The TCK Process of Bean Validation 2.0 (JSR 380)

The TCK Process of Bean Validation 2.0 (JSR 380)
Overview

Structure
Linking of TCK Tests to Specification
Certification

TCK Appeals Process (official description)

Overview

A TCK, or Technology Compatibility Kit, is one of the three required pieces for any JSR (the
other two being the specification document and the reference implementation). The TCK is a set
of tools and tests to verify that an implementation of the technology conforms to the
specification.

The Bean Validation TCK is
e A comprehensive test suite of the Bean Validation API that each implementor must
pass
Fully open-source (under Apache Software License 2.0)
Hosted on GitHub: https://github.com/beanvalidation/beanvalidation-tck
Thoroughly documented:
http://docs.jboss.org/hibernate/beanvalidation/tck/2.0/reference/html_single/

https://github.com/beanvalidation/beanvalidation-tck
http://docs.jboss.org/hibernate/beanvalidation/tck/2.0/reference/html_single/

Structure

The Bean Validation TCK comprises:
e > 950 Arquillian-based unit tests
o Must be run in Java EE container for certification
o Alternative Java-SE-based set-up for development purposes
e A signature file for SigTest (http://wiki.netbeans.org/SigTest) to assert 100% API
compatibility of APl JARs with the specified API

Linking of TCK Tests to Specification

When developing the TCK, it is vital to have an understanding of which parts of the specification
text are covered by corresponding TCK tests and where more tests are needed. For this

purpose:
e Phrases and statements in the spec that are relevant for the TCK are marked with the

“tck-testable” label:

[[constraintdeclarationvalidationprocess-inheritance]]

=== Inheritance (interface and superclass)

#A constraint declaration can be placed on an interface.# #For a given class, constraint ded

#The effect of constraint declarations is cumulative. Constraints declared on a superclass getter will be

[[constraintdeclarationvalidationprocess-groupsequence]]
=== Group and group sequence
A group defines a subset of constraints. Instead of validating all constraints for a given object graph, only a subset i

#Groups are represented by interfaces.#

e All “ick-testable” phrases are extracted into the tck-audit.xml file:

1 id="constraintdeclarationvalidationprocess-inheritance" title="Inheritance (interface and superclass)" leve

n id="a">
>A constraint declaration can be placed on an interface.</text>
on>
on id="b">
text>For a given class, constraint declarations held on superclasses as well as interfaces are evaluated by
)n>
ion id="c">
>The effect of constraint declarations is cumulative. Constraints declared on a superclass getter will

on>

on>
on id="constraintdeclarationvalidationprocess—groupsequence" title="Group and group sequence" level="2">

rtion id="a">
ext>If no group is explicitly declared, a constraint belongs to the Default group.</text>
n=
id="b">
xt>Groups are represented by interfaces.</text>
on>

http://wiki.netbeans.org/SigTest

TCK tests are linked to “tck-testable” spec statements through the @ SpecAssertion

annotation:
/%k
* ~ Hardy Ferentschik

*/

@SpecVersion(spec = "beanvalidation", version = "2.0.0")
public class ConstraintInheritanceTest extends AbstractTCKTest {

@Deployment

public static WebArchive createTestArchive() {
return webArchiveBuilder()
.withTestClassPackage(ConstraintInheritanceTest.class)

.build();
}

@Test

@SpecAssertion(section = Sections.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "b")
public void testConstraintsOnSuperClassArelnherited() {
BeanDescriptor beanDescriptor = getValidator().getConstraintsForClass(Bar.class);

String propertyName

= "fOO":

assertTrue(beanDescriptor.getConstraintsForProperty(propertyName) != null);
PropertyDescriptor propDescriptor = beanDescriptor.getConstraintsForProperty(propertyName);

Annotation constraintAnnotation = propDescriptor.getConstraintDescriptors()

.iterator()

.next().getAnnotation();
assertTrue(constraintAnnotation.annotationType() == NotNull.class);

A report is generated that shows how many “tck-testable” statements have

corresponding tests:

5 Constraint declaration and validation process [constraintdeclarationvalidationprocess]

5.1 Requirements on classes to be validated [

5.1.1 Object validation

5.1.2 Field and property validation

5.1.3 Graph validation !

5.1.3.1 Examples

5.2 Constraint declaration

5.3 Inheritance (interface and superclass)

5.4 Group and group sequence

5.4.1 Group inheritance [

5.4.2 Group sequence

5.4.3 Redefining the Default group for a class U

0 0 0 0 o

5 4 4 0 4

2 2 2 0 z

q proper) 5 5 5 0 5
1 16 14 14 0 14

ples] 0 0 0 0 <]

1 1 1 0 1

ess-inheritance] 3 3 3 0 3
4 4 4 0 4

1 2 2 2 0 2

10 7 7 0 7

J) 4 3 3 0 3

-implicitgrouping] 1 1 1 0 1

5.4.4 Implicit grouping

Spec document can be rendered to highlight all “tck-testable” statements, allowing to
visually identify sections with lacking coverage:

Bean Validation specification £3

& CG o Q,_ file:/f/Users/gunnar/Development/hibernate-validato lidation-sp get/htmifindex.html#co. | Q. Suchen 1Y @

3.1.1. Constraint definition
properties

3.1.2. Examples

3.2. Applying multiple constraints of
the same type

3.3, Constraint composition

3.4. Constraint validation
implementation

3.4.1. Implementation of temporal
constraint validators

3.4.2. Examples
3.5. The ConstraintValidatorFactory
4. Value extractor definition
4.1. @ExtractedValue
4.2. @UnwrapByDefault
4.3, Built-in value extractors
4.4, Examples

5. Constraint declaration and validation
process

5.1. Requirements on classes to be
validated

5.1.1. Object validation
5.1.2. Field and property validation
5.1.3. Graph validation

5.3. Inheritance (interface and superclass)

A constraint declaration can be placed on an interface. For a given class, constraint declarations held on superclasses as
well as interfaces are evaluated by the Bean Validation provider. Rules are formally described in Formal group
definitions.

The effect of constraint declarations is cumulative. Constraints declared on a superclass getter will be validated along with
any constraints defined on an overridden version of the getter according to the Java Language Specification visibility
rules.

5.4.Group and group sequence

A group defines a subset of constraints. Instead of validating all constraints for a given object graph, only a subset is
validated. This subset is defined by the group or groups targeted. Each constraint declaration defines the list of groups it
belongs to. If no group is explicitly declared, a constraint belongs to the Default group.

Groups are represented by interfaces.

Example 5.6: Definition of groups

100.00%
100.00%
100.00%
100.00%

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

Certification

In order to certify a Bean Validation implementation as a fully-compliant implementation, the
spec lead or their designate

runs the TCK against the implementation in a Java EE container
runs the SigTest check against the implementation’s Bean Validation API JAR (if
present)

Compatible implementations are listed on https://beanvalidation.org/. Once certified,
implementations must not be re-certified after new releases.

TCK Appeals Process (official description)

Any Bean Validation implementor may challenge any test case (i.e. @Test method),
test case configuration (e.g. @Deployment, validation.xml), test entities,
annotations and other resources
Challenges are submitted by opening a JIRA issue at
https://hibernate.atlassian.net/browse/BVTCK

o if needed for security reasons, visibility can be constrained to private

o Can send email to beanvalidation-tck@redhat.com upfront in case of

uncertainties

Challenges will be addressed in a timely fashion by the Bean Validation TCK
Lead
Discussion in JIRA to acknowledge the issue and possible solutions; once
resolved, appellant should, within 30 days, either close the issue if they agree, or
reopen the issue if they do not believe the issue to be resolved
Resolved issues not addressed for 30 days will be closed by the TCK Lead. If the
TCK Project Lead and appellant are unable to agree on the issue resolution, it
will be referred to the JSR 380 specification lead
A new TCK release with updated (or removed) tests will be done
Some numbers:

o 18 appeals in Bean Validation 1.0 - 2.0 (17 Fixed, one rejected)

o Existing appeals resolved within ~6 days

https://beanvalidation.org/
http://docs.jboss.org/hibernate/beanvalidation/tck/2.0/reference/html_single/#appeals-process
https://hibernate.atlassian.net/browse/BVTCK
mailto:beanvalidation-tck@redhat.com

