Hyades 3.0 Planning Document

Mike Norman, Stefan Daume, Neil Sanderson
Scapa Technologies Limited, 27 January 2004

This document is an attempt to draw together some common themes for discussion in the 3.0 Hyades planning phase. It is not supposed to be “partisan”, rather to place some proposals in context with each other. Separate proposal documents from Scapa, IBM Rational (Hyades v2.0 Features Requirements Version 0.1) and a presentation from FOKUS are referred to.

1. Composite Activities

A number of problems are arising when tools invoke one or more Systems Under Test/Trace (SUTs), or start to interoperate across multiple Hyades Models, for example specifying testing and statistical capture or multiple traces from the same SUT. Currently wizards are used, which isn’t sufficiently flexible for the practical requirements articulated by either Rational or Scapa, and a similar set of issues that appear to be emerging at SAP. A RAC configuration issue has also been flagged up by the WebSphere Studio teams which is essentially a manifestation of the same problem.

There are two specific proposals which are probably quite complementary, one from Rational (Sections 2.1.1 and 2.3 with impact on 2.2.3 and 2.2.4) , which deals mainly with the User Interface and one from Scapa which is mainly concerned with the way agent information (deployment, state and state change logic etc.) can be persisted using EMF.

Underlying this is likely to be an implementation which exercises execution APIs and configures agents across the RAC in appropriate ways. There is also the possibility of using LDAP rather than EMF as the primary repository of agent information.

2. Testability Interface/Universal test engine.

The proposal consists in introducing a specific resource that would represent the testability interface of the SUT, otherwise the current behavioural model is unuseable.

Practical issues beyond this include.

· Defining an actual format for the testability interface and mapping it onto our model.

· Providing implementations of the testability interface for certain SUTs

· Providing a code generator to the testability interface from the Hyades model or a subset/façade thereof (perhaps by extension of existing code generators).

· Migrating existing Hyades demonstrator tools to the testability interface implementation and new/migrated code generator

Scapa’s attached proposal is based on WSDL/XSD as the testability interface and BPEL as a Behavioural Model Subset. FOKUS has been advocating TTCN3’s TRI. Rational deals with this in section 3.1.

3. Derived (Aggregated) Data

The data models are generally fed directly by loaders from a set of XML fragments generated in the target environment. In most cases the viewers subsequently perform some computation on the data in the model, deriving some counters, averages, or linking some event sets into hierarchies. The viewers then present a graphical representation of this derived data.

The nature of these computations is generally not persisted, nor are the output of the computations, which means that there is no re-use amongst tools other than of the base data itself, and leads to a proliferation of individual tools (e.g. the various trace viewers) rather than a set of generic widgets applied to generic models. Rational’s document deals with this under 2.1.2 to 2.1.5 and 2.2.7 Scapa’s proposal is attached.

4. Trace Model Generality

It is not proposed by anyone at this stage to address the historic problem of deriving all of the models from a common root, rather some of the above proposals make linkage amongst models which is sufficient for practical purposes at present. However, the Trace model is not currently sufficiently general to allow its use for anything other than Java, and there are pressing problems of supporting parameter data and representing the HTTP and/or SOAP/WSDL/XSD in the trace model, and a slightly less pressing problem with representing C/C++. This is dealt with by Rational in sections 3.2. There is also an ongoing discussion over the use of a separate execution history model rather than using something derived from the trace model.

5. Incremental Enhancements

There are a range of other proposals which can be viewed as “doing what we do better” rather than adding significantly to the scope. A particular area of interest is the Test Editor and Execution (Rational 2.2 and 5) 64 Bit Support (Rational 4 and 5.1) and Deployment (5.6) Note that this relates to the combined Context proposal above and may apply to more than Test Components. There is also a requirement to set variables in remote environments through the Execution API. (Scapa).

There is also some debate over exact Test Profile terminology and the semantics of various concepts in the reference implementation. (Rational 6).

There is a huge problem with documentation.

6. Eclipse Certification

There has been some discussion of initiating a certification activity for Eclipse inside the Hyades project, making use of the Hyades Test Models to define the certification criteria and manage verdicts.

