
JNoSQL (Cf) Dual Licensing Request to
the Eclipse Foundation

NoSQL

● Database
● Doesn't use relationship
● BASE
● Four types

Description

The JNoSQL is a several tools to make easy an integration between the Java Application with the NoSQL. To solve this
problem the project has two layers:

● Communication API: An API just to communicate with the database, exactly what JDBC does to SQL. This API has four
specializations, one for each kind of database.

● Abstraction API: An API to do integration and do the best integration with the Java developer. That is annotation drive

and has integration with other technologies like Bean Validation, etc. To solve it this layer is a CDI based.

This way, the NoSQL vendors just need to implement the communicate API without warning about the another API.

So, the project has two core project that is Diana and Artemis project.

Description
● Artemis as abstraction API:

○ Communicate with the Data Access Object (DAO)
○ Integrate with other technologies such as CDI and

Bean Validation
○ Focus on integration to make the developer life

easier
○ What the JPA does to SQL databases

● Diana as Communication API:
○ communicate with the database
○ Manage Connection
○ Focus on communication between the database and

the application
○ What the JDBC does to SQL databases

Diana Project

● Diana has four API, one to each NoSQL type,
and its respective TCK, Technology
Compatibility Kit. So, if a NoSQL vendor
wants to support Diana project just need to
implement an API, from his specific
database, and then run the TCK, if all tests
had passed this database supports Diana
API. If they want is possible to add supports
to specific behavior that just its database has.

Diana Project

Just with Diana API base, is possible
to connect a several kind of NoSQL
database.

Artemis● CDI Based
● Diana Based
● Annotation Based
● Events to insert, delete, update
● Supports to Bean Validation
● Configurable and extensible

Annotations

● MappedSuperclass
● Entity
● Column

@Entity("movie")
public class Movie {

 @Column
 private String name;

 @Column
 private long year;

 @Column
 private Set<String> actors;

Events

Movie

firePreEntity firePreAPI firePostAPI firePostEntity

Interceptor

Scope
● Standardize the NoSQL databases, but don't forget the diversity

that there is on that.
● A simple API to support Column NoSQL Database
● A simple API to support Key-value NoSQL Database
● A simple API to support Graph NoSQL Database
● A simple API to support Document Database
● Convention over configuration
● Support for asynchronous queries
● Support for asynchronous writes operations
● An easy API to implement, so that NoSQL vendors can comply with

it and test by themselves.

Initial Developers

● Anatole Tresch
● Werner Keil
● Otavio Goncalves de

Santana
● Luca Garulli
● Oliver B. Fischer

● Gerald Sangudi
● Prasad Varakur
● Christoph Engelbert
● Johan Larson
● Daniel Cunha

Initial Developers
● Spring Data http://projects.spring.io/spring-data/
● Hibernate ogm: http://hibernate.org/ogm/
● Eclipselink: http://www.eclipse.org/eclipselink/
● Jdbc-json: https://github.com/jdbc-json/jdbc-cb
● Simba: http://www.simba.com/drivers/
● Tinkerpop: http://tinkerpop.apache.org/

http://projects.spring.io/spring-data/
http://hibernate.org/ogm/
http://www.eclipse.org/eclipselink/
https://github.com/jdbc-json/jdbc-cb
http://www.simba.com/drivers/
http://tinkerpop.apache.org/

