Agent Manager Interface

The Agent Manager interface is a standard interface provided by the Hyades DCE that manages access to agents and maintains agent lifecycles.  The intent of the Agent Manager interface is to abstract details such as when and how an agent is launched.  However, there are cases where agents are loaded by bootstrap mechanisms attached to other processes.  In such a case, the client should use the Process Controller service (to be designed later) to launch the service.
Issue: Process Launching

There will be a dedicated service provided to manage processes (to be designed later).  It would be preferable to have all processes under test launched by this process.  But then how would the client discover bootstrapped agents?  Is it acceptable to bootstrap a stub which connects to the actual agent?

General Vision

Before going into the details of the interface commands, it is probably worth discussing the general vision for agent management that lies behind these commands.
One of the requirements for this redesign is to support a mechanism whereby clients could discover agents and agent capabilities without actually instantiating the agents.  In order to support that requirement, the Hyades DCE will need access to a registry of some sort containing metadata for the agents, with a format something like the following:
Agents


org.eclipse.hyades.envinfo



Interfaces




HII_HYADES_AGENT




HII_ENVINFO



Server Data




Single instance = true




Max clients = unlimited



Keep active when used = true




Command = <command to launch agent>




Path = <path to agent>




Options = <command line options>

Interfaces


HII_HYADES_AGENT



org.eclipse.hyades.envinfo



<etc>

HII_ENVINFO



org.eclipse.hyades.envinfo

The Hyades DCE will use the entries under the server data to determine when and how to launch a new instance of an agent to meet requests.  When a product is installed, it will add its agents to this registry.  
The “Agents” section will contain entries for all available agents.  Each agent will have an “Interfaces” subsection which lists all of the interfaces it supports, and a “Server Data” subsection which contains information the Hyades DCE needs to manage the lifecycle of the agent.  In addition, the agent could optionally provide a “Client Data” subsection which provides proprietary metadata.
The “Interfaces” section will contain entries for all interfaces supported by any agent.  These interfaces will be identified by 32-bit unsigned integers, just as they are in the command header.  Under each interface, there will be an entry for every agent that supports that interface.
The Hyades DCE will use the information in this registry to provide clients and agents with lists of available.  The DCE will keep track of which agents are running (connected to the DCE) and whether or not each of these agents is able to accept new connections.  When a client or agent requests access to an agent (referenced by name), the DCE will determine whether it can connect the requestor to an existing instance of the agent or whether it must launch a new instance of the interface.
When an agent is released by the last object connected to it, if there are other available instances of the agent running, the DCE will shut down the agent being released.  If there are no other available instances of the agent running and the agent’s metadata indicates that it should be left running, this instance will be marked as available but left running.  If the agent’s metadata has not indicated that it should be left running, the agent will be shut down.

Commands

TBD

