
Dependency Management for the Eclipse
Ecosystem: An Update

Daniel Le Berre1? Pascal Rapicault2

1 Univ Lille Nord de France, F-59000 Lille, France
UArtois, CRIL, F-62307 Lens, France

CNRS, UMR 8188, F-62307 Lens, France
leberre@cril.univ-artois.fr

2 Sonatype
Mountain View, CA 94040
rapicault@sonatype.com

Abstract. One of the strength of Eclipse, the well-known open platform
for software development, is its extensibility made possible by the built-in
pluggability mechanisms. However, those pluggability mechanisms only
reveal their full potential when extensions created by others are made
easy to distribute and obtain. The purpose of Eclipse p2 project is to
build a platform addressing the challenges of distribution and obtention
of Eclipse and its extensions, which poses the same dependency man-
agement issues as for component based systems. This paper focuses on
the dependency management aspect of p2. It describes a boolean opti-
mization encoding of the dependency management problem of Eclipse. In
particular, it focusses on the changes made since the initial adoption of
such approach in Eclipse two years ago. We conclude by lessons learned
while using propositional logic to model a real world problem.

1 Introduction

Eclipse3 is a very popular open platform mainly written in Java and designed
from the ground up as an integration platform for software development tools
but also for rich client applications [16]. As the Eclipse ecosystem becomes more
and more important, the Eclipse platform itself and the vertical platforms built
on Eclipse all rely on the concept of extensibility, and as such the necessity
for a mechanism to acquire those extensions is primordial. To that end, almost
since its inception, Eclipse featured an extension acquisition mechanism named
Update Manager. However, over time, as inter plug-in dependencies became more
complex and expressed at a finer grain, and more versions of each component
were made available, limitations were being discovered in Update Manager which

? Part of this work was supported by Ministry of Higher Education and Research,
Nord-Pas de Calais Regional Council and FEDER through the’ Contrat de Projets
Etat Region (CPER) 2007-2013’. The work on explanations detailed in section 3.3
has been supported in part by Genuitec company.

3 http://www.eclipse.org/

were hindering the adoption and retention of Eclipse. The term “plug-in hell”
was coined. It is at that time that we started to work on Eclipse p2 with the
goal of building a “right-grained” provisioning platform attempting to address
the challenges that Update Manager had been faced with.

The first challenge was heterogeneity in the set of things being deployed, since
it had become clear over time that most OSGi- and Eclipse-based applications
needed to have a manageable way to interact with their environment (e.g JRE,
Windows registry keys, etc.).

The second challenge was the need to address in one platform the diversity
of provisioning scenarios and offer a solution that would work against controlled
repositories -similar to the case of linux packages managed by a specific Linux
distribution- or uncontrolled repositories, would allow for fully automated solu-
tions or user-driven ones, or would sport the delivery of extensions as well as
complete products.

The final and most important challenge was to solve the “plug-in hell”, i.e.,
the difficulty for the end user to install a plug-in and its requirements. That
problem was partially rooted in the non modular way of acquiring components
used in the Update Manager: it forced extensions to be installed by a special
abstraction one level above the actual extension itself. The term “right-grained”
provisioning is a response to this problem and indicates that p2 is not an ob-
struction to the granularity of what a user would want to make available or
obtain.

In order to achieve this goal of “right-grained” provisioning, the efficiency,
reliability and scalability of the dependency resolver was key. Having learnt from
our experience of authoring the OSGi runtime resolver for Equinox, it was obvi-
ous that we would need to base our dependency analysis mechanism on proven
solver techniques. Coincidentally, later that year, the work of OPIUM[19] and
EDOS[14] backed up our intuition on the usability and maturity of a SAT-based
approach to address the problem. Our main contribution here compared to that
existing work is to deal with the more complex dependencies of Eclipse and to
have built a solution that is currently running on millions of computers. The de-
pendency problem for Eclipse is closer to the problem addressed by the follow-up
to EDOS project, the Mancoosi Project[1, 18], that is the problem of updating
complex open source environments. All the details concerning Eclipse metadata
and the original translation of Eclipse dependency problems into pseudo boolean
optimization problems can be found in [12]. The adaptation of that approach in
the context of Linux dependencies and the Mancoosi project is presented in [4].
In this paper we present the details of the new implementation that will ship
with Eclipse 3.6 in June 2010. Finally, we conclude with lessons learned while
using propositional logic to model a real world problem.

2 p2 metadata

The concept of metadata is at the core of most installers that deal with com-
posable systems (e.g RPM, Debian, etc.). One of the goals of this metadata,

and the point of focus of this paper, is to capture the dependencies that exist
between the components of the system. A resolver uses that metadata to find
missing dependencies or to validate the dependencies of the system before it is
modified. As described previously, p2 is intended to deal with more than just
the typical Eclipse constructs of OSGi bundles. As such, despite the presence
of dependency information in the OSGi bundles composing most of Eclipse ap-
plications, p2 abstracts dependencies from the elements being delivered in an
entity called an Installable Unit (also referred to as IU). We now introduce the
two most widely used kinds of installable units that p2 defines.

2.1 Anatomy of an installable unit

An installable unit, the simplest construct, has the following attributes:

An identifier A string naming the installable unit.

A version The version of the installable unit. The combination identifier and
version is treated like a unique ID. We will refer to versions of an installable
unit to mean a set of installable units sharing the same identifier but a
different version attribute.

A set of capabilities A capability is the way for the installable unit to expose
to the rest of the world what it has to offer. This is just a namespace, a name
and a version. Namespace and name are strings. The namespace is here to
prevent name collision and avoid having everyone adhere to name mangling
conventions.

A set of requirements A conjunction of requirements. A requirement is the
way for the IU to express its needs. Requirements are satisfied by capabilities.
A requirement is composed of a namespace, a name and a version range 4. In
addition to these usual concepts, a requirement can have a filter (under the
form of an LDAP filter [9]) which allows for its enablement or disablement
depending on the environment where the IU will be installed, and it can also
be marked optional meaning that failing to satisfy the requirement does not
prevent the IU from being installable. Finally there is a concept of greed
discussed later in this section.

An enablement filter An enablement filter indicates in which contexts an in-
stallable unit can be installed. Here again the filter will pass or fail depending
on the environment in which the IU will be installed.

A singleton flag This flag, when set to true, will prevent a system from con-
taining another version of the installable unit with the same identifier.

An update descriptor The identifier and a version range identifying prede-
cessors to this IU. Making this relationship explicit allows us to deal with
IUs being renamed or avoid undesirable update paths.

4 A version range is expressed by two version number separated by a comma, and
surrounded by an angle bracket, meaning value included, or a parenthesis, meaning
value excluded.

An example of an Installable unit representing the SWT bundle is given in Figure
1. The few things to notice are the usage of namespace to avoid clashes between
the Java packages and the IU identifier; the usage of singleton because no two
versions of this bundle can be installed in the same eclipse instance; the “typing”
of the IU as being a bundle (see namespace org.eclipse.equinox.p2.type

valued to bundle); and the identification of the IU by providing a capability in
the org.eclipse.equinox.p2.iu namespace.

id=org.eclipse.swt, version=3.5.0, singleton=true

Capabilities:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt, version=3.5.0}

{namespace=org.eclipse.equinox.p2.eclipse.type name=bundle version=1.0.0}

{namespace=java.package, name=org.eclipse.swt.graphics, version=1.0.0}

{namespace=java.package, name=org.eclipse.swt.layout, version=1.2.0}

Requirements:

{namespace=java.package, name=org.eclipse.swt.accessibility2,

range=[1.0.0,2.0.0), optional=true, filter=(&(os=linux))}

{namespace=java.package, name=org.mozilla.xpcom,

range=[1.0.0, 1.1.0), optional=true, greed=false}

Updates:

{namespace=org.eclipse.equinox.p2.iu, name=org.eclipse.swt,

range=[0.0.0, 3.5.0)}

Fig. 1. An IU representing the SWT bundle

Now, let’s come back to requirements and detail the semantics of greed and
optional. By default, a requirement is “strong”5 (optional is false, greed is true).
This means that the IU can only be installed if the requirement is met. If a
“strong” requirement is guarded by a filter that does not pass, the requirement
is ignored. When the optional flag is set to true, then a requirement becomes
“weak” and it does not have to be satisfied for the IU to be installed. However,
any IU potentially satisfying this requirement will be considered, and a best
effort will be made to satisfy the requirement.

When it comes to greed, this is a rather atypical concept that we have added
to control the addition of IUs as part of the potential IUs to install in order
to satisfy the user request. When the greed is true (default case, and the case
for strong requirements), the IUs satisfying the dependencies are added to the
pool of potential candidates. However, when the greed is set to false, such a
requirement relies on other dependencies from its own IU or others to bring in
what is necessary for its satisfaction. This is used in Figure 1 to capture the fact
that even though we have an optional dependency on org.mozilla.xpcom we
don’t want to try to satisfy it eagerly. As such, this optional and non greedy

5 Strong is weaker in our context than the notion of strong dependency introduced in
[3]

requirement is weaker than a typical optional dependency. Table 1 reviews the
four combinations of greed and optionality.

Greed Optional Semantics

true false this is a “strong” requirement.

true true this is a “weak” requirement.

false true this is a “weakest” requirement, where the match will not be
brought in.

false false this indicates a case where the requirement has to be satisfied
but the IU with this requirement wants this to be brought in by
another one.

Table 1. Greed and optional interaction.

2.2 Installable unit patch

The need for patches So far, the concept of IU is pretty much on par with
what most package managers are offering. However, what is interesting is the
different usage we have observed of this metadata and the implication it has
on the rest of the system. Indeed, most people building on top of Eclipse are
delivering “products” or “subsystems”, and, as such, they want to guarantee
that their customer is getting what has been tested. Failing to do this could
result in a non stable product, maintenance nightmare and unsatisfied customers.
However, in an ecosystem where products can be mixed and where repositories
can not be used as control points 6, guaranteeing a functional system is harder.
Consequently, to palliate these possible problems, product producers are using
installable units as a grouping mechanism (also referred to as group) serving
three goals:

1. Facilitate the reusability of a set of functionality by aggregating under one
group a set of installable units.

2. Capture a particular configuration of the system, and thus group under one
IU an extensible element and a default implementation.

3. Lock down the dependencies on installable units being used, which limits the
variability of what can be installable and thus guarantees reproducibility of
an installation independently of the content of the repository.

The counter part of the lock down which is used extensively throughout
Eclipse, is that it makes the delivery of service (e.g., the replacement of a par-
ticular IU by another one) complex for the following reasons:

1. Products are often made of groups, themselves recursively composed of other
groups, which can make for a rather vast ripple effect throughout the system
when a low level component needs to be serviced.

6 Controlled repository is the approach taken by a majority of linux distributions.

2. Not all groups deployed on the user’s machine are in the control of the
same organization. For example, someone can be running a composition of
Sonatype and Artois University products (both including the Eclipse Plat-
form group), but the Platform group is controlled by the Eclipse open source
community. Therefore when the Platform team needs to deliver a fix to a
user, it simply can not require all the referring groups to be updated.

3. Not all the dependencies on a particular IU are known ahead of time.

2.3 Overview of the solving process

Before detailing the overall solver, it is worth mentioning how p2 manages the
installed software. p2 has a concept of profile which keeps track of two key pieces
of information: the list of all the Installable Units installed, and the set of root
installable units. The root IUs are not a new kind of installable units, they are
installable units that are remembered as having been explicitly asked for in-
stallation. These roots are essential for installation, uninstallation and update,
since they are used as strict constraints that can’t be violated, thus for example
avoiding the uninstallation of an IU when installing another one.

p2 resolution process is logically organized in 5 phases:

Change request processing Given a change request capturing the desire to
install or uninstall an installable unit, a future root set representing the
application of this request over the initial root set is produced.

Slicing For each element in the future root set, the slicing produces a transitive
closure of all the IUs (referred to as slice) that could potentially be part
of the final solution of the resolution process by consulting all repositories
also passed in. This transitive closure is done with only taking into account
enough context7 to evaluate the various filters but without worrying if any
IU being added could be colliding with any others.

Projection/encoding The goal of the projection phase is to transform all the
installable units of the slice and their dependencies into a pseudo boolean
optimization problem (see section 3 for details).

PBO-solving The result of the projection is passed to the pseudo boolean
solver Sat4j[11] which is responsible for finding an assignment.

Solution extraction From the assignment returned by the solver, a solution is
extracted. In case of failure, the solver is invoked to produce an explanation
(see section 3.3).

3 Constraints encoding

In the following, we describe the encoding of the p2 installation problem into
propositional constraints, i.e., clauses or cardinality constraints. We also provide
some examples of problems generated with that encoding. In the following, IUv

x

7 The context can be seen as a map of key/value pair

will denote the installable unit x in version v. We will use the same notation
to represent the propositional variables. We will simply write IUx when no in-
formation is provided for the version. prov(IUx) denotes the set of capabilities
provided by the installable unit IUx and req(IUx) denotes the set of capabilities
required by the installable unit IUx. alt(cap) = {IUk|cap ∈ prov(IUk)} denotes
the set of IUs providing a given capability cap. Finally, optReq(IUx) denotes the
optional requirements of a given IUx, and versions(IUx) denotes the ordered set
of IUs sharing the same identifier as IUx but having different version attribute
(IUx ∈ versions(IUx)), from the latest to the oldest.

3.1 Basic encoding

Each requirement of the form “IUi requires capability capj” is represented by a
simple binary (Horn) clause

IUi → capj

So, for each IUi the requirements are expressed by a conjunction of binary clauses∧
capj∈req(IUi)

IUi → capj

The alternatives for a given capability is given by the clause

capj → IU
vj1
j1
∨ IU

vj2
j2
∨ ... ∨ IU

vjn
jn

where IUvx
x ∈ alt(capj).

Since we are only interested in the IUs to install, the above two constraints
can be aggregated into a conjunction of constraints:

f(IUi) =
∧

capj∈req(IUi),

(IUi →
∨

IUv
x∈alt(capj)

IUv
x) (1)

Note that there is the specific case of alt(capj) = ∅ which means that IUi

cannot be installed due to missing requirements. In that case, the unit clause
¬IUi is generated.

Some installation units cannot be installed together (e.g., because of the
singleton attribute set to true). This can be modeled either with a conjunction
of binary negative clauses ∧

versions(IUx)=<IU
v1
x ,...,IUvn

x >,1≤i<j≤n

(¬IUvi
x ∨ ¬IUvj

x)

or equivalently with a single cardinality constraint:

(
∑

IU
vj
x ∈versions(IUx)

IUvj
x) ≤ 1 (2)

We use the second option because our solver manages those constraints na-
tively and because it makes the explanation support easier to implement (see
3.3 for details).

Finally, the user wants to install the installable units identified by the roots.
This is modeled with unit clauses: ∧

UIj
i∈rootIUs

UIji (3)

Summing up, the constraints (1), (2) and (3) together form an instance of
a classical NP- complete SAT problem. This encoding is basically the encoding
presented in Edos[14] and Opium [19] and used more recently in OpenSuse 118.

3.2 Eclipse specific encoding

One of the specificity of p2 is the semantic of “weak” dependencies expressed
using the greed and optional attributes.

Encoding of optionality An IU IUi may have optional dependencies to IU
IUj meaning that IUj is not mandatory to use IUi, so IUi can be installed
successfully if IUj is not available. However, it is expected that p2 should favor
the installation of optional packages if possible, i.e., that all optional packages
that could be installed are indeed installed. In Figure 1, one can see that SWT
has two optional dependencies on SWT accessibility2 and Mozilla XPCOM.
The encoding of optional packages is done by creating two specific propositional
variables: Abscap denotes the fact the capability cap is optional, and NoopIUi

is a variable to be satisfied in case none of the optional capabilities of IUi can
be installed. The first set of constraints expresses how to satisfy the required
capabilities: ∧

capj∈optReq(IUi)

(Abscapj →
∨

IUx∈alt(capj)

IUx) (4)

The main issue now is to allow the formula to satisfy all, some or no capabilities
without violating any constraint. Our initial encoding, and the one that is still
shipping with Eclipse, was based on a disjunction of the capabilities with an
additional Noop variable plus a linear objective function. However, the right
answer to such problem is to use a non linear optimization function: Each Absx
variable gets a reward to favor the installation of optional dependencies when
the requiring package IUj is installed:

∑
−K×Abscapi × IUj . −K is the reward

for installing both IUj and its optional requirement capi.

Example 1. Let’s see how to encode the optional dependencies of SWT on ac-
cessibility2 and xpcom shown in Figure 1:
Absaccessibility2 → IU1.0

accessibility2

8 http://en.opensuse.org/Package_Management/Sat_Solver/Basics

Absxpcom → IU1.1
xpcom

min : −K ×Absacessibility2 × IUSWT −K ×Absxpcom × IUSWT

Encoding of non greedy requirements In the original encoding, the non
greedy requirements were simply managed during the slicing stage and ignored
in the resolving stage. However, it appeared that in order to allow a finer con-
trol of non-greedy requirements, it was better to let the resolver manage those
requirements. The encoding of non greedy requirements is based on the introduc-
tion of new propositional variables NG X that are satisfied iff IU X is provided
by a greedy requirement. Each requirement of the form “IUi requires non greed-
ily capability capj” is encoded the following way:

f(IUi) =
∧

capj∈reqNonGreedy(IUi),

(IUi →
∨

IUv
x∈alt(capj)

NG Uv
x) (5)

Then, the non greedy IUs are associated to the IUs that require them greedily:

NG Uv
x →

∨
IUv

x∈alt(capj),capj∈req(IUj
i)

U j
i (6)

One can note that such encoding will favor the installation of IUs providing non
greedy requirements. In case no such IUs are found, the NG X variables will be
set to false, thus falsifying equation 5.

A similar approach is used for optional non greedy dependencies, by intro-
ducing NG X variables in equation 4.

Encoding of patches Applying a patch from the encoding point of view only
applies to requirements changes (see section 2.2), i.e., it means to enable or
disable some dependencies according to the application or not of a given patch.
Adding or removing capabilities or requirements is not implemented yet, but
does not bring any difficulty from an encoding point of view. We denote by
patchedReqs(IU, p) the set of pairs < old, new > of the installable unit IU
denoting the rewriting rules of patch p in the requirements of IUs.

We associate to each patch a new propositional variable. We introduce that
variable in dependency constraints (1) and (4) the following way:

– Negatively to express the new dependency brought by the patch.
– Positively to express the initial dependency. In that case, all patches changing

that dependency should appear positively in the constraints: if none of them
are applicable, the initial dependency is applied.

It can be summarized in this way:∧
<old,new>∈patchedReqs(IU,p)

(¬p∨encode(new))∧(
∨

<old,newi>∈patchedReqs(IU,pi)

pi∨encode(old))

where encode(x) denote the encoding of a regular or an optional dependency.
The patch encoding changes only the encoding of the requirements affected by
a patch.

3.3 When things go wrong: explanation

Explanation is key helping the user understand why a change request cannot be
fulfilled. In the above encoding, one can note that there are only two reasons
that could prevent a request from succeeding:

– At least one of the required IUs is missing.
– The request requires two IUs sharing the same identifier but with different

versions that cannot be installed together due to the singleton attribute on
at least one of those IUs.

As a consequence, it is not hard to check why a request cannot be completed.
However, users expect the explanation to be returned in terms of IUs they know
about, the root IUs and the IUs that they are trying to install, and would be
confused if provided with just the low level dependency errors. In practice, it
means that knowing why a problem occurred is not sufficient. It is important
to be able to detail the whole dependencies from the root to the actual cause of
the problem.

Let S be the set of the constraints encoding presented in the previous sections.
From a logical point of view, it is possible to compute one minimal subset S′

of the constraints that cannot be satisfied altogether: S′ ⊆ S, S′ |= ⊥,@S′′ ⊂
S′|S′′ |= ⊥. Such set of constraints is often called a MUS (minimal unsatisfiable
subformula). S′ is an explanation of the impossibility to fulfill the request. If
the subset contains a negated literal (specific case of Equation (1), ¬UIx ∈ S′)
then the global explanation is a missing requirement, i.e., the request cannot be
completed because IUx cannot be found in the user’s repositories. If the subset
contains a cardinality constraint (

∑
IUx

v ≤ 1 ∈ S′), then the global explanation
is a singleton attribute violation, i.e., the request cannot be completed because it
requires several versions of IUv. Note that if we decided to use a clausal encoding
instead of the cardinality constraints encoding, we would have lost the one to one
mapping between the original dependencies and the constraints of our encoding.

There are several ways in practice to compute S′ from S. The ones based
on local search algorithms[17] detect constraints that are likely to be part of S′

among the most falsified ones during the search and compute S′ in a second
step using a complete SAT solver. A more recent and widely used approach
is based on the analysis of the last conflict found by a conflict driven SAT
solver[20]. Such approach requires some changes in the SAT solver to keep track
of all resolutions steps and does not ensure that the computed subset S′′ ⊆ S
is minimal. A third approach is to rely on a new encoding of the problem into
an optimization problem using selector variables [13]: it is possible to use an
optimization function on selector variables to compute a set S′ of minimal size.
Finally, a generic approach to explanation in constraints solvers was proposed in
[10] and implemented in Ilog solver: QuickXplain. The main advantage of such
approach is that it is independent of the underlying solver, and that it works
with any kind of constraints.

Our approach inherits some ideas from all those approaches. We decided to
implement the QuickXplain algorithm in our framework because it is non intru-
sive (does not require any change to the solver) and works perfectly with mixed

constraints (clauses and cardinality constraints in our case). We use selector
variables in our encoding to allow the QuickXplain algorithm to enable/disable
the constraints when computing S′. Finally, we restrict the number of selector
variables to be considered by the QuickXplain algorithm using a specific conflict
analysis procedure in the spirit of [6].

More precisely, we translate S into S′′ by adding a new selector variable seli
to each constraint in S: S′′ = {seli ∨ si|si ∈ S}. Let SEL denotes the set of
all added selector variables. Instead of looking for an assignment satisfying S,
we are looking for an assignment satisfying S′′ under the assumption that all
variables in SEL are set to false, S′′

∧
seli∈SEL ¬seli9. If such assignment exists,

it is an assignment satisfying S, so we are done. If it is not the case, then we
analyze the last, top level conflict found by the SAT solver: we derive from that
analysis a subset of the selector variables that caused the inconsistency. We use
a tailored version of the QuickXplain algorithm that makes use of that subset
of selector variables to enable/disable constraints in order to compute S′.

The reduction of the selector variables to consider in the QuickXplain algo-
rithm allowed us to reduce some explanation time from tens of seconds to a few
seconds. It has been introduced when we discovered that the explanation process
in huge development repositories (many different versions of all the installable
units released by the Eclipse foundation) could take up to one minute on a recent
quad-core computer.

3.4 From decision to optimisation

When all the constraints can be satisfied, there are usually many possible so-
lutions, that are not of equal quality for the end user. Here are a few remarks
regarding the quality of the expected solution:

1. An IU should not be installed if there is no dependency to it.
2. If several versions of the same bundle exist, the latest one should preferably

be used.
3. When optional requirements exist, the optional requirements should be sat-

isfied as much as possible.
4. User installed patches should be applied independently of the consequences

of its application (i.e., the version of the IUs forced, the number of installable
optional dependencies, etc.).

5. Updating an existing installation should not change packages unrelated from
the request being made.

We are now looking for the “best” solution, not just any solution, i.e., we moved
from providing a certificate for the answer to a decision problem (NP-complete
from a complexity theory point of view) to return the solution of an optimization
problem (NP-hard). Furthermore, we need to solve a multi-criteria optimization
problem since it is likely that several IUs do have optional requirements and

9 Assumption based satisfiability testing is available in all Minisat[8] inspired solvers
(including Sat4j).

that several IUs are available in multiple versions. The optimization criteria we
are dealing with here are much more complex than the ones presented earlier in
[19].

To solve our problem, we build a linear optimization function to minimize in
which the propositional variables are either given a penalty (positive integer) or
a reward (negative integer) to prevent or favor their appearance in the computed
assignment.

– Already installed packaged and Root Installable Units should be kept in-
stalled whenever possible. However, it should be possible to update the
packages found in the transitive closure of the requirements of the Root
IUs: ∑

IUi
v∈(Installed\transitiveClosure(Root))∪Root

1× IU i
v (7)

– Each version of an IU gets a penalty as a power of P = max(|Installed|+1, 2)
proportional to its age, the older it is the more penalized it is:∑

IUi
v∈versions(IUv)\(Installed∪Root)

P i × IU i
v (8)

That way, each installation of an IU raises a penalty at least by one, thus
expressing that only required IUs should be installed.

– We have seen that we need to add a non linear combination of boolean vari-
ables in our objective function for managing optional dependencies:

∑
−PK+1×

Abscapi
× IUj . The problem is that our solver does not propose yet an easy

way to work with non linear optimization functions. A solution based on the
introduction of new variables fixes that issue:∑

−PK+1 × yk with yk ↔ Abscapi × IUj (9)

– Each patch variable gets a reward of n×−PK+3 if it is applicable (where n
denotes the number of applicable patches), else a penalty of PK+2∑

pi∈applicablePatches()

n×−PK+3pi +
∑

pi 6∈applicablePatches()

PK+2pi (10)

The objective function of our optimization problem is thus to minimize (7)
+ (8) + (9) + (10).

The weights in (8) are not satisfactory since they do not provide a total
order on the final solution. Suppose that we have two IUs, IUa and IUb, that
are available in 3 and 2 versions, respectively (namely IU3

a , IU2
a , IU1

a and IU2
b ,

IU1
b) with P = 2. The objective function for those IUs is thus

2× IU3
a + 4× IU2

a + 8× IU1
a + 2× IU2

b + 4× IU1
b

The best solution for such objective function if both IUa and IUb must be
installed is obviously to install IU3

a and IU2
b . However, if those two IUs cannot

be installed together, the solver will answer that the best option is either to
install IU3

a and IU1
b or IU2

a and IU2
b .

The common approach to solve this problem is to rank each IUs in a total
order, IU1 < IU2 < ... < IUm, meaning that IUi is more important than
IUj iff IUj < IUi. Then the coefficients of the optimization function should be
generated in such a way that the sum of the coefficients of IUj should be smaller
than the smallest coefficient of IUi. In our example, it would mean for instance
to use the following optimization function:

IU3
a + 2× IU2

a + 4× IU1
a + 8× IU2

b + 16× IU1
b

In that case, the best option is still to install IU3
a and IU2

b , but the second best
option is to install IU2

a and IU2
b .

Unfortunately, as noted before, we are in the context of uncontrolled reposi-
tories, so there is no obvious/easy way to order the IUs in a total order, so it was
decided to keep the initial solution (8) instead of arbitrarily ranking the IUs.

Equation (7) has been introduced at the users’ request. Indeed, some “sta-
bility” is needed for vendors building their tools on top of the Eclipse platform,
for quality assurance for instance. The idea of keeping as much of possible the
already installed packages was designed for that reason. However, in the open
source world, it is often desired that installing a new software also updates its
dependencies. This is the reason why the installable units found in the transitive
closure of the requirements of the Root IUs are not “glued” to their installed
version.

4 Conclusion and perspective

We presented the boolean optimization encoding used in Eclipse p2, a “right-
grained” provisioning platform aimed at solving the diversity of provisioning
requirements in a componentized world. The initial encoding has evolved over
the years to include both user’s feedback and modeling improvements.

We can report that this approach has been live for two years now, and that
is has been used by millions of users worldwide10. It has proven to be reli-
able, efficient and scalable even when faced with repositories containing more
than 10000 installable units and solution involving about 3000 installable units.
Furthermore, a direct consequence of our work is the integration of the very
same technology to manage dependencies in other Java related products, namely
the upcoming major release of Maven11 (Maven3) and the repository manager
Nexus.

The feasibility tests done in late 2007 to investigate the use of SAT technology
inside the Eclipse platform revealed that most of the dependencies could be
resolved with few backtracking. The main issue was not to find a solution, but
to find an expected solution, i.e., to correctly model the computation as a boolean

10 http://www.eclipse.org/downloads/
11 http://maven.apache.org/

optimization problem the expected behavior of the resolver. The initial solution
based on the Pseudo-Boolean solver as a black box was not satisfactory from a
modeling point of view: using the common input format defined for the Pseudo
Boolean evaluations is not user friendly, especially for software engineers. The
introduction last year of a tighter integration with the Sat4j library allowed to
model directly the constraints on Java objects, which proved to be much easier
to improve the boolean optimization encoding, and allowed several developers
to experiment with their own optimization criteria.

While the size of the repositories available in the Eclipse world is compatible
with our current implementation, scaling is an issue for the future. We recently
used a similar approach to resolve some Linux upgradeability problems proposed
by the Mancoosi European project[4]. Those problems are basically one order
of magnitude bigger than the Eclipse ones (up to 50K packages). While adapt-
ing our work to the Linux world allowed us to quickly provide a correct tooling
for solving those problems, some classes of problems were really challenging to
our implementation. Replacing Sat4j by another optimization engine (namely
the MaxSAT solver MsUnCore[15]) proved to be more efficient, but some prob-
lems remain challenging. The same scaling issue will appear in Maven world,
where the size of the central repository is around 200K packages! Furthermore,
the dependency management is contextualized in that case to the state of the
build process (compile time, runtime, etc). As such, a modular, maybe even user
oriented, way of defining what is a good (optimal) solution is needed.

Acknowledgements

The authors would like to thank the anonymous reviewers’ valuable comments
and suggestions on the improvement of this article.

References

1. Mancoosi, Managing the Complexity of the Open Source Infrastructure.
http://www.mancoosi.org.

2. OSGi Service Platform. http://www.osgi.org/Specifications.
3. Pietro Abate, Jaap Boender, Roberto Di Cosmo, and Stefano Zacchiroli. Strong de-

pendencies between software components. Technical Report 2, Mancoosi - Seventh
Framework Programme, May 2009.

4. Josep Argelich, Daniel Le Berre, Ines Lynce, Pascal Rapicault and Joao Marques-
Silva. Solving Linux Upgradeability Problems Using Boolean Optimization. In
Proceedings of LoCoCo2010 - Workshop on Logics for Component Configuration,
2010.

5. Josep Argelich, Ines Lynce, and Joao Marques-Silva. On solving boolean multi-
level optimization problems. In Twenty-First International Joint Conferences on
Artificial Intelligence (IJCAI), pages 393–398, Pasadena, California, USA, 2009.

6. Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-
Carbonell. Efficient generation of unsatisfiability proofs and cores in sat. In Iliano
Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of
Lecture Notes in Computer Science, pages 16–30. Springer, 2008.

7. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A simple and flex-
ible way of computing small unsatisfiable cores in sat modulo theories. In Joao
Marques-Silva and Karem A. Sakallah, editors, SAT, volume 4501 of Lecture Notes
in Computer Science, pages 334–339. Springer, 2007.

8. Niklas Eén Niklas Sörensson. An extensible sat-solver. In Proceedings of the
Sixth International Conference on Theory and Applications of Satisfiability Test-
ing, LNCS 2919, pages 502–518, 2003.

9. IETF. http://www.ietf.org/rfc/rfc2254.txt.
10. Ulrich Junker. Quickxplain: Preferred explanations and relaxations for over-

constrained problems. In Deborah L. McGuinness and George Ferguson, editors,
AAAI, pages 167–172. AAAI Press / The MIT Press, 2004.

11. Daniel Le Berre and Anne Parrain. Sat4j, a SATisfiability library for java.
http://www.sat4j.org.

12. Daniel Le Berre and Pascal Rapicault. Dependency Management for the Eclipse
Ecosystem. Proceedings of IWOCE2009 - Open Component Ecosystems Interna-
tional Workshop, August 2009.

13. Ines Lynce and Joao P. Marques Silva. On computing minimum unsatisfiable cores.
In SAT, 2004.

14. Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jérôme Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and open
source package-based software distributions. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE06), pages 199–
208, Tokyo, JAPAN, september 2006. IEEE Computer Society Press.

15. Vasco Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for Weighted
Boolean Optimization. In Proceedings of SAT’09, pp. 495–508, 2009.

16. Mark Powell (NASA) Marc Hoffmann, Gilles J. Iachelini (CSC). Eclipse on rails
and rockets. http://live.eclipse.org/node/750.

17. Bertrand Mazure, Lakhdar Sais, and Eric Gregoire. Detecting logical inconsisten-
cies. In Proceedings of the Fourth International Symposium on Artificial Intelli-
gence and Mathematics(AI/Math’96), pages 116–121, Fort Lauderdale (FL-USA),
jan 1996.

18. Ralph Treinen and Stefano Zacchiroli. Solving package dependencies : from Edos
to Mancoosi. In DebConf’8, Argentine, 2008.

19. Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Opium: Opti-
mal package install/uninstall manager. In ICSE, pages 178–188. IEEE Computer
Society, 2007.

20. Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from un-
satisfiable boolean formulas. In Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT03), 2003.

