
An overview of MDDI Bus 
 
 
Why? 
   Integration of MDD tools 
 
MDD tool integration is a specialization of generic tool integration. 
 
Generic tool integration requirements 

− service integration 
o through service interfaces 

� registry-driven interaction 
          

o requirements on tool 
� a tool should provide and publish service APIs (provided and 

possibly required) 
o requirements on bus 

� service registry, matching of provided/required interfaces 
             

− event-driven interaction 
o event subscription and notification service 

 
o requirements on tool 

� event interfaces (events it generates and consumes) should 
be published 

o requirements on bus 
� event management services 

 
 
MDD tool integration requirements 
 
MDD tool categories 
− model editors (visual, textual, etc) 

o need to transform between concrete and abstract syntaxes 
− model compilers and executers 

o operate mostly at the abstract syntax level 
− model analyzers 

o operate mostly at the abstract syntax level 
 
MDD tool characteristics 
− An MDD tool processes models of a given meta model 
− Meta models of different tools can overlap 

o syntactic overlap (i.e. same meta classes exist in both) 
o semantic overlap (i.e. meta classes may be different but objects of 

one are derivable from the objects of the other) 



− There can be a unified meta model of which tool specific meta models are 
views 

 
MDD tool integration requirements 
- All the generic tool integration requirements described above and the 

following: 
o Model integration 

� each tool publishes the MOF meta model of the models it 
manages 

� producer-consumer (of models) relationships between tools 
� push/pull interfaces; 

• batch push/pull 
o entire model is pushed/pulled 
o in XMI form 

• incremental push/pull 
o delta models 

• push/pull may be initiated by the participating tools 
themselves, or by an external agent (such as host IDE 
or a process execution engine, etc) 

 
o requirements on bus 

� setup producer consumer relationships between tools 
• meta model maps, in the form of transfromation 

specs such as QVT 
o default model map (copy) that can be 

overridden by extensions where 
transformations can be plugged in 
� transformations may be simple 

copiers when the source and target 
meta models are identical 

� batch push 
• export source model from source tool in XMI form 
• run transformation, transform it to models of the 

consumer tools 
• import target models into target tools 

� delta push 
• export delta model from the source tool 
• run transformation which produces the target 

model in XMI, and delta model of the target model 
as a side effect. 

• import delta models into target tools 
        Alternately when a tool does not support delta models, 

• tools provide notification mechanisms for change 
notification 

• bus builds delta models from these notifications 
• Upon push, transformations are run as before 



• Bus updates the target models by invoking model 
update APIs of the target tools 

� pull is similar to push, it is just that it is initiated by a 
consumer and models are pulled from all the registered 
producers. 

 
o requirements on tool 

� batch push/pull 
• XMI export/import of abstract models 
• XMI export/import of view models optionally 

� delta push/pull 
• delta model support 
or 
• model change notification support and APIs to 

update models 
 

o View model integration 
Producers and consumers of view models are expected to have the 
same meta models and same visual notations to render them. A view 
model just needs to be copied from producer to the consumer without 
needing any transformation. 

 
o Inter-model consistency checking between models produced by 

different tools 
� a third pre-defined generic constraint validation tool acts as a 

consumer of the respective tools 
• consistency constraints can be specified using OCL or 

QVT 



 
A possible eclipse-based realization of the above 

Fig. 1. Architecture of MDDI bus
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Generic tool: 
- Service interface 

o provided interface 
o required interface 

 
- Event interface 

o produced events 
o <event_name> <data>* 

o consumed events 
o <event_name> <event_handler> <data>* 

 
MDDTool extends Generic tool: 
- XMI model export interface 
- XMI model import interface 
- XMI view model export interface 
- XMI view model import interface 
- Model change event notification interface 
- Reflexive API to update models 
    
Generic tool integration bus: 
// Provides service registry and event management services 

o Tool extension point: 
o <Tool_id> 



// service registry related 
o <startup_interface> 
o (<interfrace_name> <interface_class>)* 
o <shutdown_interface> 
// event subscription inerface 
o (<event_id> <event_handler>)* 

 
o APIs: 
// service lookup  

o getInterface(<interface_name>):Interface 
// event publication interface 

o publishEvent(<event_id>, <data>) 
 
MDD tool integration bus extends Generic tool integration bus: 

o Tool extension point: 
o <Tool_id> 
o <Meta_model_spec> // meta model XMI file 
o <XMI_export_interface> 
o <XMI_import_interface> 
o [<XMI_view_export_interface>] 
o [<XMI_view_import_interface>] 
o MOF-reflexive-api = (yes|no) 
o ChangeNotification = (yes|no) 

o Producer-consumer extension point: 
o Producer-tool=<tool_id> 
o Consumer-tool=<tool_id> 
o [transformation-spec=<xyz>.qvt] 
o Transfer-mode=(batch|delta) 

o Inter-model consistency extension point: 
o Producer-tools=(<tool_id_1>, <tool_id_2>,...<tool_id_n>) 
o Consistency-spec=(<xyz>.ocl | <xyz>.qvt) 

o APIs: 
// push/pull interface 

o modelPull(<into_tool_id>) 
o modelPush(<from_tool_id>) 
o viewPull(<into_tool_id>) 
o viewPush(<from_tool_id>) 

// change notification interface 
o notifyChange(<from_tool_id>, <change-kind>, <value>, 

[<oldValue>]) 


