Sphinx – Project Proposal
Introduction
Sphinx is a proposed new open source component under the Eclipse Model Development Tools (MDT) subproject to provide an extensible platform that eases the creation of integrated modeling tool environments supporting individual or multiple modeling languages (which can be UML-based or pure DSLs) and has a particular focus on industrial strength and interoperability.
This component is in the Proposal Phase (as defined in the Eclipse Development Process) and this document is written to declare its intent and scope. This proposal is written to solicit additional participation and input from the Eclipse community. You are invited to comment and/or join in the development of the component. Please send all feedback to the eclipse.modeling.mdt newsgroup.
Background
Model-based design (MBD) and Model Driven Software Development (MDSD) have become very popular and are increasingly used in software and systems development. They had been introduced in the IT industry first, and lead to the definition of the Unified Modeling Language (UML). Later on, they started penetrating into vertical application domains and being applied to embedded software and systems development. But UML is a generic modeling language that is expected to be extended/specialized to fit with specific domains. For that purpose, there are mainly two means, usually called the heavy-weight approach and the light-weight approach. The former one leads to define Domain Modeling Specific Languages (DMSLs) relying on a full meta-model approach and the second leads to define UML extensions/specialization using the concept of profile. Both approaches are indeed leading to the same results that is to say define a suitable modeling language for one specific domain or/and for some given concerns. SysML (Systems Modeling Language) and MARTE (Modeling and Analysis of Real-Time and Embedded systems) are two of the most important standardized UML profile. There are respectively dedicated to adapt UML to systems engineering and real-time and embedded domain. Examples of DMSLs implemented independenlyt of UML are for automotive, AUTOSAR (AUTomotive Open System Architecture), and for avionics, AADL (Architecture Analysis & Design Language).
While offering significant advantages from a conceptional point of view, MBD and MDSD still suffer from a major shortcoming: there is no satisfying out-of-the-box tool support. Tools for UML often don’t provide sufficient support for profiles and tool for DSLs are often not very mature.
The Eclipse eco-system at large and the Eclipse Modeling Project in particular provide nearly all of the necessary frameworks and building blocks for such kind of tool support and are therefore a great deal of help in this context. However, experience has shown the matter creating an integrated modeling tool environment for a given modeling language means much more than just putting existing Eclipse modeling components together and still represents a major endeavor demanding considerable investments. This is especially true when these tool environments are required to handle big models. A dread amount of effort goes into investigating and optimizing the interplay of involved Eclipse components and making sure that user expectations in terms of scalability and robustness are met.
Another challenge is that modeling tools for UML or DSLs are rarely used in isolated contexts. The question is much more as to how support complete development processes which consist of various stages and may involve different modeling languages for each of them. Up to now, there is simply no guarantee that Eclipse-based modeling tools from different vendors can effectively work together and be complemented by special purpose in-house modeling tools. Setting up integrated tool environments which smoothly support the modeling languages required by a given development process and link and synchronize them with each other therefore remains a largely unresolved issue.
Scope
Sphinx is a project providing modeling tool platform for Eclipse that eases the development of IDE-like tool support for modeling languages used in software and systems development.

The short/mid-term objectives of the Sphinx project are:
· /O1/ To provide an open and extensible platform enabling rapid creation of integrated modeling tool environments (IME) for individual or multiple modeling languages;
· /O2/ To ensure that the resulting modeling tool support yields industry strength scalability and robustness out-of-the box;
· /O3/ To have a domain- and vendor-independent interoperability layer (backbone) for off-the-shelf and in-house modeling tool components supporting the same or different modeling languages which users can easily combine to create individually tailored continuous modeling tool chains.
The primary use cases and requirements behind these objectives are:

Integrated Modeling Tool Platform /O1/:
· /UR11/ The primary use case of Sphinx is that users provide an implementation of their modeling language and then can use Sphinx to build an integrated set of modeling tools (model editors and views, model validators, model export/import tools, model merge/compare tools, configuration management front ends, model transformation and code generation tools, etc.) which support them in using and working with the given modeling language;
· /UR12/ Sphinx will not be dedicated to a specific target domain and therefore be able to support principally any sort of modeling language (aka meta-model). These can be new or existing ones as well as standardized or company-internal modeling languages;
· /UR13/ The implementation of the modeling languages brought into Sphinx may be DSL- or UML-based; i.e. it can be realized either as a domain-specific meta-model using the Ecore meta-modeling language from Eclipse Modeling Framework (EMF) or as an UML profile relying on the Eclipse UML2 project;
· /UR14/ Sphinx will take into account that modeling languages may evolve over time and provide facilities for managing, converting, and transforming models that are based on different versions of the same modeling language;
· /UR15/ Sphinx will provide the capacity to build integrated modeling tool environments supporting parallel handling of multiple models which may be based on the same or different modeling languages. This includes functionality like managing such models in the workspace, defining and enforcing visibility/dependency relationships between models, and establishing sophisticated/smart links between models that are expressed in different modeling languages for relating them to each other and enabling traceability between them.
Industrial strength /O2/:
· /UR21/ Modeling tools built on top of Sphinx must be scalable, i.e. provide the capacity to process big models without loosing responsiveness. Given a medium sized model of 100MB XML data being spread over 10,000 files, typical performance figures deemed acceptable by users are: time for loading full model from XML files < 1 min, memory consumption after loading full model < 120 MB, time for validating full model < 5 min, time for generation source code from full model < 1 min;
· /UR22/ Sphinx-based modeling tools must be robust, i.e. provide the capacity to perform concurrent operations on the same model or the same set of models without running into deadlocks or other kinds of robustness problems;
· /UR23/ It must be possible to constitute integrated modeling tool chains from selected Sphinx-based modeling tool components without compromising the scalability and robustness properties.

Interoperability /O3/:

· /UR31/ New modeling capabilities/tools built on top of Sphinx should be capable of interworking at least with other new or existing Sphinx-based modeling tools regardless of whether they support the same or different modeling languages;
· /UR32/ Sphinx-based modeling tools should also allow for integration with complementary non-modeling tools, frameworks, and platforms which are frequently used along the software and systems development cycle (e.g. CDT, JDT, OSEE, OFRM, SVN, Bugzilla, etc.)
· /UR33/ Modeling tool chains resulting from integration of complementary Sphinx-based modeling tool components (which may be procured from the same or different vendors or be made in-house) must enable model data to be tightly synchronized across all included components and ensure fast roundtrip cycles when users switch between the different applications. More specifically, this means that the exchange of model data across Sphinx-based modeling tool components must be achievable in-memory but not limited to export/import through the file system;
· /UR34/ Modeling tools built on top of Sphinx must transparently support different kinds of persistence backends. In particular, users must have the choice to store their models in the file system and do the version management via conventional source control systems (e.g. SVN) or to store and version them in dedicated model repositories (i.e. databases).

In addition to above named short/mid-term objectives the Sphinx project will also address the following long-term goals:

· /O4/ To support controlled and coordinated management either of individual modeling tool components (e.g., update, upgrade, addition, removal, activation, deactivation, etc.) or of the entire modeling tool chains (e.g., coordinated switchover to new versions of multiple mutually-coupled modeling tool components, reverting to old modeling tool chain configurations in case of problems or when needing to work on retired projects).
Description

Sphinx will initially define APIs and provide implementations for the services described in the following. Components realizing these services already exist and will be contributed along with the creation of this project (see Code contributions).
Workspace Management

This component is built on EMF, EMF Transaction, and Eclipse Platform. It provides services for managing the lifecycle and editing domains of shared model instances in Sphinx-based modeling tool applications:

· Core: 

· APIs for bulk loading, reloading, and unloading of models as shared instances in the workspace; automatic detection of relevant files based on the meta-model they belong to and the scope of the model in question;
· Management of editing domains used for holding shared model instances in the workspace; extensible mapping of files in the workspace to editing domains based on the meta-model the files belong to;

· Management of dirty state of shared model instances in the workspace;
· APIs for bulk saving of shared model instances in the workspace; automatic detection of relevant files based on the meta-model they belong to and the scope of the model in question;
· Synchronization of shared model instances in the workspace; performs automatic model loading, reloading, and unloading when underlying projects or files are created, opened, renamed, changed, closed, or deleted;
· Extension points for contributing customized editing domain factories for specific EMF meta-models, and custom file to editing domain mappings.
· UI:

· Integration with Eclipse Saveables API; enables the lifecycle of shared model instances in the workspace to be controlled from Common Navigator based views;
· Progress visualization for model loading, reloading, and unloading;

· User prompt and optional saving of dirty shared model instances in the workspace upon workbench shutdown.
Explorer View and Editor Sockets
This component is built on EMF, EMF Transaction, Eclipse Common Navigator Framework, Eclipse UI Forms, and GMF. It provides common logic for creating explorer views, form editors, and graphical editors operating on shared model instances in Sphinx-based modeling tool applications:
· Explorer view socket:

· Extensible socket for Common Navigator based explorer views for workspace resources and model elements; enables projects, folders and files in workspace to be displayed as known from Resource Navigator or Project Explorer view, and allows all files containing EMF models to be expanded such that the elements of these models become visible;

· Drag & Drop capability for model elements;

· Link with Editor capability for model elements; enables an editor in which a model element has been opened to be automatically brought to the foreground every time this model element is selected in the explorer view;
· Show in capability for model elements; enables navigation from Problems view entries with model element references to corresponding model elements in explorer view;
· View state saving and restoration including both workspace resources and model elements;

· User prompt and optional saving of dirty shared model instances in a project upon project close.

· Form editor socket:

· Extensible socket for Forms-based multi-page editors for model elements or fragments;

· Model-oriented behavior, i.e. rather than always having to open a complete file containing model elements in an editor, editors can be opened on individual model elements coming from the same or different files;
· Default contents tree page which displays the editor’s input model element and its children in a tree-based view and provides basic editing capabilities; it basically represents a Forms-based version of the first page in EMF-generated sample model editors;
· Action for opening editors on individual model elements rather than complete files.

· Graphical editor socket:

· Extensible socket for GMF-based graphical editors for model elements or fragments.
· All:

· Thread-safe operation on shared model instances in the workspace rather than on individually loaded resources (see Workspace Management for details); this has the effect that modifications done in one view/editor get immediately propagated to all other views/editors which have been opened on the same model;
· Model-oriented dirty state indication (asterisk on view/editor tab) and save button enablement according to dirty state of underlying shared model instance; this has the effect that a model’s dirty state is simultaneously indicated on all views/editors which have been opened on the same model but not just on the view/editor in which the corresponding modification has been done;
· Actions for manipulating selected model element; includes cut, copy, paste, delete, undo, redo, rename, move, and creation of new child/sibling elements;

· View/editor-relative undo/redo context management for operations on model elements and workspace resources; makes sure that only operations which have been carried out within active view/editor are reflected by Undo/Redo actions on Edit main menu;
· Tabbed property sheet page for displaying features of the selected model element or workspace resource in the Properties view.
Validation Runtime Extensions
This component is built on EMF, EMF Transaction, EMF Validation, and Eclipse Platform. It provides extended runtime-level services for validating models or model fragments in Sphinx-based modeling tool applications and visualizing validation results:

· Core:
· Extended Diagnostician capable of performing validations with different subsets of applicable validation constraints according to specified set of validation constraint filters; enables to carry out validations with different validation depths (zero, one, infinite); supports thread-safe retrieval of labels for affected model elements from EMF Edit (rather using their unique string identifications) for initializing the message field in validation results (Diagnostics);

· Automatic validation being executed on-the-fly and after-the-fact, i.e. every time after one or multiple elements in the underlying model have been changed (in contrast to EMF Validation & Transaction’s “Live validation” which executed before-the-fact, i.e. before transactions are committed, and results in rolling them back when validation constraints are violated); limited to validating the changed model elements themselves, their containers and siblings in order to avoid performance problems; can be activated/disabled via the preferences;
· Extended validation problem marker type capable of exposing the violated validation constraint and the affected model element feature(s);

· Validation problem marker management; supports thread-safe adding/removal of validation problem makers on resources of affected model elements according to validation results (Diagnostics); automatically synchronizes model element URIs on validation problem markers when model elements or their resources get renamed, moved, or deleted;
· APIs for retrieving validation problem makers, messages, severities, etc. for a given model element.
· UI:
· Action for thread-safe on-demand validation of model elements; operates on workspace projects, folders, or files as well as model elements as such; supports single-valued and multi-valued selections and progress visualization;

· Extended diagnostic dialog capable of showing multi-valued (rather than only single-valued) validation results (Diagnostics);
· Extensible label decorator capable of decorating the images for workspace resources and model elements according to the validation results for underlying model elements and contained model elements;
· Model-oriented Problems view capable of displaying the model elements and their types and URIs (instead of the model elements’ resources and paths and the problem locations inside the model elements’ resources);

· Action for opening model elements behind validation problem markers in model-oriented form-based or graphical editors (instead of opening the corresponding resources in a text editor, see Explorer View and Editor Sockets for details);
· Action for thread-safe cleaning of validation problem markers related to model elements; operates on workspace projects, folders, or files as well as model elements as such; supports single-valued and multi-valued selections and progress visualization;
· Action for enabling/disabling automatic validation.

Note: In contrast to the other components, the Validation component is in a rather early state yet. The extended services outlined above are already available and working. From and API/framework point of view however, there still some more work to be done. In particular, we must check to which extent the implemented services are redundant with underlying EMF Validation and Eclipse Platform frameworks and remove such redundancies. We also will have to carefully review and refactor plug-in architecture and APIs.
Compare & Merge Integration
This component is built on EMF, EMF Transaction, EMF Compare, and Eclipse Compare Support. It provides extensions enabling model-based compare/merge features to be integrated in Sphinx-based modeling tool applications:

· Core:

· Thread-safe operation on shared model instances in the workspace rather than on individually loaded resources (see Workspace Management for details);
· Extensible thread-safe automatic merge operations;
· UI:

· Actions for comparing/merging individual model elements or model fragments rather than only entire resources;
· Compare editor supporting model-oriented dirty state management and editor-relative undo/redo contexts (see Explorer View and Editor Sockets for details).
EMF Runtime & Eclipse Platform Extensions

This component is built on EMF, EMF Transaction, and Eclipse Platform. It provides common runtime-level enhancements such as description of meta-models, models and model scopes, as well as a couple of performance optimizations and utilities. They are used by all other Sphinx platform components and are also available to Sphinx-based modeling tool applications:

· Core: 
· Description service for identifying and handling EMF meta-models which may consist of many EPackages and exist in different versions;
· Description service for identifying and handling EMF models that may coexist in the workspace and have different scopes of included projects and files; support for dynamically expanding/reducing their scopes;

· Extensible low-level model conversion service enabling to use a single meta-model implementation for handling resources created with different (compatible) versions of the same meta-model;

· APIs guaranteeing thread-safe loading, saving, and unloading of model elements and resources by imposing exclusive model and workspace access;

· APIs facilitating transition between EMF and workspace resources as well as EMF URI and workspace paths;

· APIs for managing a resource’s or model’s dirty state;

· Extension points for contributing custom model scopes for specific EMF meta-models, customized EMF commands for individual model element types and features, alternative EMF resource locators for image and string retrieval, EMF resource handlers, and editing domain factory listeners;

· Performance-optimized EMF resource implementation (supporting memory gentle unloading), performance-optimized resource set implementation (providing fast lookup of resources for given URIs); performance-optimized content type detection.
· UI: 

· Extensible thread-safe tabbed property section capable of displaying workspace resource and model element properties; can be used to contribute an “Advanced” section to tabbed properties views;

· JFace viewer filters for model elements;

· Extension point for contributing property source filters which enable irrelevant model element properties to be hidden from properties view;
· Reusable wizards, dialogs, fields, and widgets simplifying the creation of form editor, wizard, and dialog content.

Future components
The components that have been realized so far provide only a small subset of services which are essential for building integrated modeling tool environments. Much other functionality is necessary and useful and will be added to Sphinx later on. Potential future Sphinx components include but are not limited to:

· Model query and indexing service for significantly improving performance and memory consumption based on EMF Query 2;
· Model repository and database persistence support based on CDO;
· Connector for documentation and report generation with BIRT
· Socket for Xtext-based textual editors and Graphiti-based graphical editors supporting thread-safe operation on shared model instances in the workspace, model-oriented dirty state management, and editor-relative undo/redo contexts (see Explorer View and Editor Sockets for details);

· Code generation interfaces supporting existing M2T languages and runtimes (e.g. Xpand, MTL, JET);
· Model to model transformation interfaces supporting existing M2M languages and runtimes (e.g. Xtend, QVT, ATL;
· Model search & replace using EMF Search;

· Model variant handling services using EMF Feature Model;

· Mylyn integration;
· Workflow & build system supporting mixed model-based and file-based processing (e.g. model validation, code generation, code compilation) and performing incremental, full, or continuous builds.
Relationship with other Eclipse Projects

· Sphinx will be built on top of the Eclipse Platform and EMF.
· Sphinx will also use complementary components of the Eclipse Modeling Project. EMF Transaction, EMF Validation, EMF Compare, and GMF will be needed immediately. Others like EMF Query 2, CDO, BIRT, Xtext, Graphiti, parts of M2T and M2M, EMF Search, EMF Feature Model, etc. are likely to be required later on.
· In order to enable smooth integration of modeling tools created with Sphinx with complementary non-modeling tools used in software and systems development, Sphinx will make use of related Eclipse projects and components where applicable. For example, CDT could be leveraged for linking modeling with implementation by enabling navigation, validation, quick fixing, auto completion, etc. across the two.
· Sphinx will make contributions to the Eclipse projects and components it is using as appropriate. Such contributions may consist of bug fixes, performance optimizations, API extensions, or utility enhancements.
· Sphinx has conceptual kind of relationships to the IDE Meta-tooling Platform (IMP) and Tigerstripe projects: 
· Since its beginnings, Eclipse has been shipped with rich integrated tool support (IDEs) for various programming languages. IMP is a project providing building blocks which are necessary to create additional IDEs for programming languages that are not yet supported under Eclipse. Introducing a similar kind of meta-tooling platform for modeling languages, the Sphinx project represents a perfect analogon of IMP for the modeling world.
· Tigerstripe is a set extensible set of modeling tools targeting the telecommunications vertical domain. It encompasses an implementation and graphical editing support for a DSL derived from UML2 which is dedicated to model-based design of communication systems. It also supports model-driven development through extensible generation of application code, APIs, specifications or documentation. Tigerstripe therefore represents an example of a concrete modeling tool environment which Sphinx will provide the meta-tooling for. Well knowing that this is not the case in practice, it could still make sense to investigate if the two projects could benefit from each other.
Organization

Mentors

· Ed Merks (Macro Modeling, Canada)
· Sven Efftinge (itemis, Germany)

Proposed initial committers
The initial committers for this project are:

· Stephan Eberle (Geensys, France), lead
· Sébastien Gérard (CEA LIST, France), lead
· Ali Akar (Geensys, France)
· Yannick Didierjean (Geensys, France)
· Romain Sezestre (Geensys, France)
· Paul Hoser (BMW Car IT, Germany)
· Christian Knüchel (BMW Car IT, Germany), release engineering
· Kenn Hussey (Independent, Canada)

· Yann Tanguy (CEA LIST, France)

· Cédric Dumoulin (Lifl, France)
· Thibault Landre (ATOS Origin, France)
Interested parties

The following individuals, organisations, companies, and projects have expressed interest in this project:

· Continental Engineering Services, Germany
· PSA Peugeot Citroën, France
· itemis, Germany
· SAP, Germany

· …

· t.b.c.
Code contributions
Artop
The initial code contribution will come from the Artop project. Artop (AUTOSAR Tool Platform) is based on Eclipse and provides common base functionality for creating modeling tools supporting the AUTOSAR standard. AUTOSAR (AUTomotive Open System Architecture) is a design standard from the automotive industry focusing on the system architecture of control software for road vehicles, its deployment to networked ECU (Electronic Control Unit) devices in vehicles, and the configuration of the basic software in such ECUs.
Artop essentially encompasses implementations of the different releases of the AUTOSAR meta-model (alias DSL) plus a rich set of services and components for managing and processing AUTOSAR models. A particular characteristic of Artop is the capability of handling relatively big AUTOSAR models in an efficient way. Artop therefore corresponds in almost all aspects to what is intended to be done in the Sphinx project. The only conceptional difference is that Artop is still dedicated to one specific design standard and DSL (namely AUTOSAR) in one specific vertical domain (namely automotive). Another limitation is that Artop could not be made available under Eclipse Public License (EPL) because it contains material which is protected by AUTOSAR IP regulations and must be kept accessible to AUTOSAR members and partners only.

Sphinx can therefore be seen as a generalization of the Artop idea aiming at a modeling tool platform for arbitrary design standards and modeling languages in arbitrary vertical domains being available under EPL. Thanks to the architecture of Artop, this can be achieved quite quickly: An important portion of the services and components in Artop has been realized in a generic way and is located in a separate layer (Eclipse Complementary Layer, ECL). It has no dependencies to the other AUTOSAR-specific layer of the platform (Artop AUTOSAR Layer, AAL) which contains the AUTOSAR meta-model implementations plus some related services and is subject to AUTOSAR IP regulations. The idea therefore is to move the complete ECL layer from Artop to Sphinx and provide mature initial implementations for the components proposed above right away.
Papyrus

The initial code contribution from Artop will be complemented by parts which are currently developed in the Papyrus project. Papyrus is an open source component of the Model Development Tools (MDT) subproject to provide an integrated, user-consumable environment for editing models based on UML and other related languages such as SysML an MARTE. Specially, Papyrus provides diagrams editors for both UML2 and SysML and the required glue around valuable these editors (GMF-based or not) and other MDE tools. It also offer a very advanced support of UML profile that enable its users to define editors of DSMLs based on the UML2 standard and relying its standard extension mechanism namely the UML profiles. The main feature of Papyrus w.r.t. this latter point is to provide a set of very powerful customization mechanisms enabling its users to create specific Papyrus perspectives make this latter look like a pure DSML editor.
Papyrus architecture consists of a set of plug-ins that are based on the Papyrus-core plug-in. This latter allows hence to plug multiple heterogeneous ‘nested editors’ possibly based on different technologies (e.g., GEF, GMF, …). Papyrus-core provides also a facility that support multi-editors view (called sash windows) in which nested editors can be arranged in tab folders and side by side. The Papyrus-core architecture is designed to be opened and easily enable the addition of new nested editors and transversal services available to all nested editors. All model management facilities (e.g., loading, saving, sharing, …) are indeed ensured by external services. The main advantage of this architecture is its flexibity: it is then possible to use transparently for the editors to use different services depending of the usage context of Papyrus. Finally, another main point of Papyrus is that all nested editors share the same set of resources.
The preliminary contribution of Papyrus to Sphinx is then its core plug-in (including its facility to management external services to editor and its sash windows support). In that case, the contributions from Artop can be designed as external services plugged to the Papyrus core.
Tentative Plan

	Jan 2010:
	Proposal published and announced to membership

	Apr 2010:
	Initial code contribution from Artop project

	Jul 2010:
	Artop 2.2 released on Sphinx


	Sept 2010:
	Architecture consolidation,
Identification of additional code contributions from Papyrus project,
Definition of behavioral changes and extensions in Artop contribution required by Papyrus

	Nov 2010 – Feb 2010:
	Implementation of architectural and behavioral changes,
Migration of Artop and Papyrus to consolidated Sphinx platform


�But how to release Artop if it is protected ?





