
Manage your devices with
Lightweight M2M and

connect them to your cloud

EclipseCON EU 2016

Agenda

CoAP & Lightweight M2M
Demo
Eclipse Leshan
Hands-on!
Eclipse Hono
Going further

Follow the slides

https://goo.gl/uzXThJ

https://goo.gl/uzXThJ
https://goo.gl/uzXThJ

Your devoted presenters

From M2M to
Web-of-Things

Machine-to-Machine

Machine A Machine B Machine C

Server

Conquer the last mile

● Low-power networks plugged to the Internet

● 6LoWPAN

● Bluetooth Smart 4.2

● Thread

● LWPA (LoraWAN, LTE-MTC,...)

● IPv6 MTU: 1280 bytes, 6LowPAN: ~100 bytes

● TCP, HTTP,MQTT doesn’t fit

Internet of Things

Web-of-Things

/walk
/hand/left/raise
/eye/picture

/on
/red
/green
/blue
/mtbf

/on
/on

/buttons
/buttons/1/push
/bat-level

/engine/status
/position
/fuel /CO2

/noise
/lights/on

CoAP

Constrained Application Protocol

CoAP: a new protocol for IoT

Class 1 devices
~100KiB Flash
~10KiB RAM
~$1

Low-power networks
<100Bytes packets

RFC 7252: CoAP

RESTful protocol designed from scratch
URIs, Internet Media Types
GET, POST, PUT, DELETE

Transparent mapping to HTTP
Additional features for M2M scenarios

Observe

CoAP

Binary protocol

- Low parsing complexity

- Small message size

Options

- Binary HTTP-like headers

0 – 8 Bytes Token
Exchange handle for client

4-byte Base Header
Version | Type | T-len | Code | ID

Options
Location, Max-Age, ETag, …

Marker
0xFF

Payload
Representation

Device Management

Operate, monitor, upgrade fleets

Device Management

Secure, monitor, manage a fleet of devices

Configure the device

Update the firmware (and maybe the app)

Monitor and gather connectivity statistics

Device Management

You don't know yet what hardware will
power your IoT projects on the field,

But you MUST be able to do device
management in a consistent way without
vendor lock

OMA Lightweight M2M

An API on top of CoAP

Lightweight M2M

REST API for:
Security provisioning

Connectivity configuration, monitoring, statistics

Location

Firmware Upgrade

Software management

Error reporting

LwM2M API URLs

/{object}/{instance}/{resource}

Examples:
"/6/0" the whole location object (binary
record)
"/6/0/1" only the longitude (degree)

Example: Object Device

Manufacturer
Model number
Serial number
Firmware version
Reboot
Factory reset
Power sources

Power V/A
Battery level
Memory free
Error code
Current time
UTC offset
Timezone

You can define your own objects and register
with the OMA

IPSO Alliance Smart Objects:
accelerometer, temperature, sensors,...

Demo!

Security with LWM2M

Authentication & Encryption

Based on DTLS 1.2 (TLS for Datagrams)

Focus on AES & Elliptic Curve Cryptography (ECC)

AES Hardware acceleration in IoT oriented SoC

Works on Low Power networks (~100bytes MTU)

TLS_PSK_WITH_AES_128_CCM_8

Pre-Shared-Key:
password for session authentication

AES 128bits (or 256) - Counter CBC Mode:
encryption and integrity (AEAD cipher)
8 bytes for integrity in place of CCM usual 16

What? :)

PSK: No certificates, just password

CCM8: compactness

Full DTLS-PSK-CCM8 handshake in ~1030b

Ex: HTTPS TLS handshake ~6kbytes

More security: TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

ECDHE: Perfect Forward Secrecy (PFS)
Someone rob your private key: he can’t
decrypt past communications

ECDSA: use public key in place of password
You can use X.509 certificates (like HTTPS)

At Scale

You will have a fleet of device
They need secrets (key, password, etc..)
Unique across devices
You need to be able to change those secrets
You will probably don’t trust your factory

LwM2M Bootstrap

Flash bootstrap
credentials

LwM2M Bootstrap

I only have bootstrap
credentials or I can’t
reach final server

LwM2M Bootstrap

Give me key
and my
server(s)

Bootstrap Server

LwM2M Bootstrap

Bootstrap Server

New key and
server(s) URLs
and ACL

LwM2M Bootstrap

Registration

Registration

Home Automation
Server

Device Manag.
Server

Bootstrap Server

Eclipse Leshan

Leshan

Java library for implementing servers &
clients
Friendly for any Java developer
Simple (no framework, few dependencies)
But also a Web UI for discovering and testing
Build using “mvn install”
Based on Eclipse Californium and Scandium

Public Sandbox

http://leshan.eclipse.org
Bleeding edge: deployed on master commit
IPv4 and IPv6
Press “CoAP messages” for low-level traces

http://leshan.eclipse.org
http://leshan.eclipse.org

Leshan Modules

Leshan-core commons elements.

Leshan-server-core server lwm2m logic.

Leshan-server-cf server implementation based on californium.

Leshan-client-core client lwm2m logic.

Leshan-client-cf client implementation based on californium.

Leshan-all every previous modules in 1 jar.

Leshan-client-demo a simple demo client.

Leshan-server-demo a lwm2m demo server with a web UI.

Leshan-bsserver-demo a bootstrap demo server with a web UI.

Leshan-integration-tests integration automatic tests.

Hands-on!

Getting started

Set up your mangOH board:

● Select DC power source (move jumper
if needed)

● Connect the antenna (main)
● Connect the DC power supply
● Connect the board to your laptop

using the micro-USB cable provided

Windows only: please install the USM/ECM
driver (from the USB-stick) to be able to
connect to the board (Ethernet over USB)

More info: http://mangoh.io

http://mangoh.io

Getting started
Connect to your mangOH board:

● SSH to your board: root@192.168.2.2

ssh root@192.168.2.2 for linux/mac - PuTTY for Windows

● Once connected, print the device info:

cm info

● Start the cellular data connection:

cm data connect&

(you will need to run it again later if the connection is lost)

● Wait a few seconds and check the connection:

cm data

You’re all set with the board, let’s start coding!

Getting started

● Get the tutorial projects:

https://github.com/msangoi/eceu2016-tutorial or from the USB-stick

● Launch Eclipse and import the projects:

File > Import... > Existing projects into workspace

https://github.com/msangoi/eceu2016-tutorial
https://github.com/msangoi/eceu2016-tutorial

Step 1: run a basic client

1. Complete the code (project client-step1)

Use the LeshanClientBuilder to instantiate a client and start it.

2. Create a runnable jar. On the project:
● Export > Java > Runnable Jar file
● Select the launch configuration client-step1
● Enter a destination for your file
● Check “Extract required libraries into generated JAR”
● Finish (and ignore warnings)

3. Copy the generated jar to the mangOH board:

scp client.jar root@192.168.2.2:/home/root for linux - WinSCP for Windows

4. Run the client:

On the mangOH board: ./ejdk/bin/java -jar client.jar

With the default configuration, the client registers to the eclipse demo server: coap://leshan.eclipse.org:5683

5. Find your client on the demo server: http://leshan.eclipse.org

http://leshan.eclipse.org

Step 2: initialize custom objects

1. Complete the code (project client-step2):
● Implement your custom Device object (MyDevice)
● Use the ObjectsInitializer to initialize an instance of MyDevice

2. Export the client as a jar file, copy it to the board and run it.

Note: For this step and the next ones, you can keep on using the eclipse demo server (if your cellular connection
is ok) or you can use a local server running on your machine.

To start a demo server on your laptop, run the server-demo jar (from the USB-stick):

java -jar leshan-server-demo.jar

From the mangOH board, your laptop address is 192.168.2.3.

In your client java code, change the LWM2M server URI in the Security Object:

Security.noSec("coap://192.168.2.3:5683", 123)

Step 3: observe accelerometer data

1. Complete the code (project client-step3)
● Implement the Accelerometer object (X, Y, Z values)
● Update X,Y,Z periodically (e.g. every 500 ms)
● Notify the value changes so that the client sends notifications to the server if the Accelerometer is

observed.

2. Export the client as a jar file, copy it to the board and run it.

3. Start observing the Accelerometer object from the demo server.

Step 4: server implementation

1. Complete the code (project server-step4)
● Instantiate a server using the LeshanServerBuilder.
● Add a listener to the ObservationRegistry to be notified with new notification values.
● Add a listener the the ClientRegistry to start an observation on the Accelerometer object (if

supported).
● Start the server

2. Run your last version of the client (or build a runnable jar from the client-step3-complete
project)

● You may need to modify the client code to register to the server running on your laptop
(coap://192.168.2.3:5683)

Step 5 (bonus): PSK security

Client side

● Update the code from project client-step2-complete.
● Initialize the Security object with an instance providing security information for Pre-Shared

Key mode:
○ The LWM2M server URI used to populate the Security object must use the

“coaps“ scheme and port 5684 (default secure port)
○ define a psk identity (unique)
○ define a key (hexadecimal string)

Server side - Using the Eclipse Demo server (http://leshan.eclipse.org or local)

● In the Security tab, enter the security configuration for your client.
● Register your client to the eclipse demo server.

http://leshan.eclipse.org

How many technologies do
you need to master to
communicate with all things
connected to the IoT?

Just one! Eclipse Hono.
(With a little help from the Eclipse IoT community)

What is it good for?

Eclipse Hono provides a
uniform API

for interacting with
millions of devices

connected to the cloud via
arbitrary protocols.

Characteristics

Things Cloud
Command & Control

Telemetry

optimized for throughput
scale-out with #messages

optimized for reliability
scale-out with #devices

General Concepts

Hono

Hono

Hono

<<Protocol Adapter>>

HTTP

<<Protocol Adapter>>

LWM2M

Device

Device

Device

Device

Application

Application

Application

Application

Application

http

coap(s)

AMQP 1.0

AMQP 1.0

AMQP 1.0

AMQP 1.0

AMQP 1.0

AMQP 1.0

AMQP 1.0

Arbitrary Protocol Adapters possible. We are working on HTTP, MQTT and LWM2M.

scale out

scale out

scale out

Registration API

● Each device is registered with a logical ID scoped to a tenant.
● Optionally, additional key/value pairs can be registered for a device, e.g. a

Pre-shared Key used authenticating the device as part of TLS
● Provisioning Process registers device identities with Hono.
● Protocol Adapters look up logical (Hono) identity by (technical) keys.

Hono
<<Protocol Adapter>>

HTTP
Provisioning

Process

look up identity register devices

Telemetry API

● Protocol Adapters multiplex downstream data for devices of same tenant.
● Applications consume data for one or more tenants.

Hono
<<Protocol Adapter>>

HTTP Application
publish data consume data

Command & Control API

● Applications send commands to devices.
● Hono brokers between the application and the protocol adapter the device is

connected to.
● Protocol Adapters forward outbound messages to devices when they are connected.
● Not implemented yet.

Hono
<<Protocol Adapter>>

HTTP Application

forward command &
send reply

send command &
receive response

Step 0

Prepare Environment

Download Tools

Point your browser to ftp://10.66.0.xxx (this is the anonymous FTP server on
my laptop)

Download the following files

● lc.jar - the leshan demo client for simulating a LWM2M device
● objectdefinitions.zip - contains additional LWM2M Object

definitions

Extract objectdefinitions.zip to a folder of your choice. It contains
XML files describing LWM2M object types and their resources.

Start up the Hono Back End

We will start up an ensemble of services
comprising the Hono back end using Docker
Compose:

● Hono Server
● Qpid Dispatch Router
● Hono HTTP Adapter

Devices connect to the HTTP protocol adapter.

Applications connect to the Dispatch Router.

Later on we will add a LWM2M Protocol
Adapter to which our LWM2M devices will
connect via coap(s).

Steps to perform from command line

1. cd $HONO_HOME/example/target/hono
2. docker-compose up -d

Open http://your_docker_host:8080/status in a
browser to verify startup. You should get a JSON
object containing some diagnostic info. In
particular, it should contain

"connected": true

Use the following command to shut down Hono

docker-compose down

http://your_docker_host:8080/status

Step 1

Use Hono as Leshan's SecurityRegistry

What we'll do

In this step we will

● configure leshan to use a custom SecurityRegistry which uses
Hono for managing our device's security information

● start up the LWM2M Protocol Adapter
● Add security info for our device
● Start up a LWM2M client that registers with the adapter
● observe resources on the device for changes

LWM2M Register Sequence

Device is authenticated as part of
DTLS handshake using a Pre-shared
Key (PSK) based cipher suite.

leshan checks whether client's
technical identity corresponds to the
logical endpoint name submitted as
part of the register CoAP request.

Use Hono as SecurityRegistry

We will configure leshan to use the
HonoBasedSecurityRegistry class which
accesses Hono's Registration API to retrieve
device registration data from Hono.

Start up LWM2M Adapter

1. Switch to branch step1 in the Hono source folder, e.g. from the command line

$> cd $HONO_HOME
$> git checkout step1

or use the corresponding means in your IDE

2. Start up LWM2M adapter

$> cd $HONO_HOME/adapters/lwm2m
$> mvn spring-boot:run -Dhono.client.host=your_docker_host

3. Read through the log and see that the adapter connects to Hono and uses our custom
HonoBasedSecurityRegistry implementation

Add Device Security Info

1. Open web browser, go to http://localhost:8090/#/security
2. Add security info for your device

Add Device Security Info

Check that device has been registered with Hono using HTTP protocol adapter

$> curl -i -X POST -d ep=mydevice \
$> http://your_docker_host:8080/registration/DEFAULT_TENANT/find

or, using HTTPie

$> http -f POST http://your_docker_host:8080/registration/DEFAULT_TENANT/find \
$> ep=mydevice

cURL for Windows: https://curl.haxx.se/dlwiz/?type=bin

HTTPie: https://httpie.org

http://your_docker_host:8080/registration/DEFAULT_TENANT/find
http://your_docker_host:8080/registration/DEFAULT_TENANT/find
https://curl.haxx.se/dlwiz/?type=bin
https://httpie.org

Start up Device

Download leshan client from

● my (local) FTP server: ftp://10.66.0.xxx or
● my Google Drive: https://drive.google.com/open?id=0B8o-KHF-_cPKMFdLZjJaOFFRVWc

Run leshan client (from your folder)

$> java -jar lc.jar -n mydevice -i mypskid -p aabbccdd

Check that device has registered as LWM2M client

1. Open web browser, go to http://localhost:8090/#/clients
2. Play around with the device :-)

https://drive.google.com/open?id=0B8o-KHF-_cPKMFdLZjJaOFFRVWc

Observe Location

Observe Device Location

1. On device's detail page, click the Observe button next to Instance 0 of the Location section
2. See how current Location is retrieved from device
3. Go to terminal in which leshan client is running and press any one of keys W, A, S or D followed by

CR. This shifts the position north, west, south or east and sends a notification to the LWM2M server.
4. Go back to web browser and see how the values of the Location object have been updated
5. Play around with the observed Location resource

Stop device

1. Hit ctrl-c in terminal where leshan client is running
2. Note that the device doesn't show up any more on the Clients web page.

Things to try (optional)

1. Locate class HonoBasedSecurityRegistry in module
adapters/lwm2m

2. Take a look at how SecurityRegistry's API is mapped to
HonoClient

Step 2

Forward Notifications to Hono

What we'll do

In this step we will

● implement a custom ObservationRegistryListener that forwards
notifications received from LWM2M clients to Hono's Telemetry API

● start up the LWM2M adapter
● start up a consumer for Hono's Telemetry API
● start up a LWM2M client with a specific location
● observe the device's Location object

LWM2M Notification Sequence

leshan starts observing resource

Device sends a notification for
changed resource

leshan forwards the notification to
registered listeners

Telemetry Forwarder

Start up LWM2M Adapter

Start up adapter

1. Switch to branch step2 in the Hono source folder
2. Find class TelemetryForwarder
3. Take a look at how ObservationRegistryListener 's API is mapped to HonoClient
4. Start up LWM2M adapter

$> cd $HONO_HOME/adapters/lwm2m
$> mvn spring-boot:run -Dhono.client.host=your_docker_host

5. Read through the log and verify that the adapter connects to Hono and uses our custom
TelemetryForwarder implementation

Start up Telemetry Consumer

Start up adapter

1. Open a new terminal
2. Start up Telemetry consumer

$> cd $HONO_HOME/example
$> mvn spring-boot:run -Dhono.client.host=your_docker_host

3. Read through the log and verify that the adapter connects to Hono's Telemetry endpoint

Start up Device

Run leshan client from new terminal (analogous to step 1).

This time we add additional parameters to set an initial location (Munich, Theresienwiese)

$> java -jar lc.jar -n mydevice -i mypskid -p aabbccdd \
$> -pos 48.131048:11.549892 -sf 0.02

Check that device has registered as LWM2M client

1. Open web browser, go to http://localhost:8090/#/clients
2. Read Location object from device to verify position

http://localhost:8090/#/clients

Start observing Location

1. On device's detail page, click the Observe button next to Instance 0 of the Location section
2. Note how current Location is retrieved from device
3. Go to terminal in which leshan client is running and press any one of keys W, A, S or D followed by

CR. This shifts the position north, west, south or east and sends out a notification.
4. Go to terminal where the Telemetry consumer is running and see how telemetry messages are

coming in for the updated location.
5. Play around with the observed Location resource

Things to try (optional)

1. Alter the format of the telemetry payload uploaded to Hono

In order to do so you can modify the JsonPayloadFactory class
(easy) or create a new implementation of TelemetryPayloadFactory
(advanced)

2. Add additional meta information about the observed device/object to
the telemetry message sent to Hono

In order to do so you can modify the TelemetryForwarder class and
add some headers to the telemetry message being sent

Bonus Step

Visualize Location via Google Maps

What we'll do

In this step we will

● set up a dashboard for visualizing our device's location on freeboard.io
● start up the LWM2M adapter
● start up a Camel route forwarding Telemetry data consumed from

Hono to dweet.io
● start up a LWM2M client with a specific location
● observe the device's Location and see how it moves on Google Maps :-)

End-to-End Message Flow

Create a Freeboard

1. Go to https://freeboard.io
2. Create an account or log in to your account
3. Go to My Freeboards page, enter a name for your board and click

Create New
4. Click the ADD link below DATASOURCES
5. Select Dweet.io as type and enter a name (no spaces!) for your

datasource and a thing name for your device (no spaces!)
6. Click SAVE

https://freeboard.io

Add Google Map Widget

1. Click ADD PANE on your freeboard
2. Click the wrench symbol on the new pane and increase the columns to

3, click SAVE
3. Click the plus symbol on the pane
4. Select Google Map as the type
5. Click on the +DATASOURCE link next to the latitude field
6. Select the datasource for your device and click through the hierarchy

down to the latitude member.
7. Analogously add the path to the longitude value to the longitude field.
8. Click SAVE

Start up LWM2M Adapter

1. Start up LWM2M adapter

$> cd $HONO_HOME/adapters/lwm2m
$> mvn spring-boot:run -Dhono.client.host=your_docker_host

2. Read through the log and verify that the adapter connects to Hono

Start up Dweet.io Route

1. Open a new terminal
2. Start up the Dweet.io Camel route

$> cd $HONO_HOME/dweet
$> mvn exec:java -Dhono.client.host=your_docker_host \
$> -DthingName=thing_name_from_freeboard

Use the name you used for your thing when you created the dashboard in freeboard.io for the
thingName parameter

3. Read through the log and verify that the adapter connects to Hono

Start up Device

Run leshan client from new terminal (analogous to step 1).

This time we add additional parameters to set an initial location (Munich, Theresienwiese)

$> java -jar lc.jar -n mydevice -i mypskid -p aabbccdd \
$> -pos 48.131048:11.549892 -sf 0.02

Check that device has registered as LWM2M client

1. Open web browser, go to http://localhost:8090/#/clients
2. Read Location object from device to verify position

http://localhost:8090/#/clients

Start observing Location

1. On device's detail page, click the Observe button next to Instance 0 of the Location section

2. Go to terminal in which leshan client is running and press any one of keys W, A, S or D followed by

CR. This shifts the position north, west, south or east and sends out a notification.

3. Go to your dashboard in the web browser and observe how the position on the Google Map adjusts

to the updated location reported by the device :-)

Things to try (optional)

1. Create additional widgets for data reported by other LWM2M Objects,
e.g. Device

Hint: you will probably need to adjust the Camel route for that purpose
and e.g. post data to different thing addresses based on the LWM2M
object that the data is reported for (contained in object header)

Backup

Other Stuff

leshan Client Cheat Sheet

download leshan client

https://drive.google.com/open?id=0B8o-KHF-_cPKTE9iV2UtaDZGaVU

$> mv leshan-client-demo-0.1.11-M14-SNAPSHOT-jar-with-dependencies.jar lc.jar

display help

$> java -jar lc.jar -h

run with PSK using initial coordinates (Munich, Theresienwiese)

$> java -jar lc.jar -n mydevice -i mypsk -p aabbccdd -pos 48.131048:11.549892 -sf 0.02

https://drive.google.com/open?id=0B8o-KHF-_cPKTE9iV2UtaDZGaVU
https://drive.google.com/open?id=0B8o-KHF-_cPKTE9iV2UtaDZGaVU

