
Feature Launcher Service Specification Version 1.0 Introduction

OSGi Compendium Release 9 Page 1397

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160 Feature Launcher Service
Specification

Version 1.0

160.1 Introduction
The Feature Service Specification on page 1375 defines a model to design and declare Complex Applica-
tions and reuable Sub-Components that are composed of multiple bundles, configurations and oth-
er metadata.

This specification focuses on turning these Features into a running system, by introducing the Fea-
ture launcher. The launcher takes a Feature definition, obtains a runtime environment for it and
then starts the Feature in that environment.

The launcher also interacts with the Configuration Admin Service, that is, it provides configuration
to the system if present in the Feature.

160.2 Launching a Feature
To launch a Feature, the launcher must find or create a target environment for the Feature first. For
example it can launch an OSGi framework that the Feature should run in.

The launcher should deploy all the bundles referenced by the Feature in this Framework. It must
first install all bundles, then resolve them and finally start all the bundles. The order in which this
happens between the bundles is not defined. ### Introduce start order in metadata

Once all bundles are started and all bundle fragments resolved and attached the launcher should
provide the specified configurations to the Configuration Admin Service.

A Feature launcher can be obained using the LauncherFactory service. This service can be obtained
from the Service registry if running in an OSGi Framework or using the ServiceLoader mechanism
otherwise.

ServiceLoader<LauncherFactory> sl =
 ServiceLoader.load(LauncherFactory.class);

LauncherFactory factory = sl.iterator().next();
Launcher launcher = factory.newLauncher(
 new URL("file:///home/david/myfeature.json"),
 Collections.emptyMap());
launcher.start();

launcher.waitForStop(0); // Start is asynchronous

If a Feature can't be launched waitForStop() will throw a LauncherException .

Handling Bundles Feature Launcher Service Specification Version 1.0

Page 1398 OSGi Compendium Release 9

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.3 Handling Bundles
All bundles listed in the Feature will first be installed, then resolved and finally started in the Frame-
work chosen by the launcher.

Bundle fragments are installed and resolved and attached to their host(s).

If a Bundle cannot resolve or start a LauncherException must be thrown.

160.4 Handling Configuration
If configuration is found in the Feature then it is passed to the Configuration Admin service. If a Fea-
ture contains a configurat ion section but the Configuration Admin service is not found in the run-
ning system, the launcher will abort with an LauncherException .

160.5 Specifying Framework Properties
Framework Launching Properties can be provided in the Feature through the f ramework-launch-
ing-propert ies extension. The launcher must ensure that the Framework it provides for the feature
has these properties set. If it cannot provide a Framework with the requested Framework properties
set it must fail with a LauncherException .

For example, to ensure the org.osgi .f ramework.bsnversion Framework property is set for the Fea-
ture, specify the following in the Feature:

 "extensions": {
 "framework-launching-properties": {
 "type": "json",
 "kind": "mandatory",
 "json": {
 "org.osgi.framework.bsnversion": "multiple"
 }
 }
 }

160.6 Specifying Runtime Preconditions
A Feature can specify the preconditions it places on its runtime environment. That is, the Frame-
work used to run the Feature in, must satisfy these constraints. If the Launcher cannot provide a
Framework with the specified conditions, it must fail.

Preconditions are specified as requirements in the Feature. If no preconditions are specified, the
Launcher is free to choose a Java and OSGi implementation of its choice.

For example:

 "requirements": [
 {
 "namespace": "osgi.ee",
 "filter": "(&(osgi.ee=JavaSE)(version=11))"
 }, {
 "namespace": "osgi.wiring.package",

Feature Launcher Service Specification Version 1.0 Specifying Variables

OSGi Compendium Release 9 Page 1399

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "filter": "(&(osgi.wiring.package=org.osgi.framework)(version=1.10))"
 }
]

160.7 Specifying Variables
Variables allow for late binding of configuration values and Framework properties. Variables are
provided through the LauncherFactory :

Map<String,Object> variables = new HashMap<>();
variables.put("user.name", "scott");
variables.put("db.driver", "postgresql");

LauncherFactory factory = ... // From Service Registry or Service Loader
Launcher launcher = factory.newLauncher(
 new URL("https://repo.maven.apache.org/maven2/org/foo/Bar/1.0.0/Bar-1.0.0.osgifeature"),
 variables);

launcher.start();

160.8 Specifying Extension Handlers
TODO

160.9 Specifying Post-processors
TODO

160.10 org.osgi.service.feature.launcher

Feature Launcher Package 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.feature. launcher; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.feature. launcher; vers ion="[1.0,1.1)"

160.10.1 Summary

• Launcher - A launcher can launch a Feature model into a running system.
• LauncherConstants - Defines standard constants for the Feature Launcher specification.
• LauncherException - Exception thrown when the launcher isn't able to launch the Feature.
• LauncherFactory - Create a Feature Launcher.

org.osgi.service.feature.launcher Feature Launcher Service Specification Version 1.0

Page 1400 OSGi Compendium Release 9

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.10.2 public interface Launcher
A launcher can launch a Feature model into a running system.

160.10.2.1 public Framework start()

□ Start the launcher. This method is asynchronous and will return as soon as the launching has been
initiated.

Returns The Framework the Feature is launched into.

160.10.2.2 public void waitForStop(long timeout) throws InterruptedException, LauncherException

timeout Maximum number of milliseconds to wait. A value of zero will wait indefinitely.

□ Wait until the system has stopped.

Throws InterruptedException– If another thread interrupted the current thread before or while the current
thread was waiting for the system to stop. The interrupted status of the current thread is cleared when
this exception is thrown.

LauncherException– When the launch is not successful.

160.10.3 public final class LauncherConstants
Defines standard constants for the Feature Launcher specification.

160.10.3.1 public static final String LAUNCHER_SPECIFICATION_VERSION = "1.0"

The version of the Feature specification.

160.10.4 public class LauncherException
extends Exception
Exception thrown when the launcher isn't able to launch the Feature.

160.10.4.1 public LauncherException.Reason getReason()

□ Get the reason for the exception;

Returns The reason

160.10.5 public interface LauncherFactory
Create a Feature Launcher.

160.10.5.1 public Launcher newLauncher(URL feature, Map<String, Object> variables)

feature URL to the Feature file.

variables The feature variables to use.

□ Create a new launcher based on the provided URLs.

Returns the new launcher;

160.10.5.2 public Launcher newLauncher(Feature feature, Map<String, Object> variables)

feature The feature the launcher should use.

variables The feature variables to use.

□ Create a new launcher based on the provided Feature instances;

Returns the new launcher.

