Hyades Protocol Layer Zero
Introduction

This document will present details of a proposal for the Layer Zero interface for the new Hyades Collector protocol. Note that the scope of Layer Zero has been redefined from earlier versions of this document.
The goal of this layer is to provide a base layer of communications upon which other layers can be built. This layer will be kept as simple as possible so that it can be kept stable even if changes are introduced at higher levels.

Message Envelope

All messages coming in to the Hyades Collector Engine will have the following basic format:
	Bytes 0-4
	Magic number

	Bytes 5-8
	Flags

	Bytes 9-12
	Payload size

	All remaining bytes
	Payload

This message envelope will be used both by messages sent to the Hyades Collector Engine and to messages sent to other objects from the engine.

The “magic number” will be used to identify the incoming data as a Hyades Collector protocol stream. If an error occurs while the incoming data is being read, the server will be able to look for this number as an identifier of the beginning of a new message envelope and thus achieve some recovery from an error condition.
The “flags” entry will be used to identify special messages, such as the connection handshake described below. This entry will also give us some flexibility to expand the protocol in the future.
The payload size value indicates the number of bytes that comprise the message payload. For special messages, such as the connection handshake, this may be processed by a layer zero component, but for the majority of messages, the entire payload will be forwarded to the next layer for processing.

When the value of the magic number and the bit masks for the flag value are specified, the exact byte locations will be detailed, so byte ordering is not an issue for those entries. The payload size will be specified as a Big Endian unsigned 32-bit integer.

Connection Handshake

When a client or agent connects to the Hyades Collector Engine, a basic handshake will take place to establish and verify the connection. Until this handshake has taken place, no other commands will be accepted.
The handshake will be performed by the connecting component sending a special message with a flag set to indicate the command intended, and payload data set as necessary.

Flag Value:

SOCKET_CONNECT (bit 0 of byte 5 [first flag byte])

Payload Data:

	Bytes 0-4
	Protocol major version number

	Bytes 5-8
	Protocol minor version number

	Bytes 9-12
	Object type (client, agent, server, etc)

	Bytes 13-20
	Object ID (for servers or agents)

Description:

This command would be sent to initiate a handshake from any object that was connecting to the server via a socket connection. The object type field in the data block will identify the connecting object as a client, an agent or another server (or possibly some other type in the future). Initially, only clients are expected to connect in this way, but the protocol should be capable of handling connections from other object types. The object ID field is not used for clients. For agents this field would give the agent’s process ID (assuming a local agent). For servers this field would give the server ID.

Flag Value:

PIPE_CONNECT (bit 1 of byte 5 [first flag byte])
Payload Data:

	Bytes 0-4
	Protocol major version number

	Bytes 5-8
	Protocol minor version number

	Bytes 9-12
	Object type (client, agent, server, etc)

	Bytes 13-20
	Object ID (for servers or agents)

	Bytes 21-24
	Pipe name string length

	Bytes 25-(25+str length)
	Return pipe name

Description:

This command would be sent to initiate a handshake from any object that was connecting to the server via a named pipe connection. The object type field in the data block will identify the connection object as a client, an agent or another server (or possibly some other type in the future). Only agents are expected to connect in this way. The object ID field gives the process ID of the connecting object. The return pipe name is the identifier of a named pipe that the object connecting would like the server to use for return communications.

Flag Value:

DISCONNECT (Bit 3 of Byte 5 [first flag byte])
Payload Data:

None (payload size = 0)
Description:

This command will be sent when an object is ready to disconnect from the server. The server will notify any objects that are associated with the object being disconnected and free any associated resources.

In addition, the following will be sent in response to the above commands.
Command:

CONNECTTION_COMPLETE (Bit 4 of Byte 5 [first flag byte])
Data:

	Bytes 0-4
	Connection ID

	Bytes 5-12
	Server ID

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the connection is accepted. The connection ID is a value that the server to which a connection has been made will use to identify the object that is receiving the command. The server ID is a value that the server itself generates as a unique identification. The object receiving this command will use these two values in the replyToID and replyToServerID fields in the command header for any commands it sends after receiving this message.

Command:

CONNECTTION_REFUSED (Bit 5 of Byte 5 [first flag byte])
Data:

	Bytes 0-4
	Reason code

	Bytes 5-8
	Message string length

	Bytes 9-(9+msg length)
	Reason message

Description:

This command will be sent in reply to either SOCKET_CONNECT or PIPE_CONNECT if the server refuses the connection for any reason. The reason code is a value that the DCE provides to give some indication of why the connection was refused. It will be a value defined in Hyades header files. The reason message will be a string that describes, in user-appropriate, language the reason the connection was refused.

Command:

DISCONNECT_ACK (Bit 6 of Byte 5 [first flag byte])
Data:

None (payload size = 0)

Description:

This command will be sent in reply to the DISCONNECT command. The connection will be terminated after this command is sent.

