An overview of MDDI Bus

Why?
Integration of MDD tools

MDD tool integration is a specialization of generic tool integration.

Generic tool integration requirements
- service integration
o through service interfaces
= registry-driven interaction

o requirements on tool
= atool should provide and publish service APIs (provided and
possibly required)
o requirements on bus
= service registry, matching of provided/required interfaces

- event-driven interaction
o event subscription and notification service

o requirements on tool
= eventinterfaces (events it generates and consumes) should
be published
o requirements on bus
= event management services

MDD tool integration reguirements

MDD tool categories
- model editors (visual, textual, etc)
o need to transform between concrete and abstract syntaxes
- model compilers and executers
o operate mostly at the abstract syntax level
- model analyzers
o operate mostly at the abstract syntax level

MDD tool characteristics
- An MDD tool processes models of a given meta model
- Meta models of different tools can overlap
o syntactic overlap (i.e. same meta classes exist in both)
o semantic overlap (i.e. meta classes may be different but objects of
one are derivable from the objects of the other)

- There can be a unified meta model of which tool specific meta models are
views

MDD tool integration requirements
- All the generic tool integration requirements described above and the
following:
o Model integration
= each tool publishes the MOF meta model of the models it
manages
= producer-consumer (of models) relationships between tools
= push/pull interfaces;
e batch push/pull
o entire model is pushed/pulled
o in XMl form
e incremental push/pull
o delta models
e push/pull may be initiated by the participating tools
themselves, or by an external agent (such as host IDE
or a process execution engine, etc)

o requirements on bus
= setup producer consumer relationships between tools
e meta model maps, in the form of transfromation
specs such as QVT
o default model map (copy) that can be
overridden by extensions where
transformations can be plugged in
» transformations may be simple
copiers when the source and target
meta models are identical
= batch push
e export source model from source tool in XMI form
e run transformation, transform it to models of the
consumer tools
e import target models into target tools
= delta push
e export delta model from the source tool
e run transformation which produces the target
model in XMI, and delta model of the target model
as a side effect.
e import delta models into target tools
Alternately when a tool does not support delta models,
e tools provide notification mechanisms for change
notification
e bus builds delta models from these notifications
e Upon push, transformations are run as before

e Bus updates the target models by invoking model
update APIs of the target tools
= pullis similar to push, it is just that it is initiated by a
consumer and models are pulled from all the registered
producers.

o requirements on tool
= batch push/pull
o XMI export/import of abstract models
e XMI export/import of view models optionally
= delta push/pull
e delta model support
or

e model change notification support and APlIs to
update models

o View model integration
Producers and consumers of view models are expected to have the
same meta models and same visual notations to render them. A view

model just needs to be copied from producer to the consumer without
needing any transformation.

o Inter-model consistency checking between models produced by
different tools
» athird pre-defined generic constraint validation tool acts as a
consumer of the respective tools

e consistency constraints can be specified using OCL or
QVT

A possible eclipse-based realization of the above

7 I

Generic tool integration bus MDD tool integration bus

[[[
[cooJooo]ooo

0T Y 99999 ¢

Generic tool MDD Tool

Fig. 1. Architecture of MDDI bus

Legend

(f Provided services TRequired servicesTEvents produced TEvents consumed Extension point

Generic tool:

- Service interface
o provided interface
o required interface

- Eventinterface
o produced events
o <event _name> <data>*
o consumed events
o <event_name> <event_handler> <data>*

MDDTool extends Generic tool:

- XMI model export interface

- XMI model import interface

- XMI view model export interface

- XMl view model import interface

- Model change event notification interface
- Reflexive API to update models

Generic tool integration bus:
/I Provides service registry and event management services
o Tool extension point:
o <Tool_id>

/] service registry related

o <startup_interface>

o (<interfrace_name> <interface_class>)*
o <shutdown_interface>

/I event subscription inerface

o (<event_id> <event_handler>)*

o APIs:
Il service lookup

o getinterface(<interface_name>):Interface
/I event publication interface

o publishEvent(<event_id>, <data>)

MDD tool integration bus extends Generic tool integration bus:
o Tool extension point:
o <Tool_id>
<Meta_model_spec> // meta model XMl file
<XMI_export_interface>
<XMI_import_interface>
[<XMI_view_export_interface>]
[<XMI_view_import_interface>]
MOF-reflexive-api = (yes|no)
o ChangeNotification = (yes|no)
o Producer-consumer extension point:
o Producer-tool=<tool_id>
o Consumer-tool=<tool_id>
o [transformation-spec=<xyz>.qvt]
o Transfer-mode=(batch|delta)
o Inter-model consistency extension point:
o Producer-tools=(<tool_id_1>, <tool_id_2>,...<tool_id_n>)
o Consistency-spec=(<xyz>.ocl | <xyz>.qvt)
o APIs:
/I push/pull interface
o modelPull(<into_tool_id>)
o modelPush(<from_tool_id>)
o viewPull(<into_tool_id>)
o viewPush(<from_tool_id>)
/I change notification interface
o notifyChange(<from_tool_id>, <change-kind>, <value>,
[<oldValue>])

O O O O O O

