Hyades Protocol Specification

Page 18 of 18

Hyades Protocol Specification
Revision History

	Rev.
	Date
	Author
	Summary of Changes

	0.1
	April 27, 2004
	A. Kaylor
	First draft

	0.2
	May 5, 2004
	A. Kaylor
	Completely revised to reflect new understand of Layer Zero

	0.3
	May 24, 2004
	A. Kaylor
	Incorporated feedback on Layer Zero, added Layer One specification

	0.4
	May 28, 2004
	A. Kaylor
	Added Agent Manager specification

	0.4.1
	June 8, 2004
	A. Kaylor
	Minor revisions based on document review

	0.5
	July 23, 2004
	A. Kaylor
	Widely revised based on pipeline concept.

Introduction

This document will provide a description of the base protocol for the Hyades Collector Engine (HCE). The details of message formats at each stage in the pipeline may vary, depending upon the transport mechanism involved and other factors. This document is intended to provide a baseline to be used (with minor variations) when a basically binary format is acceptable. The document provides details of the data format for messages as they are directed from a Hyades client through to an agent.
One of the goals of this design is to provide a fast, lightweight communication mechanism. Therefore, complex message formats such as SOAP and WSDL are not used. However, the HCE is designed in such a way that those mechanisms may be layered on top of this base design if needed. See the “Hyades Message Pipeline” document for more details.

Figure 1 below shows a basic diagram of the layers involved and how the data is modified as it is passed through the pipeline. Note that the “payload” and “normalized payload” may be the same, and both may be identical to the command header with its command data. The exact format will be discussed below.

[image: image1.emf]Client

Transport Layer

HCE

Payload Normalizer

Command Extractor

Agent

Transport Layer

msg env

payload

payload payload

cmd hdr

cmd data

cmd hdr

cmd data

normalized

payload

normalized

payload

msg env

payload

Figure 1 – Generalized Data Flow Across Layers

Transport Layer
The protocol stack begins with a transport layer plug-in. Such a plug-in provides a very focused set of capabilities to manage the connections between components. The goal of the transport layer is to provide a base layer of communications upon which other layers can be built.

The HCE supports loading of multiple transport layers. In practice, each transport layer can have its own protocol and output its own payload format. The only requirement is that the transport layer and the payload normalizer with which it is paired agree on the format.

This document describes the protocols used by the basic named pipe, socket, SSL and HTTP transport layers.

Data Format
All binary data described in this document must be sent using Big Endian byte ordering. Because these messages involve relatively small amounts of data, the reordering of the data on Little Endian machines is acceptable. For data transfer or commands that require large amounts of data, byte ordering should be negotiated to avoid excessive processing.
All string data described in this document will be represented in UTF-8 format.

Standard Message Envelope

The basic named pipe, socket and SSL transport layers all expect use the following message format:
	Bytes 0-3
	Magic number

	Bytes 4-7
	Flags

	Bytes 8-23
	MD5 code (optional)

	Bytes 24-27
	Payload size

	All remaining bytes
	Payload

This message envelope will be used for both incoming and outgoing messages. (See below for the HTTP message envelope.)
The “magic number” is used to identify the data as an HCE protocol stream. If an error occurs while the data is being read, the transport layer will be able to look for this number as an identifier of the beginning of a new message envelope and thus achieve some recovery from an error condition.
The “flags” entry is used to identify messages intended for the transport layer, such as the connection handshake described below. This field also indicates whether or not the message contains an MD5 code.

If the MD5 flag is set in the flags field, the 16-bytes immediately following the flags field will specify an MD5 hash code which will be used to verify the integrity of the incoming message. (See http://www.faqs.org/rfcs/rfc1321.html for a description of MD5.) If the MD5 flag is not set in the flags field, these 16 bytes will be ignored.
The payload size value indicates the number of bytes that comprise the message payload. For special messages, such as the connection handshake, this is processed by the transport layer, but for the majority of messages, the entire payload is forwarded to the next layer for processing.

Connection Handshake

When a client or agent connects to a transport layer, a basic handshake takes place to establish and verify the connection. Until this handshake has taken place, no other commands will be accepted.
The handshake is performed by the connecting component sending a special message with a flag set to indicate the command intended, and payload data set as necessary, and the engine sending a response accepting or rejecting the connection.

Flag Value:

SOCKET_CONNECT (bit 0 of byte 5 [first flag byte])

Payload Data:

No data

Description:

This command is sent to initiate a handshake from any object that is connecting to the engine via a socket connection. Initially, only clients are expected to connect in this way, but the protocol is capable of handling connections from other object types.

Flag Value:
PIPE_CONNECT (bit 1 of byte 5 [first flag byte])
Payload Data:

	Bytes 0-3
	Pipe name string length

	Bytes 4-(4+str length)
	Return pipe name

Description:

This command is sent to initiate a handshake from any object that is connecting to the engine via a named pipe connection. Only agents are expected to connect in this way, but the specification does not prevent other objects from doing so should it prove useful.

Flag Value:

DISCONNECT (Bit 3 of Byte 5 [first flag byte])
Payload Data:

	Bytes 0-3
	Reason code

Description:

This command is sent when an object is ready to disconnect from the HCE. It may also be sent by the HCE if the HCE has some reason to terminate the connection (e.g. the HCE is being shutdown). The HCE will notify any objects that are associated with the object being disconnected and free any associated resources. If the HCE initiated the disconnection, the associated objects will be notified and released immediately after the message is delivered. Otherwise, this will happen immediately after the message is received.
The reason code indicates why the connection is being terminated. This field is meant for HCE-initiated disconnections. The HCE will ignore these fields when it is the recipient of the message. The reason code is meant only as a means of providing program level details. If anything needs to be communicated to the user, it should be done by means of the error logging facility (TBD).
In addition, the following are sent in response to the above commands.
Command:

CONNECTTION_COMPLETE (Bit 4 of Byte 5 [first flag byte])
Data:

	Bytes 0-3
	Connection ID

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the connection is accepted. The connection ID is a value that the HCE to which a connection has been made will use to identify the object that is receiving the reply. The object receiving this reply should use this value in the sourceID field in the command header for any commands it sends after receiving this message.

Command:

CONNECTTION_REFUSED (Bit 5 of Byte 5 [first flag byte])
Data:

	Bytes 0-3
	Reason code

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the transport layer refuses the connection for any reason. The reason code is a value that the HCE provides to give some indication of why the connection was refused. It will be a value defined in Hyades header files. If anything needs to be communicated to the user, it should be done by means of the error logging facility (TBD).
HTTP Message Envelope

TBD

Session Management

TBD

Payload Normalizer
All messages which are not handled by the transport layer are forwarded (via the HCE) to another layer for further processing. The magic number, flags, MD5 code and payload size are stripped off by the transport layer. The payload size is passed as a parameter to the forwarding function, but otherwise the payload itself is forwarded as an independent block.

For basic named pipe, socket and SSL connections, the payload normalizer is not needed, and the payload is forwarded directly to the command extractor (see below). Messages received by the HTTP transport layer initially have their payload UU-encoded. Therefore, these messages are forwarded to a payload normalizer that performs UU-decoding before forwarding the payload to a command extractor.
Command Extractor
The purpose of command extractor plug-ins is to transform a message payload into discrete command blocks, as described below.

The standard message payload used by the pipelines described in this document will contain a sequence of one or more command blocks. The message payload will begin with a 32-bit number indicating the number of command blocks to follow, followed immediately by the command blocks, packaged sequentially.
The standard command extractor will process this payload, forwarding the commands, one by one, to the HCE for routing.

Command Block

All commands emerging from the command extractor must use the following format:

	Bytes 0-3
	Header ID

	Bytes 4-7
	Destination ID

	Bytes 8-11
	Source ID

	Bytes 12-15
	Session ID

	Bytes 16-19
	Interface ID

	Bytes 20-23
	Command ID

	Bytes 24-27
	Context

	Bytes 28-31
	Data size

	All remaining bytes
	Data

Header ID

The header block begins with a header ID. This is an arbitrary value which the engine uses to verify that the header is in the expected format. In the future, the engine will also use this value to identify new structures, as required. The upper 16-bits of the header ID should be a fixed value so that even if the HCE encounters a header ID that it doesn’t recognize it can verify that it is a header ID. This will allow us to distinguish unrecognized headers from other types of errors.
Destination and Source IDs

The destination ID is not intended to be globally unique, but is only unique within a single instance of the HCE. The same is true of the source ID. These IDs are the numbers which are used to identify the objects on the HCE receiving the message. When support is added for chaining HCEs together, the meaning of these IDs may change, but they will do so in a way that is transparent to the clients and the agents.

The destination ID specifies the object that is the intended recipient of the command. This may be a static ID that identifies the HCE itself (HYADES_ENGINE_ID) or it may be the ID that the engine assigned to a client or agent when that object connected to the engine (see CID_CONNECT_COMPLETE above).

The source ID specifies the object that is sending the command. When the destination object replies to a command, it will move the source ID to the destination ID field.

The current design is intended only to support routing of commands to objects which are directly connected to the HCE processing the command. In the future, it will be desirable to be able to route a command across multiple HCEs. This may require an expansion of the command block.
Session ID

TBD

Interface and Command IDs

The interface ID and command ID together uniquely identify the command that is being sent. The interface ID tells the object receiving the command what the command ID means. If the interface is not supported by the object, the command will be rejected.

In order to obtain a unique ID for interfaces, the interface ID will be created by combining a 20-bit group (i.e. company/developer) prefix with a 12-bit group-specific interface identifier. The group prefix will be stored in a common header file which will be part of the public Hyades source code. The group-specific interface identifier will be defined at the discretion of the developer.

For instance, the public file (“IFPrefix.h”) may contain the following entries:

#define HII_PUBLIC_DOMAIN 0x80000000

#define HII_ECLIPSE_HYADES_PREFIX 0x00001000

#define HII_IBM_WEBSPHERE_PREFIX 0x00002000

#define HII_IBM_RATIONAL_PREFIX 0x00003000

#define HII_SCAPA_PREFIX 0x00004000

#define HII_INTEL_VPE_PREFIX 0x00005000

Then a proprietary source file may define its interfaces as follows:

#define HII_VTCOLLECTOR HII_INTEL_VPE_PREFIX | 0x001

#define HII_VTSAMPLING HII_INTEL_VPE_PREFIX | 0x002

#define HII_VTCALLGRAPH HII_INTEL_VPE_PREFIX | 0x003

Additions to the public group prefix list will be managed in the same way as other contributions to the Hyades source. Developers who do not have commit access will need to request the addition of a new group prefix before developing new interfaces for Hyades-based products.

The uppermost bit in prefix is provided to allow developers who are not yet actively engaged with the Hyades community to define their own prefix with a reasonable expectation of avoiding collisions. This would be useful, for example, for use during the development phase of a product. Developers who wish to publicly or commercially distribute their Hyades-based products should obtain an official group prefix.
Context

The context is an arbitrary number assigned by the sender of a command. Clients may use this context value to correlate reply messages to the originating message. The usage of this element is unchanged from the previous protocol. The HCE ignores this value.
Command Data

The command data is an opaque field for the purposes of command routing. The size and contents of the data are determined by the interface ID and command ID, which determine the precise command to which the data corresponds. The specification for an interface will describe exact details of the command data for each command.

Agent Manager Interface

The Agent Manager interface is a standard interface provided by the HCE that manages access to agents and maintains agent lifecycles. The intent of the Agent Manager interface is to abstract details such as when and how an agent is launched. However, there are cases where agents are loaded by bootstrap mechanisms attached to other processes. In other cases agents may be launched independent of the HCE by an external mechanism. The Agent Manager supports the loading of agents in this way. However, it is the joint responsibility of the client and the agent to work together to establish particular agent identity (for example, the correlation of agent to process) in those case. The Agent Manager will not attempt to limit the life cycle of agents that it did not launch. The precise way this is handled is described below.
General Vision

Before going into the details of the interface commands, it is probably worth discussing the general vision for agent management that lies behind these commands.

One of the requirements for the HCE is to support a mechanism whereby clients can discover agents and agent capabilities without actually instantiating the agents. In order to support that requirement, the HCE needs access to a registry of some sort containing metadata for the agents, with a format something like the following:

Agents

org.eclipse.hyades.envinfo

Interfaces

HII_HYADES_AGENT

HII_ENVINFO

Engine Data

Single instance = true

Max clients = unlimited

Command = <command to launch agent>

Path = <path to agent>

Options = <command line options>

Client Data

<agent specific metadata goes here>

The HCE will use the entries under the “engine data” to determine when and how to launch a new instance of an agent to meet requests. When a product is installed, it will add its agents to this registry. In addition, the HCE may (optionally) query the listed agents during the startup sequence to verify that the given information has not changed. All agents must support an externally accessible function which provides the above metadata.

By default, the HCE attempts to load each agent as a dynamic library to verify the information in this table. However, this behavior may be turned off by way of the HCE configuration file.
The “Agents” section will contain entries for all available agents. Each agent will have an “Interfaces” subsection which lists all of the interfaces it supports, and a “Engine Data” subsection which contains information the Hyades DCE needs to manage the lifecycle of the agent.
In addition, the agent could optionally provide a “Client Data” subsection which provides proprietary metadata. This “Client Data” is intended only to be used to provide static metadata that will allow the client to discover the nature of an agent before it is created. This is not the agent configuration. Specific agent configuration commands are defined below (currently TBD).
Issue: Agent Registry

The agent registry is presented here as an abstract concept. We need to decide on how this will be implemented.

Reference Counting

The HCE uses a system of reference counting to manage agent lifecycles. In general, the HCE does not create an instance of an agent until it is needed by a client or another agent. When the HCE creates the agent, it gives the client (or agent) that requested use of the agent a reference to the new agent. If the agent supports multiple clients, each subsequent client requesting access to the agent also gets a reference, and the HCE maintains a reference count for the agent.

The HCE supports distinct concepts of having a reference to an agent vs. being attached to an agent. A client (or another agent) may “get” a reference to an agent that it is not actively using. Other clients or agents may reference or attach to this same agent, but as long as the client keeps its reference, the agent will be running. When a client (or agent) is ready to actively use an agent, it should “attach” to the agent. When a client is finished actively using an agent it should “detach” from the agent, and when it is completely finished with the agent, it must “release” its reference to the agent.
Whether or not multiple clients can attach to an agent will vary from one agent to the next, but it is always possible for multiple clients to get a reference to the same agent. When working with an agent that only allows a single client to be attached, a client may wish to attach immediately to claim exclusive use of the agent.

When a client (or agent) releases its reference, the HCE decrements the reference count. When the reference count for an agent reaches zero, the HCE shuts down that agent.

In the case where the agent is started by some external mechanism, the HCE counts an implicit reference when the agent connects, and the HCE will never attempt to shut it down. The case of an agent that is started in response to the client launching a process fits this category. Because the agent has a reference to itself, the HCE will never attempt to shut down this type of agent, and the agent is responsible for managing its own lifecycle.
Finally, there are cases where the HCE itself spawns agents (system agents) when it starts up (depending on how the HCE is configured). In this case, the HCE holds a reference to the agent and does not shut down the agent until the HCE is shutdown.

The following table summarizes the relationship between agent creation and reference counting:

	Agent Creation Method
	Lifetime Management

	Created by HCE per client request
	Reference counted, agent terminated on release

	Created by HCE as a system agent
	HCE referenced, agent terminated on shutdown

	Launched by external mechanism
	Implicit reference, agent owns its lifecycle

	Launched as client-created process
	Implicit reference, process determines lifecycle

The reference count is used only to determine if and when the HCE should attempt to shut down running agents. If the HCE determines that an agent is no longer available (for instance, it disconnects from the engine or an attempt to communicate with it fails) the engine will delete its connection entries and notify any objects holding reference, regardless of the reference count.

Reference counts are entirely internal to the HCE and are not exposed to clients and agents. Clients and agents are responsible for requesting a reference to agents that they use, but they should not rely on the reference being counted or used to manage agent lifetimes.
Agent Locking

In some circumstances, it may be desirable to obtain exclusive access to an agent that could otherwise be shared. A client (or agent) can request exclusive access when attaching to an agent by specifying a flag (TBD). The agent will remain exclusively locked until the client detaches from the agent.

Commands

The following commands are supported through the Hyades Agent Manager interface (HII_AGENT_MANAGER). Clients and agents use these commands to locate agents, get references to those agents and attach to those agents. More specific interaction with the agents will be managed through interfaces provided by the agents themselves.
Command:

CID_QUERY_AVAILABLE_AGENTS

Data:

	Bytes 0-3
	Number of interface IDs to follow

	Remaining Bytes
	Interface IDs as unsigned 32-bit integers

Response:
CID_AVAILABLE_AGENTS

Response Data:

	Bytes 0-3
	Number of agents found

	Bytes 4-7
	String length of first agent

	Bytes 8-(8+str length)
	Name of first agent

	Remaining bytes
	Additional pairs of the previous two items

Description:

Clients (or agents) may use this command to obtain a list of agents known by the HCE regardless of whether or not an instance of the agent is running. The client may specify zero or more interface IDs. If interface IDs are specified, the list returned will be only agents that support all of the specified IDs. If no interface IDs are specified, the list returned will be all available agents. The HCE does not create instances of these agents at this time. It also does not distinguish single-instance, single-client agents that are already in use (and thus are only potentially available). The idea is that clients can use this method to allow the user to select an agent for future use, although the agents listed can generally be used immediately.
Command:
CID_QUERY_RUNNING_AGENTS

Data:

	Bytes 0-3
	Number of interface IDs to follow

	Remaining Bytes
	Interface IDs as unsigned 32-bit integers

Response:

CID_RUNNING_AGENTS

Response Data:

	Bytes 0-3
	Number of agents found

	Remaining Bytes
	Agent IDs as unsigned 32-bit integers

Description:

Clients (or agents) may use this command to request a list of agents that are currently active and running. The list may be filtered by interface IDs as in the previous command. However, unlike the previous command, this command returns a list of identifiers of specific instances of agents. Also, if an instance of an agent cannot be attached to, it will not be returned in this list. This command is expected to be used to access agents for immediate use.
Command:
CID_GET_AGENT_METADATA

Data:

	Bytes 0-3
	Length of the agent name to follow

	Bytes 4-(4+str length)
	Name of the agent for which metadata is being requested

Response:

CID_AGENT_METADATA
Response Data:

	Bytes 0-3
	Length of the string to follow

	Bytes 4-(4+str length)
	XML fragment giving metadata

Description:

This command allows clients to obtain agent-specific metadata. The data returned isis is the “Client Data” subsection in the agent registry (see “General Vision” above) as an XML fragment. If the agent has no such metadata, the response will return zero as the string length, but a response will still be issued.
Command:

CID_GET_AGENT_REGISTRY
Data:

None

Response:

CID_AGENT_REGISTRY
Response Data:

	Bytes 0-3
	Length of the string to follow

	Bytes 4-(4+str length)
	XML fragment giving all data

Description:

This command allows clients to obtain the full list of agents and their metadata. The data is returned as an XML fragment.

Command:

CID_GET_AGENT

Data:

	Bytes 0-3
	Length of agent name string to follow

	Bytes 4-(4+str length)
	Agent name string

	Next four bytes
	Flags

Response:

CID_AGENT_REFERENCE
Response Data:

	Bytes 0-3
	Agent ID

Alternate Response:

CID_AGENT_UNAVAILABLE

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

Clients (or agents) should use this command to obtain a reference to an agent. Unless the client requests otherwise (via the flags field), the HCE may fulfill this request by returning a reference to an already running or by spawning a new instance of the agent. Alternatively, the client may use the flags field to specifically request a new instance. It is possible that the requested agent will not be available when requested. In that case, a different response command will indicate the reason.
Command:

CID_GET_SPECIFIC_AGENT

Data:

	Bytes 0-3
	Agent ID

Response:

CID_AGENT_REFERENCE
Response Data:

	Bytes 0-3
	Agent ID

Alternate Response:

CID_AGENT_UNAVAILABLE

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This command allows a client or agent to get a reference to a specific instance of an agent. This command assumes that the component issuing the command has found out about an instance of an agent by some other means. For example, a client may create two agents and then issue a proprietary command to them asking them to work together. In this case, one agent may request a reference to the other agent and the client can release its reference.
Command:

CID_RELEASE_AGENT

Data:

	Bytes 0-3
	Agent ID

Description:

A client (or agent) uses this command to release its reference to an agent that it is no longer interested in working with. The client should not attempt to use the agent after it has made this call as the agent may be shut down. No response will be sent to this command. The client should assume that the release has taken place immediately.
Command:

CID_ATTACH_TO_AGENT

Data:

	Bytes 0-3
	Agent ID

	Bytes 4-7
	Flags

Response:

CID_AGENT_ATTACHED_SUCCESSFUL
Response Data:

No data

Alternate Response:

CID_AGENT_ATTACH_DENIED

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This command allows a client (or agent) to request active access to an agent to which it has previously obtained a reference. Depending on the agent implementation or the value of the flags field, this may grant the client exclusive access to the agent until the client detaches from the agent. If another client (or agent) has already obtained exclusive access to the agent, this request may be denied. It is possible for a client to be denied attachment to an agent to which it has a reference, even if it has previously attached and subsequently detached. Clients must attach to an agent before they will be able to send commands to that agent.
Command:

CID_DETACH_FROM_AGENT

Data:

	Bytes 0-3
	Agent ID

Description:

This command allows a client (or agent) to end its active attachment to an agent. No response will be sent to this command.
Command:

CID_REGISTER_AGENT

Data:

	Bytes 0-3
	Agent ID

	Bytes 4-11
	Process ID

	Bytes 12-15
	Length of agent name string

	Bytes 16-(16+str length)
	Agent name string

Response:

CID_AGENT_REGISTERED

Response Data:

No data

Alternate Response:

CID_AGENT_REGISTRATION_REFUSED
Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

Agents issue this command to notify the Agent Manager that they are available. The Agent Manager will use the Process ID and agent name to recognize agents that the Agent Manager itself has launched.
Command:

CID_DEREGISTER_AGENT

Data:

	Bytes 0-3
	Agent ID

Response:

CID_AGENT_DEREGISTERED

Response Data:

No data

Description:

Agents issue this command to notify the Agent Manager that they are no longer available. An agent may make itself temporarily unavailable using this command and then later re-register. The HCE will not remove the agent from its connection list (as established by Layer Zero commands) because of this command.

Command:

CID_ADD_EVENT_LISTENER

Data:

	Bytes 0-3
	Event Interface ID

	Bytes 4-7
	Listener ID

Response:

CID_LISTENER_ACCEPTED

Response Data:

No data

Alternate Response:

CID_LISTENER_REJECTED

Alternate Response Data:

	Bytes 0-3
	Reason code

Description:

This command allows clients or agents to register to receive Agent Manager events. See below for details of the available events.

Events

The following event interface is supported by the Agent Manager.
HII_AGENT_MGR_AGENT_EVENTS
This interface allows clients and agents to receive notification of events related to changes in the availability of agents and changes in agent states.
Event:

EID_AGENT_REGISTERED

Data:

	Bytes 0-3
	Agent ID

Description:

This event is sent when an agent registers with the Agent Manager.

Event:

EID_AGENT_DEREGISTERED

Data:

	Bytes 0-3
	Agent ID

Description:

This event is sent when an agent deregisters with the Agent Manager.

Event:

EID_AGENT_AVAILABLE

Data:

	Bytes 0-3
	Agent ID

Description:

This event is sent when a client detaches from an agent, making the agent available to be attached to by other clients.

Event:

EID_AGENT_UNAVAILABLE

Data:

	Bytes 0-3
	Agent ID

Description:

This event is sent when a client attaches to an agent and the agent cannot accept attachments from other clients.

Revision 0.5

July 23, 2004

_1151737835.vsd
�

�

Client�

Transport Layer�

HCE�

Payload Normalizer�

Command Extractor�

Agent�

Transport Layer�

payload�

msg env�

payload�

normalized payload�

payload�

normalized payload�

msg env�

payload�

cmd hdr�

cmd data�

cmd hdr�

cmd data�

