topic +
with message: " + event.message);

Page 12

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Receiving Events

157.4.2

157.4.3

157.4.3.1

Receiving Untyped Events

Untyped Events are received by registering an UntypedEventHandler implementation. This service
has a single method notifyUntyped which receives the String topic name and Map event data. The
Untyped Event Handler implementation must be registered as a service in the service registry using
the UntypedEventHandler interface.

When delivering an event to an Untyped Event Handler the Typed Event Service must, if necessary,
convert the event data to a nested map structure.

The event.topics service property must be used when registering an Untyped Event Hander service.
If it is not, then no events will be delivered to that Untyped Event Handler service.

public class ExampleEvent {
public String message;

}

@Component
@EventTopics ({"foo", "foo/bar"})
public class ExampleUntypedConsumer implements UntypedEventHandler {

@0verride
public void notifyUntyped(String topic, Map<String,Object> event) {
System.out.println("Event received on topic: " + topic
+ " with message: " + event.get("message"));
}
}
Wildcard Topics

The event.topics property may contain one or more wildcard topics. These are Strings which con-
tain a topic name including one or more wildcards.

Single-Level Wildcards

A Single-Level wildcard is used to match all topics which differ only by a single topic token within

“

the topic String. This is done by using a “+” character to indicate the topic token which may vary.

Using a single-level wildcard means that the Event Handler must be called Events sent to topics
matching the rest of the topic String. For example the component:

aComponent
@EventTopics (" foo/+/foobar")
public class ExampleUntypedConsumer implements UntypedEventHandler {
@d0verride
public void notifyUntyped(String topic, Map<String,Object> event) {
System.out.println("Event received on topic: " + topic

+ " with message: " + event.get("message"));

}

would receive events sent to the topics foo/bar/foobar and foo/baz/foobar, but not the topics foo/
foobarorfoo/bar/foobar/baz.

The + character in a wildcard topic must always be the only character in the topic token that it
matches, meaning that topic names such asfoo+/barand foo/+bar are not valid. It is valid to use the
topic name + to receive events on all single level topics.

OSGi Compendium Release 8.1 Page 13

Receiving Events

Typed Event Service Specification Version 1.1

157.4.3.2

157.4.4

157.4.5

157.4.5.1

The Multi-Level Wildcard

The multi-level wildcard is used to match all topics which share a given prefix. This is done by ap-
pending “/«”. to the prefix. This value means that the Event Handler must be called for Events sent to
sub-topics of the named topic. For example the component:

a@Component
@EventTopics("foo/*")
public class ExampleUntypedConsumer implements UntypedEventHandler {
ad0verride
public void notifyUntyped(String topic, Map<String,Object> event) {
System.out.println("Event received on topic: " + topic

+ " with message: " + event.get("message"));

}

would receive events sent to the topics foo/bar and foo/baz, but not the topics foo or foo-
bar/fizzbuzz.

The * character in a wildcard topic must always follow a solidus / character, and must be the final
character in the topic string, meaning that topic names such as foox and foo/*/bar are not valid.
The only exception to this rule is that it is valid to use the topic name * to receive events on all top-
ics. While it is valid to do so, using the topic * is not typically recommended. For a mechanism to
monitor the events flowing through the system see Monitoring Events on page 17.

Unhandled Events

Unhandled Events are events sent by an Event Source but which have no Event Handler service lis-
tening to their topic. Rather than these events being discarded, the Typed Event implementation
will search the service registry for services implementing UnhandledEventHandler.

If any services are found then the Typed Event implementation will call the notifyUnhandled
method passing the topic name and event data to all of the registered Unhandled Event Handler ser-
vices.

public class ExampleEvent {
public String message;
}

a@Component
public class ExampleUnhandledConsumer implements UnhandledEventHandler {
@0verride
public void notifyUnhandled(String topic, Map<String,Object> event) {
System.out.println("Unhandled Event received on topic: " + topic);
}
}

Filtering Events

Sometimes the use of a topic is insufficient to restrict the events received by an event consumer. In
these cases the consumer can further restrict the events that they receive by using a filter. The filter
is supplied using the event.filter service property, the value of which is an LDAP filter string. This
filter is applied to the event data, and only events which match the filter are delivered to the event
handler service.

Nested Event Data

Complex events may contain nested data structures, such as DTOs, as values in the event data. As
LDAP filtering is only designed to match against simple data this means that some event properties

Page 14

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Receiving Events

157.4.5.2

157.4.6

157.4.7

cannot be filtered using the event.filter property. The event filter is therefore only suitable for use in
matching top-level event properties.

Ignored Events

Note that the use of a filter is different from receiving an event and choosing to ignore it based on its
data. If an event fails to match the filter supplied by an event handler service then it is not delivered
to that event handler. This means that the event data remains eligible to be sent to an UnhandledE-
ventHandler unless another event handler does receive it. An event that is received, but ignored, by
an event handler service does count as having been delivered, and so will never be sent to an Unhan-
dledEventHandler.

Failing Event Handlers

Event Handler implementations are called by the Typed Event Bus implementation, and are expect-
ed:

- Not to throw exceptions from their callback method
To return quickly - any long running tasks should be moved to another thread

If a Typed Event Bus implementation detects an Event Handler that is behaving incorrectly, either
by throwing exceptions, or by taking a long time to process the event, or some other problem, then
the implementation may block further event delivery to that Event Handler.

If an Event Handler is blocked by the event implementation then this situation must be logged. Al-
so, if a blocked Event Handler service is updated then the block must be removed by the implemen-
tation. If the updated service continues to behave incorrectly then the block may be reinstated.

Event History

Event Handlers may be registered at any time, which can lead to ordering problems with respect to
Event Sources publishing their first events. Specifically a late arriving Event Handler may miss the
first message(s) from an early registering Event Source.

While this situation can be detected by the Event Source (for example by using an Unhandled Event
Handler) or by the Event Handler (for example by using the TypedEventMonitor) doing so is rela-
tively verbose.

In simple situations, such as watching the value of an irregularly updating Event Source, it is much
easier for the Event Handler to have the last event(s) replayed to it before it starts receiving newly
published events. This behaviour can be enabled using the TYPED_EVENT_HISTORY service proper-
ty of the Event Handler.

The event.history property is of type Integer and must be greater than or equal to zero. The value of
the property defines the maximum number of historical events that should be replayed to the Event
Handler before normal event delivery begins. If the event.history property is not set then it should
be assumed to have the value zero.

When the Typed Safe Events implementation detects the registration of an Event Handler service
which has requested that one or more historical events should be replayed then it should follow the
following non normative steps:

1. Register the Event Handler service, but delay any event delivery until historical event delivery
has completed.

2. Identify events in the retained history which match the event.topics defined by the Event Han-
dler.

3. Filter the identified events using the event.filter defined by the Event Handler.
Sort the remaining events into chronological order.

5. Replay the last N events, in chronological order, where N is the number of events requested by
the Event Handler.

OSGi Compendium Release 8.1 Page 15

Receiving Events

Typed Event Service Specification Version 1.1

6. Enable the Event Handler service and begin delivering any delayed events.

The above algorithm is intended to be illustrative rather than normative and it is expected that im-
plementations will optimise their approaches.

As retaining history is an optional feature of the Type Safe Events implementation, and even where
history is retained there may not be any history to replay, it is possible that there will be insufficient
events to supply the number requested in event.history. This situation is not an error, and an Event
Handler service must not require that any historical events are delivered to it. The only guarantee

is that no more than event.history historical events will be delivered before normal event delivery
commences.

157.4.8 Event Handler Service Properties
The service properties that can be used to configure an Event Handler service are outlined in the fol-
lowing table.

Table 157.1 Service properties applicable to Event Handler services

Service Property Name Type Description

event.topics

event.type

event.filter

event.history

157.4.9

String+ Declares the topic pattern(s) for which the service should be called. This
service property is required for UntypedEventHandler services, but Type-
dEventHandlerservices may omit it if they are only interested in the de-
fault topic name for their reified type. UnhandledEventHandler services
may use this property to restrict the events that they receive.

See TYPED_EVENT_TOPICS.

String Defines the target type into which events should be converted before be-
ing passed to the Event Handler service. This service property is forbid-
den for UntypedEventHandler and UnhandledEventHandler services, but
TypedEventHandler services may use it if they wish to further refine the
type of data they wish to receive.

See TYPED_EVENT_TYPE.

String Defines an LDAP filter which should be tested against the properties in
the event data. Only events which pass the filter will be passed to the
the Event Handler service. This service property is optional and permit-
ted for TypedEventHandler, UntypedEventHandler and UnhandledEven-
tHandler services.

See TYPED_EVENT_FILTER.

Integer Defines the number of historical events which should be replayed to the
Event Handler Service before normal event delivery begins. The value
of this service property must be greater than or equal to zero. This ser-
vice property is optional and permitted for both TypedEventHandler and
UntypedEventHandler services but not for UnhandledEventHandler ser-
vices.

See TYPED_EVENT_HISTORY.

Error Handling

There are several possible error scenarios for Event Handlers:

- TypedEventHandler-If the target event type is not discoverable, that is there is no reified type in-
formation, nor is there an event.type property, then the target type for the event is not known.
In this situation there is no way for the Typed Event implementation to correctly target an event
schema, and the TypedEventHandler must be ignored. The implementation must write a mes-
sage to the log indicating which service is being ignored.

Page 16

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 The Typed Event Bus Service

157.5

157.5.1

157.6

157.6.1

- TypedEventHandler-If the target event type is discoverable but cannot be loaded using the class
loader of the bundle which registered the Typed Event Handler service then there is no way for
the Typed Event implementation to correctly target an event schema, and the Event Handler
must be ignored. The implementation must write a message to the log indicating which service
is being ignored.

All Handler Types - If the event data cannot be adapted to the target type, that is the incoming da-
ta cannot be transformed due to badly mismatched property names or values, then that specific
Event cannot be submitted to the Handler. The Typed Event implementation must write a mes-
sage to the log indicating which service failed to receive the event. If this error occurs repeatedly
then the Typed Event implementation may choose to deny list and ignore the Event Handler ser-
vice. Deny listing decisions must be written to the log.

All Handler Types - If the event.topics property contains one or more invalid values then the
Event Handler service must be ignored. The implementation must write a message to the log in-
dicating which service is being ignored.

All Handler Types - If the event.filter property contains an invalid value then the Event Handler
service must be ignored. The implementation must write a message to the log indicating which
service is being ignored.

All Handler Types - If the event.history property contains an invalid value then the Event Han-
dler service must be ignored. The implementation must write a message to the log indicating
which service is being ignored.

The Typed Event Bus Service

The Typed Event implementation must register a Typed Event Bus service in the service registry.
This service must implement and advertise the TypedEventBus interface.

Error Handling

It is not possible to know that an Event cannot be delivered until delivery is attempted. It is there-
fore not possible (or acceptable, given the asynchronous nature of delivery) to throw an exception
to the sender of an event if there are problems delivering the event. The Event Bus service should
not throw exceptions from any publication methods except:

NullPointerException if the event data is null.
IllegalArgumentException if a topic name is supplied and it violates the topic name syntax.

Monitoring Events

An important part of a software system is the ability to monitor it appropriately to determine
whether it is functioning correctly, without having the measurements disrupt the system. To this
end the Typed Event implementation must register a TypedEventMonitor service which can be used
to monitor the flow of events through the Event Bus.

Events flowing through the Typed Event Bus can be monitored using one of the monitorEvents
methods from the TypedEventMonitor service. These methods return a ??? which delivers Moni-
torEventinstances each time an event is sent via the TypedEventBus. The monitor events contain
the event topic, the event data, and a timestamp indicating when the event was sent.

Event History

In a running system it is often useful for monitoring tools to replay recent data immediately after a
problem has occurred. For that reason Typed Event Monitor instances may store past events so that

OSGi Compendium Release 8.1 Page 17

Monitoring Events Typed Event Service Specification Version 1.1

they can be replayed if requested. There are four monitorEvents methods capable of replaying histo-
Iy:

monitorEvents(int) takes an int representing the number of past events that should be replayed
from the cached history. This stream remains connected after replaying history and will contin-
ue to receive new events.

monitorEvents(int,boolean) takes an int representing the number of past events that should be
replayed from the cached history and a boolean indicating whether to remain connected after
all available history has been replayed. Passing true will ensure that only historical events are re-
played.

- monitorEvents(Instant) takes an Instant, representing the time in the past from which the
stream of monitoring events should start.

- monitorEvents(Instant,boolean) takes an Instant, representing the time in the past from which
the stream of monitoring events should start and a boolean indicating whether to remain con-
nected after all available history has been replayed. Passing true will ensure that only historical
events are replayed.

Note that storing Event History is considered a best-effort option and it is not required that the im-
plementation supply the full set of requested events. If insufficient past events are available then
the implementation must provide the maximum amount of history available.

157.6.2 Configuring Event History

It is not usually the case that the history for every event topic is equally important. In fact for many
topics history is unimportant, while for others it is highly desirable to keep a small number of his-
torical messages indefinitely. To support this the Typed Event Service implementation allows for
history storage to be configured on a per-topic basis, with both a minimum and maximum event re-
quirement. The minimum requirement guarantees that at least N events are kept for the topic and
not discarded in favour of events on other topics. The maximum requirement provides a ceiling on
the number of events that will be kept in history for a given topic, ensuring that one busy topic does
not dominate the whole history.

As the primary means of accessing historical events the Typed Event Monitor service also provides
the ability to introspect and customise the historical event storage.

157.6.2.1 Introspecting Event History Configuration

The most basic feature of the Event History Configuration is the total event storage capacity. This is
typically set in configuration during startup and cannot necessarily easily be changed at runtime.
The total event storage capacity can be queried by calling getMaximumEventStorage().

The global history configuration is available from the getConfiguredHistoryStorage() method. This
returns the entire history retention policy for the Typed Event Service, individual configuration en-
tries can be obtained by calling getConfiguredHistoryStorage(String). The returned configuration
provides an Entry where the key is the minimum number of events to keep and the value is the max-
imum.

Configuration entries use topic filters rather than topic names, and are therefore permitted to use
wildcards. This can therefore mean that more than one configuration matches a given topic name.
To ensure consistency between implementations the following disambiguation algorithm applies:

1. Identify the set of matching topic filters from the configuration
2. Extract the first token from each of the filters
Retain the most preferred filters based on the following preference order:
a. Anexact token match
b. Asingle level wildcard token match
c. A multi-level wildcard match

Page 18 OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 Capabilities

157.6.2.2

157.7

157.7.1

4. If only one filter remains then this defines the configuration to use, otherwise remove the lead-
ing token from the retained topic filters and repeat this algorithm from the second step.

When obtaining the global configuration it is returned as a Map with the configured topic fil-
ters used as keys. Furthermore the keys in the map are ordered such that the most specific match
for a given topic will always be encountered first. This can be used in conjunction with the
topicFilterMatches(String) or topicFilterMatches(String,String) to easily identify which policy
would apply to a given topic.

In addition to determining the global history configuration it is also possible to introspect the spe-
cific configuration for event history retention. For example, to find the policy for a named topic

the getEffectiveHistoryStorage(String) method will, as for the global configuration, return an En-
try where the key is the minimum number of events to keep and the value is the maximum. This
method must take into account any wildcards and precedence in the global configuration to deter-
mine the correct policy for the supplied topic name. Note that this method can only be used for top-
ic names, and passing a topic filter containing wildcards will raise an IllegalArgumentException.

Modifying Event History Configuration

In addition to viewing the currently configured history storage configuration users are able to pro-
grammatically modify the configuration at runtime.

Adding or changing the configuration fora given topic filter is possible using the
configureHistoryStorage(String,int,int) method. This is used to set the required minimum and
maximum numbers of events that should be stored for each topic that matches the supplied filter.
It is invalid to pass a number less than zero for either the minimum or maximum number of events,
and it is also invalid to set a minimum greater than the maximum. In both cases an IllegalArgu-
mentException must be raised by the implementation.

When a configuration is added or updated the implementation must ensure that sufficient space ex-
ists to be able to hold at least the minimum number of events for each configured topic. If the addi-
tion or update would breach the getMaximumEventStorage() then an IllegalStateException must
be thrown by the implementation. For this reason it is also invalid to set a non zero minimum num-
ber of events when using a wildcard topic filter, as doing so makes it impossible for the implemen-
tation to know how many topics the minimum will apply to. Passing a non-zero minimum with a
wildcard topic filter must therefore also triggeran IllegalArgumentException. Assuming that suffi-
cient space is available the return value of the configureHistoryStorage method indicates the stor-
age space available for this topic filter. This must be at least the minimum requirement, and at most
the maximum requirement, and is calculated by the implementation taking into account the total
available storage, and the pre-existing configuration.

If no longer required then the configuration for a given topic filter can be deleted using
removeHistoryStorage(String). When this method is called it may make zero or more historical
events eligible for removal from the history, depending on the other configured filters. The imple-
mentation should ensure that any superfluous events are promptly removed from the event history
and must not return them in any subsequent requests for historical data.

Capabilities

osgi.implementation Capability

The Typed Event implementation bundle must provide the osgi.implementation capability with
the name TYPED _EVENT_IMPLEMENTATION. This capability can be used by provisioning tools and
during resolution to ensure that a Typed Event implementation is present. The capability must also
declare a uses constraint for the org.osgi.service.typedevent package and provide the version of this
specification:

OSGi Compendium Release 8.1 Page 19

Security

Typed Event Service Specification Version 1.1

157.7.2

157.8

157.8.1

157.8.2

Provide-Capability: osgi.implementation;
osgi.implementation="osgi. typedevent";
uses:="org.osgi.service. typedevent";
version:Version="1.1"

The RequireTypedEvent annotation can be used to require this capability.

This capability must follow the rules defined for the ?7?.

osgi.service Capability

The bundle providing the Typed Event Bus service must provide capabilities in the osgi.service
namespace representing the services it is required to register. This capability must also declare uses
constraints for the relevant service packages:

Provide-Capability: osgi.service;

objectClass:List<String>="org.osgi.service. typedevent. TypedEventBus";
uses:="org.osgi.service. typedevent”,

osgi.service;

objectClass:List<String>="org.osgi.service. typedevent.monitor. TypedEventMonitor";
uses:="org.osgi.service. typedevent.monitor"

This capability must follow the rules defined for the ?77?.

Security

Topic Permission

The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (/' \uoo2F) are used as
separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
alb.

There are two available actions: PUBLISH and SUBSCRIBE. These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

Required Permissions

Bundles that need to consume events must be granted permission to register the appropriate han-
dler service. For Example: ServicePermission[org.osgi.service.typedevent.TypedEventHandler,
REGISTER] or ServicePermission[org.osgi.service.typedevent.UntypedEventHandler, REGISTER] or
ServicePermission[org.osgi.service.typedevent.UnhandledEventHandler, REGISTER]. In addition,
bundles that consume events require TopicPermission[<topic>, SUBSCRIBE] for each topic they
want to be notified about.

Bundles that need to publish events must be granted permission to get the TypedEventBus service,
thatis ServicePermission[org.osgi.service.typedevent.TypedEventBus, GET] so that they may re-
trieve the Typed Event Bus and use it. In addition, event sources require TopicPermission[<topic,
PUBLISH] for each topic they want to send events to. This includes any default topic names that are
used when publishing

Bundles that need to monitor events flowing through the bus must

be granted permission to get the TypedEventMonitor service, that is

ServicePermission[org.osgi.service.typedevent.monitor.TypedEventMonitor, GET] so that they
may retrieve the Typed Event Monitor and use it.

Page 20

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 org.osgi.service.typedevent

157.8.3

157.9

157.9.1

157.9.2

Only a bundle that provides a Typed Event implementation should be granted

ServicePermission[org.osgi.service.typedevent.TypedEventBus, REGISTER] and
ServicePermission[org.osgi.service.typedevent.monitor.TypedEventMonitor, REGISTER] to regis-
ter the services defined by this specification.

The Typed Event implementation must be granted
ServicePermission[org.osgi.service.typedevent.TypedEventHandler, GET],
ServicePermission[org.osgi.service.typedevent.UntypedEventHandler, GET],
ServicePermission[org.osgi.service.typedevent.UnhandledEventHandler, GET],
ServicePermission[org.osgi.service.typedevent.TypedEventBus, REGISTER] and
ServicePermission[org.osgi.service.typedevent.monitor.TypedEventMonitor, REGISTER] as these
actions are all required to implement the specification.

Security Context During Event Callbacks

During an event notification, the Typed Event implementation's Protection Domain will be on the
stack above the handler's Protection Domain. Therefore, if a handler needs to perform a secure oper-
ation using its own privileges, it must invoke the doPrivileged method to isolate its security context
from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPrivileged call.
org.osgi.service.typedevent

Typed Event Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the APIin this package.

Example import for consumers using the APIin this package:
Import-Package: org.osgi.service.typedevent; version="[1.0,2.0)"
Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.typedevent; version="[1.0,1.1)

Summary

. TopicPermission - A bundle's authority to publish or subscribe to typed events on a topic.
.- TypedEventBus - The Typed Event service.
TypedEventConstants - Defines standard names for Typed Event properties.
TypedEventHandler - Listener for Typed Events.
TypedEventPublisher - A Typed Event publisher for a single topic.
- UnhandledEventHandler - Listener for Unhandled Events.
- UntypedEventHandler - Listener for Untyped Events.

public final class TopicPermission

extends Permission

A bundle's authority to publish or subscribe to typed events on a topic.
A topic is a slash-separated string that defines a topic.

For example:

org / osgi / service / foo / FooEvent / ACTION

OSGi Compendium Release 8.1 Page 21

org.osgi.service.typedevent Typed Event Service Specification Version 1.1

Concurrency
157.9.2.1
157.9.2.2
157.9.2.3
name
actions
m]
157.9.2.4
obj
m]
Returns
157.9.2.5
]
Returns
157.9.2.6
m]
Returns
157.9.2.7
p

Topics may also be given a default name based on the event type that is published to the topic.
These use the fully qualified class name of the event object as the name of the topic.

For example:
com. acme. foo.event.EventData

TopicPermission has two actions: publish and subscribe.

Thread-safe

public static final String PUBLISH = "publish"
The action string publish.

public static final String SUBSCRIBE = "subscribe"

The action string subscribe.

public TopicPermission(String name, String actions)
Topic name.
publish,subscribe (canonical order).

Defines the authority to publish and/or subscribe to a topic within the Typed Event service specifi-
cation.

The name is specified as a slash-separated string. Wildcards may be used. For example:

orgl/osgi/service/fooFooEvent/ACTION
com/isv/x*
*

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

public boolean equals(Object obj)
The object to test for equality with this TopicPermission object.

Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

trueif objis a TopicPermission, and has the same topic name and actions as this TopicPermission ob-
ject; false otherwise.

public String getActions()
Returns the canonical string representation of the TopicPermission actions.
Always returns present TopicPermission actions in the following order: publish,subscribe.

Canonical string representation of the TopicPermission actions.

public int hashCode()
Returns the hash code value for this object.

A hash code value for this object.

public boolean implies(Permission p)

The target permission to interrogate.

Page 22

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1

org.osgi.service.typedevent

[m}

Returns

157.9.2.8
O

Returns

157.9-3

Concurrency

Provider Type

157.9.3.1
Type Parameters
<T>

eventType

[m]

Returns

Since

157.9.3.2
Type Parameters
<T>

topic

eventType

O

Returns

Since

157.9-33
topic
o
Returns

Since

Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

x/yl*, "publish" -> x/y/z,"publish" is true
*, "subscribe" -> x/y,"subscribe" is true
*, "publish" -> x/y, "subscribe" is false
x/y, "publish" -> x/y/z,"publish" is false

true if the specified TopicPermission action is implied by this object; false otherwise.

public PermissionCollection newPermissionCollection()
Returns a new PermissionCollection object suitable for storing TopicPermission objects.

A new PermissionCollection object.

public interface TypedEventBus

The Typed Event service. Bundles wishing to publish events must obtain this service and call one of
the event delivery methods.

Thread-safe

Consumers of this API must not implement this type

public TypedEventPublisher<T> createPublisher(Class<T> eventType)

<T>

The type of events to be sent by the TypedEventPublisher

The type of events to be sent by the TypedEventPublisher

Creates a TypedEventPublisher for the topic automatically generated from the passed in event type.

A TypedEventPublisher that will publish events to the topic name automatically generated from
eventType

1.1

public TypedEventPublisher<T> createPublisher(String topic, Class<T> eventType)
<T>

The type of events to be sent by the TypedEventPublisher

The topic to publish events to

The type of events to be sent by the TypedEventPublisher

Creates a TypedEventPublisher for the supplied topic and event type

A TypedEventPublisher that will publish events to the supplied topic

1.1

public TypedEventPublisher<Objects createPublisher(String topic)

The topic to publish events to

Creates a TypedEventPublisher for the supplied topic

A TypedEventPublisher that will publish events to the supplied topic
1.1

OSGi Compendium Release 8.1

Page 23

org.osgi.service.typedevent Typed Event Service Specification Version 1.1

157.9.3.4 public void deliver(Object event)
event The event to send to all listeners which subscribe to the topic of the event.

o Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

The topic for this event will be automatically set to the fully qualified type name for the supplied
event object.
Logically equivalent to calling deliver(event.getClass().getName().replace("), '/'), event)
Throws NullPointerException—if the event object is null
157.9.3.5 public void deliver(String topic, Object event)
topic The topic to which this event should be sent.
event The event to send to all listeners which subscribe to the topic.

o Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws NullPointerException—if the event object is null
IllegalArgumentException—if the topic name is not valid
157.9.3.6 public void deliverUntyped(String topic, Map<String, ?> event)
topic The topic to which this event should be sent.
event A Map representation of the event data to send to all listeners which subscribe to the topic.

o Initiate asynchronous, ordered delivery of event data. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws NullPointerException—if the event map is null

IllegalArgumentException—if the topic name is not valid

157.9.4 public final class TypedEventConstants
Defines standard names for Typed Event properties.

Provider Type Consumers of this API must not implement this type

157.9.4.1 public static final String TYPED_EVENT_FILTER = "event filter"
The name of the service property used to indicate a filter that should be applied to events from the
TYPED EVENT TOPICS. Only events which match the filter will be delivered to the Event Handler
service.
If this service property is not present then all events from the topic(s) will be delivered to the Event
Handler service.

157.9.4.2 public static final String TYPED_EVENT_HISTORY = “event.history"
The name of the service property used to indicate that an event handler would like to receive one or
more historical events matching its TYPED EVENT TOPICS and TYPED EVENT FILTER before re-
ceiving any new data. The value of this property is an Integer greater than or equal to zero.
If this property is set then when the event hander is discovered by the whiteboard the event handler
will deliver, in order, up to the requested number of historical events. This will occur before the de-
livery of any new events. If no history is available then zero events will be delivered. If insufficient
history is available then fewer events than requested will be delivered.

Page 24 OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 org.osgi.service.typedevent

157.9-4.3
157.9-4-4
157.9-4.5
157.9.4.6
157.9-5
<T>
Concurrency
157.9.5.1
topic
event
m]
157.9.6
<T>

public static final String TYPED_EVENT_IMPLEMENTATION = “osgi.typedevent"

The name of the implementation capability for the Typed Event specification

public static final String TYPED_EVENT_SPECIFICATION_VERSION = "1.1"

The version of the implementation capability for the Typed Event specification

public static final String TYPED_EVENT_TOPICS = "event.topics"

The name of the service property used to indicate the topic(s) to which an a TypedEventHandler,
UntypedEventHandler or UnhandledEventHandler service is listening.

If this service property is not present then the reified type parameter from the TypedEventHandler
implementation class will be used to determine the topic.
public static final String TYPED_EVENT_TYPE = "event.type"

The name of the service property used to indicate the type of the event objects received by a TypedE-
ventHandler service.

If this service property is not present then the reified type parameter from the TypedEventHandler
implementation class will be used.

public interface TypedEventHandler<T>
The type of the event to be received
Listener for Typed Events.

TypedEventHandler objects are registered with the Framework service registry and are notified with
an event object when an event is sent.

TypedEventHandler objects are expected to reify the type parameter T with the type of object
they wish to receive when implementing this interface. This type can be overridden using the
TypedEventConstants.TYPED EVENT TOPICS service property.

TypedEventHandler objects may be registered with a service property
TypedEventConstants. TYPED EVENT TOPICS whose value is the list of topics in which the event
handleris interested.

For example:

String[] topics = new String[] {
“com/isv/x"

s

Hashtable ht = new Hashtable();

ht.put(EventConstants. TYPE_SAFE_EVENT TOPICS, topics);
context.registerService (TypedEventHandler.class, this, ht);

Thread-safe

public void notify(String topic, T event)
The topic to which the event was sent
The event that occurred.

Called by the TypedEventBus service to notify the listener of an event.

public interface TypedEventPublisher<Ts
extends AutoCloseable

The type of events that may be sent using this publisher

OSGi Compendium Release 8.1 Page 25

org.osgi.service.typedevent Typed Event Service Specification Version 1.1

Since
Concurrency

Provider Type

157.9.6.1

157.9.6.2

event

Throws

157.9.6.3

event

Throws

157.9.6.4

Returns

157.9.6.5
m]

Returns

157.9-7

Concurrency

A Typed Event publisher for a single topic. Bundles wishing to publish events may obtain this object
from the TypedEventBus.

All events published by this publisher are sent to the same topic, as returned by getTopic().

This object should not be shared as it will not re-validate the caller's permission to send to the target
topic.

1.1
Thread-safe

Consumers of this API must not implement this type

public void close()

Closes this TypedEventPublisher so that no further events can be sent. After closure all delivery
methods throw IllegalStateException.

Calling close() on a closed TypedEventPublisher has no effect.

public void deliver(T event)
The event to send to all listeners which subscribe to the topic of the event.

Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

NullPointerException—if the event object is null

IllegalStateException—if the TypedEventPublisher has been closed

public void deliverUntyped(Map<String, ?> event)
A Map representation of the event data to send to all listeners which subscribe to the topic.

Initiate asynchronous, ordered delivery of event data. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

NullPointerException—if the event map is null

IllegalStateException—if the TypedEventPublisher has been closed

public String getTopic()

Get the topic for this TypedEventPublisher. This topic is set when the TypedEventPublisher is creat-
ed and cannot be changed.

The topic for this TypedEventPublisher

public boolean isOpen()
This method allows the caller to check whether the TypedEventPublisher has been closed.

false if the TypedEventPublisher has been closed, true otherwise.

public interface UnhandledEventHandler
Listener for Unhandled Events.

UnhandledEventHandler objects are registered with the Framework service registry and are notified
with an event object when an event is sent, but no other handler is found to receive the event

Thread-safe

Page 26

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 org.osgi.service.typedevent.annotations

157.9.7.1
topic
event
o
157.9.8
Concurrency
157.9.8.1
topic
event
m]
157.10
157.10.1
157.10.2
Since

public void notifyUnhandled(String topic, Map<String, Objects event)
The topic to which the event was sent
The event that occurred.

Called by the TypedEventBus service to notify the listener of an unhandled event.

public interface UntypedEventHandler
Listener for Untyped Events.

UntypedEventHandler objects are registered with the Framework service registry and are notified
with an event object when an event is sent.

UntypedEventHandler objects must be registered with a service property
TypedEventConstants.TYPED EVENT TOPICS whose value is the list of topics in which the event
handler is interested.

For example:

String[] topics = new String[] {
"com/isv/x"

s

Hashtable ht = new Hashtable();

ht.put (EventConstants. TYPE_SAFE_EVENT TOPICS, topics);
context.registerService (UntypedEventHandler.class, this, ht);

Thread-safe

public void notifyUntyped(String topic, Map<String, Objects event)
The topic to which the event was sent
The event that occurred.

Called by the TypedEventBus service to notify the listener of an event.
org.osgi.service.typedevent.annotations

Typed Event Annotations Package Version 1.0.
This package contains annotations that can be used to require the Typed Event implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

Summary

RequireTypedEvent - This annotation can be used to require the Typed Event implementation.

(@RequireTypedEvent

This annotation can be used to require the Typed Event implementation. It can be used directly, or
as a meta-annotation.

This annotation is applied to several of the Typed Event component property type annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Typed Event specification.

1.0

OSGi Compendium Release 8.1 Page 27

org.osgi.service.typedevent.monitor Typed Event Service Specification Version 1.1

Retention

Target

157.11

157.11.1

157.11.2

Provider Type

157.11.2.1

157.11.2.2

157.11.2.3

157.11.2.4

157.11.3

Concurrency

Provider Type

157.11.3.1
topicFilter
minRequired

maxRequired

CLASS
TYPE, PACKAGE

org.osgi.service.typedevent.monitor

Typed Event Monitoring Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.typedevent.monitor; version="[1.0,2.0)"
Example import for providers implementing the APIin this package:

Import-Package: org.osgi.service.typedevent.monitor; version="[1.0,1.1)

Summary

MonitorEvent - A monitoring event.

TypedEventMonitor - The EventMonitor service can be used to monitor the events that are sent
using the EventBus, and that are received from remote EventBus instances

public class MonitorEvent

A monitoring event.

Consumers of this API must not implement this type

public Map<String, Object> eventData
The Data from the Event in Map form

public Instant publicationTime

The time at which the event was published

public String topic
The Event Topic

public MonitorEvent()

public interface TypedEventMonitor

The EventMonitor service can be used to monitor the events that are sent using the EventBus, and
that are received from remote EventBus instances

Thread-safe

Consumers of this API must not implement this type

public int configureHistoryStorage(String topicFilter, int minRequired, int maxRequired)
the topic filter
the minimum number of historical events to keep available for this filter

the maximum number of historical events to keep available for this filter

Page 28

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 org.osgi.service.typedevent.monitor

[m}

Returns

Throws

Since

157.11.3.2

Returns

Since

157.11.3.3
topicFilter

]

Returns

Throws

Configure history storage for a given topic filter.

Minimum storage settings may only be set for exact matches. It is an error to use a filter containing
wildcards with a non-zero minimum history requirement.

If a minimum storage requirement is set then the Typed Events implementation must guarantee
sufficient storage space to hold those events. If, after accounting for all other pre-existing miniu-
mum storage requirements, there is insufficent storage left for this new configuration then an Ille-
galStateException must be thrown.

An intindicating the number of events that can be kept for this topic given the current configura-
tion. This will always be at least minRequired and at most maxRequired.

NullPointerException—if the topic filter is null

IllegalArgumentException—if:

- The topic filter contains invalid syntax
minRequired or maxRequired are less than o.

The topic filter contains wildcard(s) and minRequired is not o.
minRequiredis greater than maxRequired

IllegalStateException—if there is insufficient available space to provide the additional minRequired
stored events.

11

public Map<String, Map.Entry<Integer, Integers> getConfiguredHistoryStorage()
Get the configured history storage for the Typed Events implementation.

The returned Map uses topic filter strings as keys. These filter strings may contain wildcards. If mul-
tiple filter strings are able to match then the most specific match applies with the following order-
ing:

1. Anexact topic match
2. An exact match of the parent topic and a single level wildcard as the final token
3. Anexact match of the parent topic and multi-level wildcard as the final token

This ordering is applied recursively starting with the first topic token until only one candidate re-
mains. The keys in the returned map are ordered such that the first encountered key which matches
a given topic name is the configuration that will apply to that topic name.

The value associated with each key is an Entry where the key is the minimum required number of
stored events for the topic and the value is the maximum number of events that will be stored.

The configured history storage

11

public Map.Entry<Integer, Integers getConfiguredHistoryStorage(String topicFilter)
the topic filter

Get the configured history storage for a given topic filter. This method looks for an exact match in
the history configuration. If no configuration is found for the supplied topic filter then nullis re-
turned.

An Entry where the key is the minimum required number of stored events for the topic and the val-
ue is the maximum number of events that will be stored. If no configuration is set for the topic filter
then null will be returned.

NullPointerException—if the topic filter is null

IllegalArgumentException—if the topic filter contains invalid syntax

OSGi Compendium Release 8.1 Page 29

org.osgi.service.typedevent.monitor

Typed Event Service Specification Version 1.1

Since

157.11.3.4
topicName

]

Returns

Throws

Since

157.11.3.5

Returns

Since

157.11.3.6

Returns

157.11.3.7
history

Returns

157.11.3.8
history

historyOnly
O
Returns
Since
157.11.3.9
history

Returns

11

public Map.Entry<Integer, Integers getEffectiveHistoryStorage(String topicName)
the topic name

Get the history storage rule that applies to a given topic name. This method takes into account the
necessary precedence rules to find the correct configuration for the named method, and so will nev-
er return null.

An Entry where the key is the minimum required number of stored events for the topic and the val-
ue is the maximum number of events that will be stored. If no configuration is set for the topic filter
then an entry with key and value set to zero will be returned.

NullPointerException—if the topic name is null
IllegalArgumentException—if the topic name contains invalid syntax or wildcards

1.1

public long getMaximumEventStorage()

Get an estimate of the maximum number of historic events that can be stored by the TypedEvent
implementation. If there is no fixed limit then -1 is returned. If no history storage is supported then
zero is returned.

The maximum number of historic events that can be stored.

1.1

public PushStream<MonitorEvent> monitorEvents()
Get a stream of events, starting now.

A stream of event data

public PushStream<MonitorEvent> monitorEvents(int history)

The requested number of historical events, note that fewer than this number of events may be re-
turned if history is unavailable, or if insufficient events have been sent.

Get a stream of events, including up to the requested number of historical data events.
Logically equivalent to monitorEvents(history, false).

A stream of event data

public PushStream<MonitorEvent> monitorEvents(int history, boolean historyOnly)

The requested number of historical events, note that fewer than this number of events may be re-
turned if history is unavailable, or if insufficient events have been sent.

Iftrue then the returned stream will be closed as soon as the available history has been delivered
Get a stream of events, including up to the requested number of historical data events.
A stream of event data

11

public PushStream<MonitorEvent> monitorEvents(Instant history)

The requested time after which historical events, should be included. Note that events may have
been discarded, or history unavailable.

Get a stream of events, including historical data events prior to the supplied time.
Logically equivalent to monitorEvents(history, false).

A stream of event data

Page 30

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1

org.osgi.service.typedevent.propertytypes

157.11.3.10

history

historyOnly
m]
Returns

Since

157.11.3.11
topicFilter
[m]

Throws

Since

157.11.3.12
topicFilter

[m]

Returns

Throws

Since

157.11.3.13
topicName
topicFilter

[m]

Returns

Throws

Since

157.12

public PushStream<MonitorEvent> monitorEvents(Instant history, boolean historyOnly)

The requested time after which historical events, should be included. Note that events may have
been discarded, or history unavailable.

If true then the returned stream will be closed as soon as the available history has been delivered
Get a stream of events, including historical data events prior to the supplied time.
A stream of event data

1.1

public void removeHistoryStorage(String topicFilter)

the topic filter

Delete history storage configuration for a given topic filter.
NullPointerException—if the topic filter isnull
IllegalArgumentException—if the topic filter contains invalid syntax

11

public Predicate<String> topicFilterMatches(String topicFilter)

The topic filter to match against

Get a Predicate which will match the supplied topic filter against a topic name.

A predicate that will return true if the topic name being tested matches the supplied topic filter.
NullPointerException—if the topic filter is null

IllegalArgumentException—if the topic filter contains invalid syntax

1.1

public boolean topicFilterMatches(String topicName, String topicFilter)

The topic name to match against

The topic filter to match against

Test the supplied topic filter against the supplied topic name.

A predicate that will return true if the topic name being tested matches the supplied topic filter.
NullPointerException—if the topic filter is null

IllegalArgumentException— if the topic filter or topic name contain invalid syntax

org.osgi.service.typedevent.propertytypes

Typed Event Component Property Types Package Version 1.0.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi.service.typedevent.propertytypes; version="[1.0,2.0)"

OSGi Compendium Release 8.1

Page 31

org.osgi.service.typedevent.propertytypes Typed Event Service Specification Version 1.1

157.12.1

157.12.2

See Also
Retention

Target

157.12.2.1

Returns

See Also

157.12.3

See Also
Retention

Target

157.12.3.1

Returns

See Also

157.12.4

Summary

EventFilter - Component Property Type for the TypedEventConstants.TYPED EVENT FILTER
service property of an Event Handler service.

EventTopics - Component Property Type for the TypedEventConstants. TYPED. EVENT TOPICS
service property of a TypedEventHandler, UntypedEventHandler or UnhandledEventHandler ser-
vice.

EventType - Component Property Type for the TypedEventConstants. TYPED EVENT TYPE ser-
vice property of an TypedEventHandler service.

(@EventFilter

Component Property Type for the TypedEventConstants.TYPED EVENT FILTER service property
of an Event Handler service.

This annotation can be used on an TypedEventHandler, UntypedEventHandler or UnhandledEven-
tHandler component to declare the value of the TypedEventConstants TYPED EVENT FILTER ser-
vice property.

Component Property Types
CLASS
TYPE

String value

Service property specifying the event filter for a TypedEventHandler or UntypedEventHandler ser-
vice.

The event filter.
TypedEventConstants.TYPED EVENT FILTER

(@EventTopics

Component Property Type for the TypedEventConstants.TYPED EVENT TOPICS service property
of a TypedEventHandler, UntypedEventHandler or UnhandledEventHandler service.

This annotation can be used on a component to declare the values of the
TypedEventConstants.TYPED EVENT TOPICS service property.

Component Property Types
CLASS
TYPE

String[] value

Service property specifying the Event topics of interest to an TypedEventHandler, UntypedEven-
tHandler or UnhandledEventHandler service.

The event topics.

TypedEventConstants.TYPED EVENT TOPICS

(@EventType

Component Property Type for the TypedEventConstants.TYPED EVENT TYPE service property of
an TypedEventHandler service.

This annotation can be used on an TypedEventHandler component to declare the value of the
TypedEventConstants. TYPED EVENT TYPE service property.

Page 32

OSGi Compendium Release 8.1

Typed Event Service Specification Version 1.1 References

See Also
Retention

Target

157.12.4.1
m]
Returns

See Also

157.13

(1]

157.14

Component Property Types
CLASS
TYPE

Class<?> value
Service property specifying the EventType for a TypedEventHandler service.
The event filter.

TypedEventConstants.TYPED EVENT TYPE

References

Java Records
https://openjdk.org/jeps/395

Changes

The update to version 1.1 includes numerous new features and usability enhancements:

Event objects may now be [1] Java Records

Event Handler services may now use Single-Level Wildcards on page 13 when registering to re-
ceive event data.

The TYPED_EVENT_HISTORY service property can be used to request that historical events are
delivered to newly registered event handler services.

Unhandled event handler services may now use TYPED_EVENT_TOPICS and
TYPED_EVENT_FILTER service properties to filter the events that they receive.

A TypedEventPublisher object can be created to optimise sending repeated events to the same
topic.

The TypedEventMonitor service can be requested to provide only historical events, terminating
the event stream once all historical data has been replayed.

Historical event storage can now be configured at runtime on a per-topic basis using the TypedE-
ventMonitor.

OSGi Compendium Release 8.1 Page 33

https://openjdk.org/jeps/395

Typed Event Service Specification Version 1.1

Changes

OSGi Compendium Release 8.1

Page 34

Page 35

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

Page 36

	OSGi Compendium
	Table of Contents
	Chapter 157. Typed Event Service Specification
	157.1. Introduction
	157.1.1. Essentials
	157.1.2. Entities

	157.2. Events
	157.2.1. Type Safe Events
	157.2.1.1. Nested Data Structures

	157.2.2. Untyped Events
	157.2.3. Non Standard Type Safe Events
	157.2.4. Event Mutability and Thread Safety
	157.2.4.1. Typed Event Mutability
	157.2.4.2. Untyped Event Mutability

	157.3. Publishing Events
	157.3.1. Event Topics
	157.3.2. Automatically Generated Topics
	157.3.3. Thread Safety
	157.3.4. Typed Event Publishers

	157.4. Receiving Events
	157.4.1. Receiving Typed Events
	157.4.2. Receiving Untyped Events
	157.4.3. Wildcard Topics
	157.4.3.1. Single-Level Wildcards
	157.4.3.2. The Multi-Level Wildcard

	157.4.4. Unhandled Events
	157.4.5. Filtering Events
	157.4.5.1. Nested Event Data
	157.4.5.2. Ignored Events

	157.4.6. Failing Event Handlers
	157.4.7. Event History
	157.4.8. Event Handler Service Properties
	157.4.9. Error Handling

	157.5. The Typed Event Bus Service
	157.5.1. Error Handling

	157.6. Monitoring Events
	157.6.1. Event History
	157.6.2. Configuring Event History
	157.6.2.1. Introspecting Event History Configuration
	157.6.2.2. Modifying Event History Configuration

	157.7. Capabilities
	157.7.1. osgi.implementation Capability
	157.7.2. osgi.service Capability

	157.8. Security
	157.8.1. Topic Permission
	157.8.2. Required Permissions
	157.8.3. Security Context During Event Callbacks

	157.9. org.osgi.service.typedevent
	157.9.1. Summary
	157.9.2. public final class TopicPermission extends Permission
	157.9.2.1. public static final String PUBLISH = "publish"
	157.9.2.2. public static final String SUBSCRIBE = "subscribe"
	157.9.2.3. public TopicPermission(String name, String actions)
	157.9.2.4. public boolean equals(Object obj)
	157.9.2.5. public String getActions()
	157.9.2.6. public int hashCode()
	157.9.2.7. public boolean implies(Permission p)
	157.9.2.8. public PermissionCollection newPermissionCollection()

	157.9.3. public interface TypedEventBus
	157.9.3.1. public TypedEventPublisher<T> createPublisher(Class<T> eventType)
	157.9.3.2. public TypedEventPublisher<T> createPublisher(String topic, Class<T> eventType)
	157.9.3.3. public TypedEventPublisher<Object> createPublisher(String topic)
	157.9.3.4. public void deliver(Object event)
	157.9.3.5. public void deliver(String topic, Object event)
	157.9.3.6. public void deliverUntyped(String topic, Map<String, ?> event)

	157.9.4. public final class TypedEventConstants
	157.9.4.1. public static final String TYPED_EVENT_FILTER = "event.filter"
	157.9.4.2. public static final String TYPED_EVENT_HISTORY = "event.history"
	157.9.4.3. public static final String TYPED_EVENT_IMPLEMENTATION = "osgi.typedevent"
	157.9.4.4. public static final String TYPED_EVENT_SPECIFICATION_VERSION = "1.1"
	157.9.4.5. public static final String TYPED_EVENT_TOPICS = "event.topics"
	157.9.4.6. public static final String TYPED_EVENT_TYPE = "event.type"

	157.9.5. public interface TypedEventHandler<T>
	157.9.5.1. public void notify(String topic, T event)

	157.9.6. public interface TypedEventPublisher<T> extends AutoCloseable
	157.9.6.1. public void close()
	157.9.6.2. public void deliver(T event)
	157.9.6.3. public void deliverUntyped(Map<String, ?> event)
	157.9.6.4. public String getTopic()
	157.9.6.5. public boolean isOpen()

	157.9.7. public interface UnhandledEventHandler
	157.9.7.1. public void notifyUnhandled(String topic, Map<String, Object> event)

	157.9.8. public interface UntypedEventHandler
	157.9.8.1. public void notifyUntyped(String topic, Map<String, Object> event)

	157.10. org.osgi.service.typedevent.annotations
	157.10.1. Summary
	157.10.2. @RequireTypedEvent

	157.11. org.osgi.service.typedevent.monitor
	157.11.1. Summary
	157.11.2. public class MonitorEvent
	157.11.2.1. public Map<String, Object> eventData
	157.11.2.2. public Instant publicationTime
	157.11.2.3. public String topic
	157.11.2.4. public MonitorEvent()

	157.11.3. public interface TypedEventMonitor
	157.11.3.1. public int configureHistoryStorage(String topicFilter, int minRequired, int maxRequired)
	157.11.3.2. public Map<String, Map.Entry<Integer, Integer>> getConfiguredHistoryStorage()
	157.11.3.3. public Map.Entry<Integer, Integer> getConfiguredHistoryStorage(String topicFilter)
	157.11.3.4. public Map.Entry<Integer, Integer> getEffectiveHistoryStorage(String topicName)
	157.11.3.5. public long getMaximumEventStorage()
	157.11.3.6. public PushStream<MonitorEvent> monitorEvents()
	157.11.3.7. public PushStream<MonitorEvent> monitorEvents(int history)
	157.11.3.8. public PushStream<MonitorEvent> monitorEvents(int history, boolean historyOnly)
	157.11.3.9. public PushStream<MonitorEvent> monitorEvents(Instant history)
	157.11.3.10. public PushStream<MonitorEvent> monitorEvents(Instant history, boolean historyOnly)
	157.11.3.11. public void removeHistoryStorage(String topicFilter)
	157.11.3.12. public Predicate<String> topicFilterMatches(String topicFilter)
	157.11.3.13. public boolean topicFilterMatches(String topicName, String topicFilter)

	157.12. org.osgi.service.typedevent.propertytypes
	157.12.1. Summary
	157.12.2. @EventFilter
	157.12.2.1. String value

	157.12.3. @EventTopics
	157.12.3.1. String[] value

	157.12.4. @EventType
	157.12.4.1. Class<?> value

	157.13. References
	157.14. Changes

