
An overview of MDDI Bus

Why?
 Integration of MDD tools

MDD tool integration is a specialization of generic tool integration.

Generic tool integration requirements

− service integration
o through service interfaces

� registry-driven interaction

o requirements on tool
� a tool should provide and publish service APIs (provided and

possibly required)
o requirements on bus

� service registry, matching of provided/required interfaces

− event-driven interaction
o event subscription and notification service

o requirements on tool

� event interfaces (events it generates and consumes) should
be published

o requirements on bus
� event management services

MDD tool integration requirements

MDD tool categories
− model editors (visual, textual, etc)

o need to transform between concrete and abstract syntaxes
− model compilers and executers

o operate mostly at the abstract syntax level
− model analyzers

o operate mostly at the abstract syntax level

MDD tool characteristics
− An MDD tool processes models of a given meta model
− Meta models of different tools can overlap

o syntactic overlap (i.e. same meta classes exist in both)
o semantic overlap (i.e. meta classes may be different but objects of

one are derivable from the objects of the other)

− There can be a unified meta model of which tool specific meta models are
views

MDD tool integration requirements
- All the generic tool integration requirements described above and the

following:
o Model integration

� each tool publishes the MOF meta model of the models it
manages

� producer-consumer (of models) relationships between tools
� push/pull interfaces;

• batch push/pull
o entire model is pushed/pulled
o in XMI form

• incremental push/pull
o delta models

• push/pull may be initiated by the participating tools
themselves, or by an external agent (such as host IDE
or a process execution engine, etc)

o requirements on bus

� setup producer consumer relationships between tools
• meta model maps, in the form of transfromation

specs such as QVT
o default model map (copy) that can be

overridden by extensions where
transformations can be plugged in
� transformations may be simple

copiers when the source and target
meta models are identical

� batch push
• export source model from source tool in XMI form
• run transformation, transform it to models of the

consumer tools
• import target models into target tools

� delta push
• export delta model from the source tool
• run transformation which produces the target

model in XMI, and delta model of the target model
as a side effect.

• import delta models into target tools
 Alternately when a tool does not support delta models,

• tools provide notification mechanisms for change
notification

• bus builds delta models from these notifications
• Upon push, transformations are run as before

• Bus updates the target models by invoking model
update APIs of the target tools

� pull is similar to push, it is just that it is initiated by a
consumer and models are pulled from all the registered
producers.

o requirements on tool

� batch push/pull
• XMI export/import of abstract models
• XMI export/import of view models optionally

� delta push/pull
• delta model support
or
• model change notification support and APIs to

update models

o View model integration
Producers and consumers of view models are expected to have the
same meta models and same visual notations to render them. A view
model just needs to be copied from producer to the consumer without
needing any transformation.

o Inter-model consistency checking between models produced by

different tools
� a third pre-defined generic constraint validation tool acts as a

consumer of the respective tools
• consistency constraints can be specified using OCL or

QVT

A possible eclipse-based realization of the above

Fig. 1. Architecture of MDDI bus

Legend

 Provided services Required services Events produced Events consumed Extension point

 MDD Tool Generic tool

ration busgMDD tool interation busgGeneric tool inte

Generic tool:
- Service interface

o provided interface
o required interface

- Event interface

o produced events
o <event_name> <data>*

o consumed events
o <event_name> <event_handler> <data>*

MDDTool extends Generic tool:
- XMI model export interface
- XMI model import interface
- XMI view model export interface
- XMI view model import interface
- Model change event notification interface
- Reflexive API to update models

Generic tool integration bus:
// Provides service registry and event management services

o Tool extension point:
o <Tool_id>

// service registry related
o <startup_interface>
o (<interfrace_name> <interface_class>)*
o <shutdown_interface>
// event subscription inerface
o (<event_id> <event_handler>)*

o APIs:
// service lookup

o getInterface(<interface_name>):Interface
// event publication interface

o publishEvent(<event_id>, <data>)

MDD tool integration bus extends Generic tool integration bus:

o Tool extension point:
o <Tool_id>
o <Meta_model_spec> // meta model XMI file
o <XMI_export_interface>
o <XMI_import_interface>
o [<XMI_view_export_interface>]
o [<XMI_view_import_interface>]
o MOF-reflexive-api = (yes|no)
o ChangeNotification = (yes|no)

o Producer-consumer extension point:
o Producer-tool=<tool_id>
o Consumer-tool=<tool_id>
o [transformation-spec=<xyz>.qvt]
o Transfer-mode=(batch|delta)

o Inter-model consistency extension point:
o Producer-tools=(<tool_id_1>, <tool_id_2>,...<tool_id_n>)
o Consistency-spec=(<xyz>.ocl | <xyz>.qvt)

o APIs:
// push/pull interface

o modelPull(<into_tool_id>)
o modelPush(<from_tool_id>)
o viewPull(<into_tool_id>)
o viewPush(<from_tool_id>)

// change notification interface
o notifyChange(<from_tool_id>, <change-kind>, <value>,

[<oldValue>])

