JCRManagement (JCRM) Project Proposal
Table of contents

31
Introduction

32
Project description

32.1
Goal

32.2
What is the JSR-170?

32.3
Why are the JCR and Eclipse a perfect fit?

32.4
Content and type structure of the JSR-170

32.5
Content

32.5.1
Node Types

62.5.2
Fit of node types to ecore metamodels

62.5.3
Scope in the node layer

62.5.4
Scope in the node type layer

72.6
Use Cases

72.6.1
CMS and JCR Vendor

72.6.2
Application Provider

72.6.3
Plug-in Developer

72.6.4
JCR Evaluator

73
Resources

84
Vendor neutrality

85
Place in the Eclipse architecture

86
Differentiation to Apogee

1 Introduction

This proposal is in the Project Pre-Proposal Phase (as defined in the Eclipse Development Process document) and is written to declare its intent and scope. This proposal is written to solicit additional participation and input from the Eclipse community. You are invited to comment and/or join the project. Please send feedback to sandro.boehme@gmx.de.
2 Project description

2.1 Goal

The goal of the JCRM project is to integrate the JSR-170 with a model driven approach into the Eclipse architecture.

2.2 What is the JSR-170?

The JSR-170 is a Sun Java Community Standard to specify a common, vendor independent programmatic interface to content repositories. A content repository is a content store that is not tied to any particular underlying architecture, data source or protocol and also implements “Content Services” like versioning and full text search. The short form taken from the package hierarchy is “JCR” and means “Java Content Repository” as you would probably have guessed. The specification request can be found here:

http://jcp.org/en/jsr/detail?id=170 The next major version of this specification is the JSR 283.

See: http://jcp.org/en/jsr/detail?id=283
2.3 Why are the JCR and Eclipse a perfect fit?

The content structure, the type structure and the enhancement of the type structure is specified in the standard and will most probably not change in the future. That makes it possible to develop fix meta models for them. This aspect of the specification is the motivation for the model driven approach. As Eclipse has one of the best (if not the best) community and platform for model driven projects the JCR and Eclipse do fit perfectly.

2.4 Content and type structure of the JSR-170

The illustration and the descriptions below explain the content and type structure of the JCR. It will show why it is possible to describe the type structure in ecore.

2.5 Content

The content is actually stored in the properties of nodes. The nodes do organize it in a tree driven structure. It is not a fixed tree structure as the JCR also allows a property to reference an arbitrary node with or without referential integrity.

2.5.1 Node Types

The type system of the JCR allows content consistency among applications that do not know each other as it lies in the repository and not in the application.

The type system consists of the fixed fine grained property types and the extensible coarse grained node types.

Property types are some basic types like String, Date, Boolean and also types for the reference properties. More details can be found in chapter 4.7 (page 27) of the JSR-170 specification.

Node Types restrict for example possible usages of property types in a node and possible child nodes of a node. The illustration shows property type restrictions for example. Every other application that uses the illustrated repository can expect the same properties for the illustrated type. More information can be found in chapter 4.8 (page 30), in chapter 6.7 (page 123) and in chapter 7.4 Assigning Node Types (page 219).

[image: image1.wmf][image: image2.wmf]

The node type assigned to the my-picture node can restrict the nodes to have the following property names and property types.
· jcr:mimeType (String)

· jcr:lastModified (Date)

· jcr:data (Binary)

jcr:encoding(String)

2.5.2 Fit of node types to ecore metamodels

As the structure and the characteristics of node types are very similar to ecore it should be an archiveable goal to create an ecore meta model for nodes as the basis to integrate the JCR into the Eclipse architecture. E.g. node types can be described as classifiers, properties as attributes and so on. Additionally the JCR types use characteristics like namespaces, aggregation and generalization which fit good to ecore.

On the node type layer the JSR-170 specifies only node type discovery and assignment. The lifecycle of node types in general is left to the implementation. It is planned for the JSR-283 to also specify this aspect. This means node type features based on the JSR-170 can only be reading and displaying. This project could offer displaying the node types in a UML like diagramm.

This project can also offer metamodels for sepecific repository implementations to make also editing features available. But it will take care of having a clear separation between the JCR metamodel and a repository specific metamodel.

2.5.3 Scope in the node layer

1. Node metamodel based on the JCR.

2. Resource implementations for different JCR vendors and different deployment scenarios that makes use of the transient storage of the JCR. It should allow lazy loading of the JCR content. Every command like the creation or the update of nodes should directly be executed at the resource and does not need to be cached. The save command will persist the changes.

We will consider using the DTP to integrate the resource to the UI.

3. Exemplary tree based editor for nodes.

4. The editor will be extensible by plug-ins. This makes it possible to show node type specific editors on a double click on a node in the node tree. It will work similar to the package explorer as it opens different editors for different file types.

5. Integration of a Model to Model transformation project for content migration scenarios.

6. Integration of a Model to Text transformation project to generate new artefacts based on the model.

2.5.4 Scope in the node type layer

1. Node type metamodel based on the JCR.

2. Resource implementations for different JCR vendors and different deployment scenarios that makes use of the transient storage of the JCR.

3. Resource implementations for different JCR vendors and different deployment scenarios.

4. Exemplary graphical tool for displaying node types based on the JCR with GMF.

5. Exemplary graphical editor for displaying node types based on specific repository implementations with GMF.

6. Transformation of the node types into other representations link XML Schema

7. Integration of a Model to Text transformation project to generate new artefacts based on the model.

2.6 Use Cases

At the moment there is no product or project that offers vendor independent JCR functionality. Neither commertial nor open source. Every vendor has it’s own more or less useful editor. It is quite natural that over time bigger chunks of nodes need to be migrated. For example if node types changes. Doing those changes with editors will need too much effort. This is where model to model transformations come into play as content migration tool. To my knowledge there is no tool at all that offers this model driven content migration. But I have seen many requests for content editors and content migration tools.

2.6.1 CMS and JCR Vendor

· Creating resource implementations for own repository implementations.

· Creating own tools based on the JCR metamodels delivered by this project.

· Creating a node type modeler based on the meta model delivered by this product.

· Enhancing the tools based on the tools delivered by this project by plug-ins.

· Using the tools for own development and administration purposes.

· Bundling the tools with the CMS product.

2.6.2 Application Provider

· Using the resource implementations of different vendors delivered by this project.

· Creating own applications based on the JCR metamodels, resource implementations and tools delivered by this project.

· Using the tools for own development and administration purposes.

· Bundling the tools delivered by this project with the own application.

2.6.3 Plug-in Developer

· Creating editors for node types in the tree editor

2.6.4 JCR Evaluator

· A JCR Evaluator is somebody who wants to find out, if the JCR will be useful for him. Using the tools delivered by this project to try out the JCR functionality.

3 Resources

From the experiences in the JCR area I expect the biggest community to be the user’s community at the moment. This is why the first priority of the project will be to release a stable tool for maintaining Java Content Repositories to serve the users community. That in turn is expected to push the interest in creating JCR applications and will enhance the plug-in and committers community.

In the validation phase of this project I will create a press release. It will contain:

· The announcement for the JCRManagement Project.

· A survey to find out how big the interest of the community for the JCRManagement project is and what goals they have to adopt the goals of the project if needed.

· The announcement for the 1.0 version of the JCRBrowser at Sourceforge and the information that the JCRManagement is the follow up project.

I will pay particular attention to have a low barrier of participation through having a good documentation for the use and the enhancement of this project to attract the plug-in developers and committer’s community.
4 Vendor neutrality

The project is committed to create an architecture for JCR tools that is independent from any JCR vendor or implementation.

5 Place in the Eclipse architecture

The project will integrate the JCR into the EMF project and also use other MDSD projects.

6 Differentiation to Apogee

Apogee (http://www.eclipse.org/apogee/) is a more highlevel project. It is heading to a more document oriented resource model. For specific performance reasons it will not completely be based on the JCR.

The discussion to this issue can be found here:

http://permalink.gmane.org/gmane.comp.cms.nuxeo.general/72
node

node-name

property

property content

root

property name

property

name

address-root

file-root

other-picture

other-name

image/jpeg

avatar

my-picture

jcr:mimeType

�

my-name

2007-01-11

jcr:lastModified

address

�

Myname

MyStreet

Zip City

Country

jcr:data

favorite picture

UTF-8

564SDF2EC

jcr:encoding

PAGE
Page 7 of 8
Sandro Böhme
JCRManagement (JCRM) Project Proposal

