How WSDL fits into the data collection framework

Overview

The choreography engine can be thought of as a big distributed program accessing only external APIs defined in WSDL.  How these WSDL interfaces are bound is a secondary issue.  It is intended that a Java binding and a SOAP/HTTP binding will be provided as standard.  This will allow the choreography engine to exercise APIs defined in WSDL and bound via SOAP/HTTP or to exercise existing or new Java APIs which can be defined in WSDL and bound via the Java binding.

Here is a diagram of how the choreography engine interacts with everything in Hyades.  Note that every link to and from the choreography engine in the centre is an interface with a WSDL definition (although they may be bound in different ways and use different datatypes).














Notes about XML Processing and General Parsing Concerns

The first point to make is that if the internals of data being passed around through APIs the choreography engine exercises are not specified via XSD and the bindings then the choreography engine will treat this data as opaque.  No parsing will take place and it will efficiently pass the data around as a string.

Where the datatypes are mapped to XSD types the choreography engine may parse the data.  In the case of the Java/Java Objects binding the engine will simply assign data from one java object into it’s own internal java datatypes (so no parsing will take place).  In the case of a SOAP/XML binding the engine will have to do some “parsing” but since it knows what form the data should be in it doesn’t actually have to parse anything – only do some chopping up of strings (Basically each datatype ends up with it’s own specific XML parser).

What the choreography engine needs from the data collection framework

In order for the choreography engine to be able to choreograph the various data collection agents it either needs a WSDL interface for each specific agent or it needs all (choreographable) data collection agents to inherit from and implement defined base interfaces.

These interfaces are the requirement that the choreography engine has on the data collection framework.

If these interfaces are specified then generic WSDL files and bindings that map to these interfaces can be created and the choreography engine can use these WSDL specifications to deal with any data collection agents on a generic level.

Custom interfaces can either remain inaccessible to the choreography engine or the provider of the agent can provide WSDL files and bindings for the custom interface.

The key bit here though is having the generic interfaces in place so that the agents can generally be used by the choreography engine without further modification.

Here’s a diagram of how the interfaces stack up: (note again that because of the java binding here SOAP/HTTP and XML doesn’t need to enter the picture at all)


What these interfaces might be like

I expect that these interfaces will be very similar to the existing Hyades infrastructure interfaces.  Interfaces like TRCAgent could be extended or subclassed to create, for example, a generic statistical data collection agent interface (with other APIs common to statistical data gathering agents – perhaps a polling frequency?).

During the specification of these interfaces it will probably become clear that there are common interfaces that could be shared by many agents in Hyades, such as the concept of a generic control and configuration interface.  Hopefully these interfaces would then be discussed more broadly and a set of common interfaces can be used across all Hyades agents.

y

Here are some interfaces which would probably be useful:  

· Interface to find out what control / configuration variables a particular agent has and what types they are

· Interface to read/modify any of these variables

· Interface to get a data collection agents data stream

· Generic statistical data collection agent

· Generic trace data collection agent

· …other generic agent types?

The control / configuration interface would hopefully be the interface that all agents use to expose arbitrary and custom controls and this would hopefully greatly reduce the necessity for a custom API and (potentially) a custom WSDL definition.

WSDL





Base Generic Agent





Trace





Agent 1





…





Statistical





Agent 2





Agent 3





Agent 1





Choreography Engine





Java binding





APIs defined by Hyades (data collection group?)





Loader





Pseudo SUT





Aggregator





GUI





Arbiter





Deployment Agent





Pseudo Trace Agent





Trace Agent





DCE (RAC)





Choreography Engine











