Scapa Hyades 3.0 Proposals

Mike Norman, Stefan Daume, Neil Sanderson
Scapa Technologies Limited, 27 January 2004

1. Composite Activities

Scapa’s view on this has been focused by the difficulties of  building a “perfmon for eclipse” which is capable of viewing and/or constructing multiple statistical models whilst interacting with the behaviour of a set of test case instances.  This is analogous to (although more complex than) PerfMon within the Microsoft Management Console, and uses the same approach to persistence of configuration state.  Non-EMF based persistence (XML) has been used by Scapa.  

There is a possibility for exploring an EMF-based approach to this, and to provide a commonality of approach across all activities in the Hyades World.  For example (and this is at this stage a tentative proposal).

The trace and statistical model agents as well as the SUT may be handled as “Hyades Components” which are treated like Test Components inside a Test Context renamed as a “Hyades Context”.  The behaviour of the entire agent set is then modelled as the behaviour of the Hyades Context and can include things like switching on a test and a trace simultaneously and then switching off a trace after the test has finished.

Modelling a composite behaviour across a set of different agent types presents an opportunity of aligning/binding currently largely unconnected models on the basis of a model extension rather than significant changes to existing models. Furthermore, it is formalising the utilisation of agent information/behaviour in an extensible mechanism which opens up a large number of possibilities for utilising the existing models in specific scenarios. It would be imaginable that this results in “Hyades Contexts” that are not necessarily defining behaviours for tests.

2. Testability Interface etc.

In the IBM/Rational Document the following requirements are stated regarding the Testability interface meta-model and the Testability interface implementation. 

Regarding the Testability interface meta-model: “The current behavioral model enables the definition of Test Components’ behaviors using messages in an interactions model. This assumes that the classes and operations available on the SUT are modeled. The current model doesn’t enable to model this interface, which makes the existing behavioral model almost un-usable. The proposal consists in introducing a specific resource that would represent the testability interface of the SUT.”

Regarding the Testability interface implementation: “The testability interface offers a standard way to specify the classes/objects/operations available on the SUT. To enable further interoperability between tools, the proposal consists in defining a standard implementation of a testability interface. This would enable any test tool to interact with any kind of application independently from its nature (protocol, user interface, programmatic interface, etc.)”

2.1 Testability interface meta-model

The testability interface meta-model will be defined alongside the SUT concept in the testprofile package of the Hyades model. A TestSuite may be associated with zero or many Testability interfaces (TIF). Each TIF will be associated with exactly one SUT, but an SUT may define zero to many TIFs. The association between the SUT and the TIF is qualified by a Codec. A Codec is always associated with a particular TIF. 

Following the logic of the existing concepts like TestComponent and Arbiter the TIF will extend CFGClass. 

If test behaviour should be modelled on the basis of an interactions model the SUT has to provide a TIF, if this is not the case the behavioural modelling must follow the current proprietary approach. 

Scapa provides a proposal regarding the standard TIF implementation based on WSDL/XSD. The TIF model must provide concepts that map onto the meta-model of these standards, but should also allow for alternative TIF implementations should they be required. Current proposals for concepts that should be modelled are AbstractPort (a logically grouped access portal of the  SUT), AbstractOperation (an access point for the SUT defining a simple interaction policy), AbstractMessage (a basic communication unit utilised by the access point and their accessors). 

[image: image1.wmf]WSDL

XSD

WSDL

Meta

-

model

Testability

Interface

Meta

-

model

Hyades

Behavioural

model

UML2

interactions

meta

-

model

BPEL

Meta

-

model

BPEL

Test

-

component

Test

-

behaviour

Executable

BPEL Test

3

4

5

6

0

2

7

8

1

9

WSDL

XSD

WSDL

Meta

-

model

Testability

Interface

Meta

-

model

Hyades

Behavioural

model

UML2

interactions

meta

-

model

BPEL

Meta

-

model

BPEL

Test

-

component

Test

-

behaviour

Executable

BPEL Test

3

4

5

6

0

2

7

8

1

9


An issue open for discussion is the question in how much detail type information needs to be exposed and modelled with regard to the messages of a TIF. With view of interoperability the modelling of specific types and type information seems to fit the philosophy of the Hyades approach. This is however bound to result in a complex model whereas one of the objectives of the TIF model should be to provide a basis for modelling test behaviour without complicating it unnecessarily. Thus, if agreement on a standard TIF implementation can be reached, interoperability should be sought on the basis of the formats employed in this TIF implementation. 

2.2 Testability interface implementation

Scapa Technologies promotes a standard TIF implementation based on the widely used Web Services standards BPEL/WSDL/XSD. The following figure shows how this approch fits into Hyades and the testability interface. 

[image: image2.wmf]Codec

CFGClass

SUT

TestSuite

0..n

0..1

0..n

0..1

AbstractPort

AbstractOperation

0..n

1

0..n

1

TPFTestabilityInterface

1

0..n

1

0..n

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

AbstractMesssage

0..n

0..n

0..n

0..n

0..n

1

1

0..n


The proposal does not suggest that tests are necessarily executable BPEL processes, although in a reference implementation they could be. The important concept is the BPEL meta-model being mapped to the Hyades behavioural model.

In the scenario envisaged by Scapa Technologies, vendors who want to make their systems testable will provide a testability layer defined in WSDL and XSD as the standard data typing format. The standard testability interface implementation will provide a mapping between the TIF model and the WSDL meta-model. Based on a vendor-defined testability layer in WSDL this layer can be made available in Hyades compliant applications in order to define test behaviour. 

BPEL is chosen for a number of reasons:

1. It will emerge as the dominant process standard, thus engineers will be familiar with the BPEL behavioural concepts, just as they are with WSDL/XSD.

2. It builds on WSDL, thus opens the possibility for a BPEL test execution engine and code generator. 

3. It is comprised of a rich set of behavioural concepts which represent a suitable sub-set of the far too complex UML2 interactions meta-model.

The BPEL concepts have to be modelled in the Hyades behavioural model subset which has the UML2 interactions model as its meta-model. Testcomponents will then be able to define a test behaviour through a combination of the Hyades behavioural model and the TIF. Neither BPEL nor WSDL will be explicitly exposed in this.

As part of a reference implementation mappings between BPEL and the Hyades behavioural model as well as WSDL and the TIF will be implemented. On the basis of this, the test behaviour can be expressed as a BPEL process which can serve as a basis for an executable BPEL process given that a code generator and execution environment exists. 

Executable Non-BPEL tests will share the integration with WSDL. Thus, a test will be executed against WSDL interfaces which are the realisation of a TIF for a specific SUT. The mapping between the data types valid in the context of WSDL and those required by the SUT is the responsibility of the provider of the testability interface (thus the vendor) and is expressed in the model as the Codec.

2.3 Action points / Development

1. Agree on the TIF model and its integration in the current model. 

2. Agree on the BPEL meta-model as the available subset of the Hyades behavioural model. Discuss whether all BPEL concepts should be covered or if a subset of the BPEL meta-model will be utilised. Discuss whether the Hyades beahvioural model should represent an additional model layer or if the the BPEL meta-model (or subset thereof) is in a direct refinement relationship with the UML2 interactions model.

3. Formalise the mapping between the TIF model and the WSDL meta-model.

4. Formalise the mapping between the BPEL meta-model and the Hyades behavioural model and/or the UML2 interactions model (see 2).

5. Implement a generic import facility for WSDL-based testability interfaces, which will make the defined operations available as building blocks for test behaviour.

6. Integrate and implement the enhanced behavioural model in the behavioural model editor. 

7. Discuss code generator for executable test on the basis SUTs publishing WSDL-based testability interfaces.

8. Discuss generic approach to bind behavioural information of execution history and statistics in the suitable models.

3. Derived Data

The problem of derived data across atomic data models is analogous to the problem of aggregated/derived data in Business Intelligence (BI) systems. 

The BI vendors define aggregation structures across the base data and then compute the aggregates either statically, speculatively or dynamically according to the relative efficiency of the various approaches, the preferences set for the database and the preferences set by the visualization tool. However, the API that the tool speaks to deals with the aggregated data irrespective of the implementation by which it is computed, and the user interfaces become generic graphing/charting widgets rather than something that has any understanding of the base data models.

As an example of how this might work, aggregations can be defined across elements of the statistical model (maxes, mins, sums, differences, averages, etc) which can be populated by the loaders and displayed by the statistical viewer as if they were base data.  So, for example, you can be watching the maximum (or average) CPU burn across all servers in a load test.  In practice the data can be computed dynamically and never actually persisted, but the API that the statistical viewer uses doesn’t need to know that, it simply needs to be able to read the set of available aggregations out of the model, present these to the user to choose which ones are to be displayed, and issue API to retrieve/stream them from the model.  There is also a separate generic user interface that allows the user to construct the aggregation formulae across the base data in the model.  These specifications are persisted in a model.

Model Linkage can be provided by defining aggregations which map between models, for example function call counters in a trace model  can be defined as the base data for a set of aggregations in a statistical model.

