
AspectJ 1.8.0 Release Review - 2Q2014

Planned Review Date: [Date]

Communication Channel: aspectj-
users@eclipse.org, aspectj-dev@eclipse.org

Andy Clement

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Introduction
 AspectJ is a seamless extension to Java that adds

the ability to capture cross-cutting concerns
 It adds a few new keywords and constructs (e.g.

pointcut, aspect) to the Java language and provides a
compiler that understands these extensions

 The compiler is a modified form of the JDT core compiler

 It also includes a weaver that can be used to apply
cross cutting concerns to code that has previously
been compiled to bytecode

 The weaver can be used as an offline post-compile step or
as a load-time weaver.

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 AspectJ major/minor version numbers have

traditionally tracked Java version numbers

 AspectJ 1.8.0 is the first Java 1.8 version of AspectJ

 AspectJ takes and modifies the JDT compiler. For 1.8.0
AspectJ has been rebased on the 'Java 8 patch' released
alongside Eclipse 4.3.2.

 Basic 1.8.0 readme:

http:www.eclipse.org/aspectj/doc/released/README-180.html

 Simply showing ability to use 1.8 constructs in AspectJ
code.

http://www.eclipse.org/aspectj/doc/released/README-180.html

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 Weaving into Java8 code

 Required updating to using the asm toolkit v5 as it
understands Java8 bytecode (actual version: v5.0.1)

 Required updating the bcel derivative used in AspectJ to
understand Java8 bytecode (e.g. TypeAnnotation
attributes)

 Fewer features in AspectJ 8 because resource was
spent helping Eclipse itself support Java8

 Type annotations, lambda serialization

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Features
 Weaver upgrade for Java 1.8

 On the back end the AspectJ weaver has been upgraded
to understand the new bytecode changes in Java 1.8

 It already understood bootstrap
methods/invokedynamic since AspectJ 1.7

New changes to support included type annotation
attributes in the classfiles

Only tolerating these features for now, not exploiting
them

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Non-Code Aspects
 The readmes for each release continue to provide the

most up to date documentation, some of the new
features discussed in these do need folding into the
main documentation.

 All the existing documentation (getting started,
reference material, etc) remains valid and relevant to
AspectJ 1.8.0

 Moved to git from cvs for 1.7.0 release

 Ditched some unwanted code/modules in the move

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

APIs
 Primary API exposed for integration into AJDT

 recent releases have increased the granularity in the API
to enable finer grained interactions between AJ/AJDT →
improving incremental compilation

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Architectural Issues
 On the front end AspectJ continues to be based on a

modified JDT core compiler, there is no real need for
additional extensibility in this area

 However, continuing to maintain a large 'patch' on JDT
core does slow down the ability to keep up with Eclipse
versions

 There were concerns as to whether the patching could be
done in the same way on ECJ for Java 8 because Java 8
is such a big change, but it appears to be OK

 Experimenting with different patching approaches to
reduce the amount of patch work (using diffs rather than
file-by-file compare)

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Tool Usability
 For the Eclipse UI, defer to the AJDT project
 As a pure compiler/weaver the project is currently

actively (and successfully) used through:

 Command line batch invocation

 Loadtime weaving (-javaagent)

 Maven AspectJ plugin

 Gradle (no central plugin but a number of users building
their own custom plugins pulling in AspectJ)

 The maven plugin does fall behind with supporting
new options as it isn't the AspectJ team maintaining it
– we may try to get more involved with it

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

End-of-Life
 AspectJ continues to maintain a high degree of

backwards compatibility. Programs compiled with
versions back to AspectJ 1.2 will work just fine with
the latest AspectJ release

 Nothing is being end-of-lifed/removed in 1.8.0

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Bugzilla

 Bugs/Enh opened since 1.7.0: 90
 Bugs/Enh resolved since 1.7.0: 73
 Total bugs/enh open against AJ: 412bugs 205enh

 No P1 Bugs open

 Bugzilla could still do with a pass to close a number
of the minor/niche problems that we just won't get to
in the foreseeable future

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Standards
 J2SE

 AspectJ now utilizes generics in its source code

Requires Java 1.5 (this is a divergence from JDT core
which only requires Java 1.4)

 Code generated by AspectJ can run on Java 1.1 and later

 AspectJ 1.8.0 can now cope with compiling Java 1.8
source code or weaving into previously compiled Java 1.8
class files

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

UI Usability
 Defer to AJDT project for Eclipse UI usability

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Schedule
 AspectJ 1.8 builds were made available very early (July 2013)

due to requirements from other projects (Spring Framework).
 The most recent AspectJ available included the Kepler SR2

Java8 patch and was released on the same day as Java8
 Basic upgrade to Java 1.8 was relatively easy as AspectJ

could build upon the work done in JDT core

 In recent user testing, some issues occurring that will need
to be fixed before 1.8.0 release, related to the impact of
type annotations on type bindings in Eclipse JDT

 AspectJ 1.8.1 likely at the same time as Luna

 Folding in Eclipse JDT Java8 fixes made in that timeframe

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Communities
 Mailing list continues to be the most active place for

AspectJ discussions – 99% of posts getting a
response within 24hours

 Bug triage time a little worse than the 'within 48hours'
it used to be

 Inclusion of AJDT in SpringSource Tool Suite drives
some traffic on the STS forums related to AspectJ

 Blog on AspectJ and other eclipsey stuff:
http://andrewclement.blogspot.ca/

 Could do with a recent article!

http://andrewclement.blogspot.ca/

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

IP Log
 Nothing unusual to report for 1.8.0

 Moved to asm version 5.0.1 (from orbit)

 Iplog hosted here:

 http://www.eclipse.org/projects/ip_log.php?projectid=tools.aspectj

http://www.eclipse.org/projects/ip_log.php?projectid=tools.aspectj

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

IP Issues
 The EMO explicitly asks during the Release Review if

any Member would like to assert that this release
infringes their IP rights.

 If so, the EMO and the project will follow the Eclipse
IP Policy in discussions with that Member.

Copyright © 2008 Eclipse Foundation, Inc., Made available under the Eclipse Public License v 1.0

Project Plan
 http://www.eclipse.org/projects/project-plan.php?projectid=tools.aspectj

 Work items on the horizon

 persistent build state to avoid full builds being required on
eclipse startup

 For the 'Spring insight' project

more memory optimization work

more loadtime weaving performance work
 Future plans may include

 adding new language constructs to support weaving of the
 invokedynamic instruction

 pointcuts that match and bind on type annotations

http://www.eclipse.org/projects/project-plan.php?projectid=tools.aspectj

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

