Coordination Messaging for Stellation and ClearCase

Introduction

Our goal is to create a simple coordination messaging facility for ClearCase and Stellation that allows programmers working on different branches to be notified when their work is potentially in collision with another programmers work, and to allow the two programmers involved to enter an instant-messaging chat if both are online, in order to resolve the impending conflict.

The basic idea of the implementation is to create a pair of related services: an instant messaging service and a task management service, that are entirely decoupled from the repository. 

The task management service keeps track of an abstract notion of active tasks. Each task has an abstract data object that describes it, and a collection of resources associated with it. Users can create tasks, add and remove resources from tasks, and complete tasks.

When a task is created, the creator provides a callback object which will be invoked when another task contains some of the same resources. 

The task service knows nothing about the underlying resources being locked; the repository needs to know nothing about the task service. They can operate in total isolation from one another, or the repository can implement an interface that allows the task service to inform it of lock actions. With this implementation strategy, the system will work equally well with ClearCase and Stellation.

The Basic Design

The basic design is simple. There are two main services to be provided: chat, and task management. Each of these is provided by a component implementing a manitoba messaging protocol. We assume that there is a login service, but do not specify the login mechanism in this document. It is assumed that users have unique IDs, and that they log in under their ID before connecting to the chat and lock services.

The chat service is trivial: the server keeps track of who is currently logged in; forwards chat messages; and answers queries about who is logged in. 

The lock service is more interesting. To keep it highly abstract, it does not truly map reservation onto repository resources: it maps reservations to resource identifiers.  It is assumed that most of the time, each resource identifier corresponds to exactly one repository resource, but that is not necessarily the case. (For example, if you wanted to provide fine-grained locks using ClearCase with file-based repository storage, you could have a resource identifier be a repository resource (the file) plus an additional bit of information about which fragment from the file. As long as all clients agree what the resource identifiers are, this will work.)

To allow repository providers to ensure consistency between the task manager notion of what is reserved, and the repository notion of what is locked, the task manager will allow providers to implement an interface that allows them to interface with the task manager.

The Implementation

The implementation will be based on Eclipse and the Stellation Manitoba communication engine. There are two mostly independent parts: the chat service, and the lock service. The main connection between them is that they share login and ID services.

Protocols

The Task protocol

The lock protocol consists of the message sequences used to manage tasks. Messages are used by the client to create and modify tasks, and by the server to notify clients of inter-task conflicts.

Several messages pass resource specifications. Resource specifications conform to the following syntax:

<!ELEMENT ResourceSpecification (Resource+)>

<!ELEMENT Resource (EMPTY)>
<!ATTLIST Resource

id CDATA #REQUIRED>

Task Creation

Tasks are created by sending a '”task.create.request”message to the server. The server will respond with a unique task identifier in a “resource.task.create.response.success”, or with an error in a “resource.task.create.response.error” message.

The message formats for lock acquisition are as follows:

Message type: task.create.request
Note: the body of the create task request is an unspecified XML element containing application specific data describing the task.

<!ELEMENT CreateTaskRequest (ANY)>
<!ATTLIST CreateTaskRequest

userid CDATA #REQUIRED

requestid CDATA #REQUIRED

description CDATA #IMPLIED>

Message type: task.create.response.success

<!ELEMENT TaskCreated (EMPTY)>
<!ATTLIST TaskCreated

userid CDATA #REQUIRED

requestid CDATA #REQUIRED

taskid CDATA #REQUIRED>

Message type: task.create.response.error
Note: The body is an application specific XML element containing a description of the error.

<!ELEMENT TaskCreationError (ANY)>
<!ATTLIST TaskCreationError

userid CDATA #REQUIRED

requestid CDATA #REQUIRED>

<!ELEMENT ResourceNotFound (EMPTY)>
<!ATTLIST ResourceNotFound

resourceid CDATA #REQUIRED>

Task Modification

Once a task is created, the client can add and remove resource reservations from the task, using task.modify.add.request and task.modify.remove.request. The server will respond with “task.modify.add.response.success”. Or “task.modify.remove.response.error”.

Message type: task.modify.add.request
<!ELEMENT TaskAddRequest (ResourceSpecification)>
<!ATTLIST TaskAddRequest

userid CDATA #REQUIRED

requestid CDATA #REQUIRED>

Message type: task.modify.remove.request
<!ELEMENT TaskRemoveRequest (ResourceSpecification)>
<!ATTLIST TaskRemoveRequest

userid CDATA #REQUIRED

requestid CDATA #REQUIRED>

Message type: task.modify.(add|remove).response.success

<!ELEMENT TaskModifySuccess (EMPTY)>
<!ATTLIST TaskModifySuccess

requestid CDATA #REQUIRED>

Message type: task.modify.(add|remove).response.error

<!ELEMENT TaskModifyFailure (ANY)>
<!ATTLIST TaskModifyFailure

requestid CDATA #REQUIRED>

There are several failure types that are common:

<!ELEMENT TaskNotFound (EMPTY)>
<!ATTLIST TaskNotFound

taskid CDATA #REQUIRED>

<!ELEMENT ResourceNotFound (ResourceSpecification)>

<!ELEMENT PrivilegeViolation (ANY)>
<!ATTLIST PrivilegeViolation

description CDATA #REQUIRED>


Task Completion

When a task is complete, the client sends a task.complete.request, and the server responds with a task.complete.response. The body of the task completion response specifies whether or not there was an error.

Message type: task.complete.request
<!ELEMENT TaskCompletionRequest (ANY)>
<!ATTLIST TaskCompletionRequest

requestid CDATA #REQUIRED

userid CDATA #REQUIRED

taskid CDATA #REQUIRED>

Message type: task.complete.response
Note: the body of the task completion response is empty on success, and contains an arbritrary application specific error element on failure. All clients are expected to accept at least task not found and permission violation errors.

<!ELEMENT TaskCompletionResponse (ANY)>
<!ATTLIST TaskCompletionResponse

requestid CDATA #REQUIRED

taskid CDATA #REQUIRED

successful (true | false) #REQUIRED>


Task Related Queries

Task related queries allow clients to check if a particular resource is reserved by any other tasks, or to retrieve information about a particular task.

There are two query types: task.query.resource, and task.query.taskinfo. The responses are task.query.response.resource, task.query.response.taskinfo, and task.query.response.error.

Message type: task.query.resource
<!ELEMENT ResourceReservedQuery (EMPTY)>
<!ATTLIST ResourceReservedQuery

requestid CDATA #REQUIRED

userid CDATA #REQUIRED

resourceid CDATA #REQUIRED>

Message type: task.query.response.taskinfo
<!ELEMENT TaskInfoQuery (EMPTY)>
<!ATTLIST TaskInfoQuery

requestid CDATA #REQUIRED

userid CDATA #REQUIRED

taskid CDATA #REQUIRED>

Message type: task.query.response.resource
<!ELEMENT ResourceReservedResponse (TaskSpec+)>
<!ATTLIST ResourceReservedResponse

requestid CDATA #REQUIRED>

<!ELEMENT TaskSpec (ANY)>
<!ATTLIST TaskSpec

taskid CDATA #REQUIRED

ownerid CDATA #REQUIRED

description CDATA #REQUIRED>

Message type: task.query.response.taskinfo
Note: the TaskInfo will always contain a resource specification describing the set of resources reserved by the task.

<!ELEMENT TaskInfoResponse (TaskInfo)>
<!ATTLIST TaskInfoResponse

requestid CDATA #REQUIRED>

<!ELEMENT TaskInfo (ANY)>
<!ATTLIST TaskInfo

ownerid DATA #REQUIRED

taskid CDATA #REQUIRED

description CDATA #REQUIRED>

Task Conflict Notification

When a task creates a conflict with another task, both task owners are notified of the conflict. We consider there to be two kinds of conflicts, which differ only in viewpoint. An incoming conflict is one where the viewpoint task has a reservation for a resource, and some other task has also placed a reservation for that resource. An outgoing conflict is one where the viewpoint task has just placed a reservation for a resource which was already reserved by some other task. 

Note1: a task conflict is not an error; it is simply a condition that both participants should be aware of.

Note2: multiple tasks may have reservations for the same resource; a new reservation may create multiple distinct conflicts. Each conflict will generate conflict messages.

Note3: the client creating the outgoing conflict will receive one conflict notification cantaining multiple conflict records. Each task receiving an incoming conflict will generate a message with one conflict record.

The conflict notification system in the server will send a resource.conflict.notification message to notify clients of the conflict.

Message type: <taskid>.resource.conflict.notification
<!ELEMENT IncomingTaskConflict (TaskConflict+)>

<!ELEMENT TaskConflict (ResourceSpecification)>
<!ATTLIST TaskConflict

conflictid CDATA #REQUIRED

incomingtaskid CDATA #REQUIRED

outgoingtaskid CDATA #REQUIRED>



Instant Messaging

The instant messaging service gives user a simple, fast method for chatting. At the moment, it is designed to support chats between two users; we will likely eventually extend it to support multiple users.

The IM system supports queries to ask who is online; dialog requests, and messages that are part of an active dialog. The basic pattern for a chat is:

· Chat inititiator client (ic) sends a chat request to the server.

· Server forwards the chat request to the appropriate reciever client (rc).

· RC responds server with either a ChatAccept or a ChatReject.

· If chat accepted, server sends a ChatInitiated message to both ic and rc.

· Ic and rc send ChatMessage messages to server, and server forwards the message.

· When the chat is complete, ic or rc sends a ChatTerminate message to the server. 

· Server sends a ChatTerminated message to both clients.

· If ic or rc disconnects, it is treated as if the disconnector sent a ChatTerminate.

· If chat declined, server sends a ChatReject to ic.

Before a chat can be initiated, the user will usually query to find out if a desired user is online. It does this by sending a ChatQueryUserOnline, and the server responds with a CharResponseUserOnline message indicating whether the desired user is online.

A user can also query for a list of all online users by sending a ChatQueryUsersOnline message, which the server responds to with a ChatResponseUsersOnline.

Chat Query Messages

Message type: chat.query.useronline
<!ELEMENT ChatQueryUserOnline (EMPTY)>
<!ATTLIST ChatQueryUserOnlineP

requestid CDATA #REQUIRED

userid CDATA #REQUIRED>

Message type: chat.response.useronline
<!ELEMENT ChatResponseUserOnline (EMPTY)>
<!ATTLIST ChatResponseUserOnline

requestid CDATA #REQUIRED

online (TRUE|FALSE) #REQUIRED>
Message type: chat.query.usersonline
<!ELEMENT ChatQueryUsersOnline (EMPTY)>
<!ATTLIST ChatRequestUsersOnline

requestid CDATA #REQUIRED>

Message type: chat.response.usersonline
<!ELEMENT ChatResponseUsersOnline (ChatUser*)>
<!ATTLIST ChatResponseUsersOnline

requestid CDATA #REQUIRED>

<!ELEMENT ChatUser (EMPTY)>
<!ATTLIST ChatUser

userid CDATA #REQUIRED>

Chat Messages

Message type: chat.client.request
Note: the body of the chat request can be a single application-specific element. If the element type is not recognized by the client, it will be ignored.

<!ELEMENT ChatRequest (ANY)>
<!ATTLIST ChatRequest

requestid CDATA #REQUIRED

fromuserid CDATA #REQUIRED

touserid CDATA #REQUIRED>

Message type: chat.server.request
Body is same as client chat request.


Message type: chat.client.response
<!ELEMENT ChatResponse (ANY)>
<!ATTLIST ChatResponse

requestid CDATA #REQUIRED

responderid CDATA #REQUIRED

accepted (YES|NO) #REQUIRED>

Message type: chat.server.initiate
<!ELEMENT ChatInitiate (EMPTY)>
<!ATTLIST ChatInitiate

requestid CDATA #REQUIRED

chatid CDATA #REQUIRED>

Message type: chat.server.denied
<!ELEMENT ChatDenied (ANY)>
<!ATTLIST ChatDenied

requestid CDATA #REQUIRED>

Message type:  chatid.chat.client.message

Note: the message type includes the chatid in its prefix. This allows the comm ungine to ensure that the messages only get sent to the relevant participants.

<!ELEMENT ChatMessage (#PCDATA)>
<!ATTLIST ChatMessage 

senderid CDATA #REQUIRED

chatid CDATA #REQUIRED>

Message type: chat.client.terminate
<!ELEMENT ChatTerminate (ANY)>
<!ATTLIST ChatTerminate

terminator CDATA #REQUIRED

chatid CDATA #REQUIRED>

