
E.D.Willink GMT Framework

28 November 2003 Page 1

GMT Framework
Edward D. Willink, EdWillink@iee.org

28 November 2003

1 Introduction
The following discussion document is prompted by encouragement from discussions with a
number of people at OOPSLA 2003 in Anaheim, and at Metamodelling for MDA 2003 in
York. Comments are invited via https://dev.eclipse.org/mailman/listinfo/gmt-dev.

It is clear that the Eclipse Generative Model Transformer project should not favour any
particular transformation technology; rather it should provide a framework within which any
transformation, transformation technology, and as importantly any inter-transformation model
representation can coexist.

GMT can therefore align very naturally with the Eclipse plug-in philosophy by providing the
GMT framework as one or more Eclipse plug-ins into which specific transformations or
transformation technologies are themselves plugged in, with plugged-in transformations also
providing the conversions between model representations.

GMT
Framework

Plug-in

Eclipse

Model Activity
Registry

XX1, XX2, XX3
Transformations

Plug-in

YYY
Transformation

Engine
Plug-in

YYY
Transformation

Editor
Plug-in

Model Store
Factory

The representation of a model is managed by a model store created by the Model Store
Factory that maintains a registry of representations supported by plug-ins.

Transformation of a model is performed by a model activity that a plug-in has installed in the
Model Activity Registry.

2 Concepts
Transformations operate between instances of meta-models, which constitute the type
definitions of the input and output models. We therefore need a mini-language to define the
model type; the way in which the model representation encodes the instance of a meta-
model.

2.1 Model Type Name
A model type may be defined by an identifier such as EjbJava, or a string such as "EJB
aligned Java" if a more descriptive name is required. In BNF:

 ModelTypeName := Identifier
 | String

2.2 Model Representation
There are major problems with standardisation of model representations. Even within one
standard such as XMI, there are two significantly different versions, and major issues of tool

X Y Z
yes but....
I think it is important to start with one specific setup of the system to give people a hands-on way to actually do some work.

X Y Z
so you say you want to use the eclipse plugin mechanism also to extend the GMT features...? Good!

X Y Z
do you propose one default model store implementation? For example the MDR could be plugged in as a default.

E.D.Willink GMT Framework

28 November 2003 Page 2

compliance. It is therefore inappropriate to consider imposing any standardisation within
GMT. The lack of standardisation can be resolved by the concept of an encoding.

When the concepts of a particular EjbJava meta-model are defined using EMF and then
serialised as XMI2, the resulting model may be described as instantiating the
XMI2<EMF<EjbJava>> model type.

In general a model type is either a meta-model name, or an encoding of a model type, or an
alias for a model type. An alias, like a C typedef, allows e.g. XMI2<EMF<EjbJava>> to be
referred to by a more convenient name such as XmiBeans.

 ModelType := ModelTypeName
 | ModelEncodingName<ModelTypeList>
 | ModelTypeAlias

 ModelEncodingName := Identifier

 ModelTypeAlias := Identifier // referencing a ModelType

 ModelTypeList := ModelType
 | ModelTypeList ',' ModelType

2.3 Model Versioning
A disciplined modelling tool will provide version control of both directly and indirectly
referenced meta-models, so a simple string will not suffice as an identity; an instance of an
identity meta-model may be required. This may be accommodated by defining a Version
encoding.

 Version<ModelType, VersionModelType>

This need not be implemented in the first release, and can co-exist with

 OmgVersion<ModelType, OmgVersionModelType>

if the OMG produce a suitable version control standard.

2.4 Non-functional properties
Properties such as robustness or security are difficult to represent within conventional
programming domains. They too can be accommodated by defining an encoding such as:

 Robust<ModelType, RobustnessModelType>

This incorporates the robustness requirements within the model-type system, but does
nothing to directly enforce these properties. However with the robustness requirements in the
type system, only transformations that support the robustness encoding can be invoked.

2.5 Summary
In a Java environment, we may hope to make consistent use of perhaps JAXP<MOF2<T>>
model-type. However the generality of the encoding concept allows us to handle a CVS
maintained, encrypted, Poseidon XMI serialised, MOF 1 model of an EJB Java system in a
consistent fashion:

 CVS<Encrypt<PoseidonXMI<MOF1<EjbJava>>,EncryptionModel>,CVSIdentityModel>

A name such as CVS as a model encoding name forms no part of the GMT framework. The
name is plug-in-defined and useable provided some plug-in registers consistent
transformations that support the additional encoding. Therefore, when it is discovered that
AnotherTool has yet another variant on XMI, the problem can be resolved by providing a
plug-in to transform from AnotherToolXMI<T> to XMI<T>, where T is an arbitrary model-
type. We define such a transformation as having the signature:

 AnotherToolXMI<T> -> XMI<T>

This may be provided by either the vendor of AnotherTool or by its more demanding users.

X Y Z
do you plan to standardize on any metametamodel? MOF?

X Y Z
I think we agree that the transformations themselves (the model activities) should not depend on a specific concrete syntax representation but rather on the in-memory representation of the metamodel, to allow for different concrete syntaxes and to support transformations that do not need to care about XMI and stuff. The b+m generator framework implements this approach very nicely.

X Y Z
is this planned??

X Y Z
can you give an example here? I am not sure I understand this point.

X Y Z
again: transformations should be defined on an in-memory representation that does not care about concrete syntax.

E.D.Willink GMT Framework

28 November 2003 Page 3

3 Transformation
In principle, a transformation accepts instances of one or more input meta-models and
generates instances of one or more output meta-models. In practice, each of these instances
must be stored somewhere with a suitable encoding.

A model activity therefore retrieves its input instances from source model stores, and
generates its output instances in destination model stores. Until there is broad agreement on
the encodings and meta-models, use of transformations from a diverse community will
encounter significant incompatibilities. These can be resolved automatically, if the model
store can perform a conversion to suit the accessing transformation activity.

For example if the input model store contains an XMI<EMF<EjbJava>> but the
transformation requires JMI<MOF2<EjbJava>>, the required conversion may be performed
by successive invocation of transformations with signatures

 XMI<T1> -> T1 // File reader
 EMF<T2> -> MOF2<T2> // Meta-model language conversion
 T3 -> JMI<T3> // JMI formatting

or more efficiently by

 XMI<T1> -> JMI<T1> // File reader direct to JMI
 JMI<EMF<T2>> -> JMI<MOF2<T2>> // Meta-model language conversion

In order to accommodate any legacy or hand-optimised transformation, GMT can invoke
each transformation via a Java class that implements IModelActivity and which accesses
its inputs and outputs via Java classes that implement IModelStore.

Model
Activity

(Input)
Model
Store

(Output)
Model
Store

get put

Actual
Content

br
id

ge

Actual
Transformation

(Engine)

Actual
Content

br
id

ge

br
id

ge

A new transformation may therefore be coded directly by implementing IModelActivity. A
piece of legacy code, or new code that avoids dependence on the GMT framework, may
create a bridge from the GMT framework, by ensuring that the bridge implements
IModelActivity. Transformations invoked via bridges can be implemented using any
programming language, either by using JNI to activate non-Java code, or by starting a
separate process for the foreign language program.

As we move towards QVT, we want to use programmed rather than dedicated
transformations, so we create a bridge from the GMT framework to a specific transformation
engine in just the same way. We create a bridge that implements IModelActivity, and
which acquires its suitably encoded transformation program from a program input model
store. We may look forward to a day when this will always use perhaps a XMI2<QVT<T>>
encoding. Until then we must accommodate e.g. XMI1<MyQVT<T>>.

Once QVT is established we may seek to rescue legacy transformations by plugging-in the

 MyQVT<T> -> QVT<T>

transformation, and continue to use legacy transformation engines by plugging-in

 QVT<T> -> MyQVT<T>.

E.D.Willink GMT Framework

28 November 2003 Page 4

3.1 Automated Transformations
Conversion of model encodings when accessing model stores has been identified as
amenable to automatic invocation of the appropriate one-input, one-output transformation
that performs the conversion.

There is scope for taking this automation considerably further. In an MDA context, the PM
may impose such strong constraints upon the required output model type, that a
transformation sequence that progresses from the model type of the PIM can be computed.
In this case, the explicitly invoked transformation may have almost null functionality, with all
transformations being performed as part of the conversion from the actual model type of the
PIM at input to the target model type defined for the PSM.

4 Interfaces
4.1 IModelType
The IModelType interface provides just the re-entrant naming policy by which
representations are identified. It does not provide any further modelling functionality, so we
may find that some very simple concrete types are adequate, with functionality suggested by
the construction signatures:

 ModelTypeName(String)
 ModelTypeAlias(String, IModelType)
 ModelTypeVariable(String) // e.g. T
 ModelEncodingName(String) // e.g. XMI
 EncodedModelTypeName(ModelEncodingName, IModelType[])

(There is no need for a specific XmiTypeName, since these classes define meta-type names.
It is the instance of ModelEncodingName("XMI") that identifies XMI.)

4.2 IModelValue
This interface is a bridge to a specific model representation. The bridge may take the form of
the name of an XMI file, a reference to an actual model such as an org.w3c.dom.Node, or
equivalent mechanisms for access to EMF models, CVS or Rational Rose repositories.

When an IModelValue is used, the IModelType should be known so that it is safe to cast
and use derived methods

 MyModel myModel = ((BridgeToMyModel) iModelValue).getModel();

4.3 ModelStoreFactory
The IModelStore interface defines the protocol for model store bridges to model values.
Concrete implementations are registered with the ModelStoreFactory by

 ModelStoreFactory.add(ModelEncodingName, Class);

A concrete ModelStore is then created by

 ModelStoreFactory.newStore(IModelType type, IModelValue value);

in which the outer ModelEncodingName of IModelType indexes the ModelStoreFactory to
identify the concrete IModelStore.

4.4 IModelStore
Assignment of a source model store to a target model store

 IModelStore.put(IModelStore source)

may provoke an automatic translation from the representation type of the source to that of
the target.

E.D.Willink GMT Framework

28 November 2003 Page 5

The bridge to the model content may be obtained by

 IModelValue IModelStore.get();
 IModelValue IModelStore.get(IModelType type);

the latter form potentially also provoking an automatic translation from the representation
type of the source model store to the specified type.

4.5 IModelActivity
This interface comprises the two methods for executing transformations:

 IModelActivity.run(IModelStore[] inputs,
 IModelStore[] outputs) throws Exception;

is used to invoke a fixed purpose transformation.

 IModelActivity.run(IModelStore program,
 IModelStore[] inputs,
 IModelStore[] outputs) throws Exception;

is used to invoke a general purpose transformation engine.

In each case the transformation activity returns on completion.

Exceptions are thrown only for conventional problems, such as class not found, index out of
bounds etc.

I have not noticed any discussion of exceptions or errors in the QVT proposals, so the
following is a provisional proposal on how to handle them. Problems within the modelled
domain are returned (thrown) through one of two implicit sync and async outputs. The sync
output is suitable for an instance of an error message meta-model that accompany a
complete execution of the transformation activity, other outputs are therefore valid. The
async output is suitable for an instance of an exception meta-model, in which case
transformation execution may have terminated abruptly and inconsistently and so only the
async output is defined. In a hierarchical transformation context, sync and async are
implicitly merged (caught) and propagated (rethrown), unless explicitly connected (caught).
This is very analogous to automatic propagation of a throw in Java or C++. Unhandled async
outputs are ultimately handled (caught) by the framework.

4.6 ModelActivityRegistry
The model activity registry maintains a mapping from a known transformation signature such
as:

 XMI1<T> -> XMI2<T>

to the derived IModelActivity that provides (the bridge to) the implementation of the
transformation. These implementations will be provided within plug-ins, so a little care is
needed to ensure that the signatures can be registered without compromising lazy plug-in
loading.

5 Satisfaction of the GMT SRS
5.1 Transformation Component
The ability to perform transformations constitutes the transformation component.

Defining this as a plug-in that supports registration of arbitrary transformations and
transformation engines goes further than envisaged.

Requiring that all transformations be plugged in means that the GMT framework alone is
unable to perform transformations. This is much less to get going, and does not impose any
GMT prejudice as regards good/bad transformation philosophies.

X Y Z
it may throw an exception if it cannot find the necessary transformation activities. Maybe add to signature.

X Y Z
Use a more specific ex!

X Y Z
what is the "program"?

X Y Z
So you assume that the models in the inputs[] array are correct (in the sense that they adhere to the underlying metamodel). Also, you assume that the activity is completely compatible (versions, etc.) I think you should plan for exceptions when this is not the case, or explain, why this cannot happen.

X Y Z
they need to be specified in the plugin.xml file or even in a separate XML file. We may need to load this manually when the GMT master plugin starts up.

X Y Z
We will need some kind of "rule engine" that finds out the composite activities (sequences...) in cases where no direct transformation is available.

E.D.Willink GMT Framework

28 November 2003 Page 6

Providing example transformation plug-ins, ensures that the GMT framework is at least
useable

5.2 Mapping Component
Mapping unfortunately has an ambiguous meaning.

In the mathematical context of a mapping from one type to another, registration of a single
input, single output transformations such as

 XMI<MOF<MySimplifiedUML>> -> XMI<MOF<YourSimplifiedUML>>

provides the support for automatic transformation between at least closely related model
types.

In the modelling context of a mapping between PIM and PM under control of a Mark Model to
produce a PSM, libraries of transformations with signatures such as

 XMI<MOF<PimModel>>,XMI<MOF<MarkModel>>,XMI<MOF<PmModel>> ->
 XMI<MOF<PsmModel>>

constitute the mapping component.

5.3 Text generation component
Any transformation that supports a signature such as perhaps

 XMI<MOF<JavaModel>> -> Text<JavaModel>

constitutes part of the text generation component, and of course a transformation with a
signature such as

 Text<JavaModel> -> XMI<MOF<JavaModel>>

is a Java parser or inverse text generator.

5.4 Workflow component
There is no fundamental difference between a workflow and a transformation, just a matter of
perspective. A workflow may involve very different coarse grained activities such as
EditJavaCode or CompileJava between dramatically different meta-models, whereas a
transformation may involve finer grained activities such as FlattenStateMachine or
GenerateGetters where input and output meta-models are almost identical.

Workflows can be supported by a much simpler transformation technology than QVT, but this
does not preclude the use of QVT to define a workflow, and so the ability to define any
transformation technology as an IModelActivity also supports a plug-in for a
transformation technology optimised for workflows. Similarly the ability to define the
encodings of models stores allows a workflow defined in say XPDL to be accessed as
perhaps XPDL<MyWorkflow>.

In order to invoke any transformation or workflow, it is necessary to bind the inputs and
outputs to suit the users requirements. This is itself just a very simple transformation
language that should be installed as yet another transformation plug-in. Its simplicity lends
itself to a simple XML/form-like GUI that could have similarities to a simplified PDE plug-in
interface. (I have been developing a prototype of this based on the PDE plug-in as a way of
becoming more familiar with Eclipse.)

The workflow component is therefore supported by the various transformation technologies,
of which those that provide a simple user interface enable friendly activation. Provision of
transformations that provide the bridges to major tools such as editors and compilers enable
useful workflow applications to be realised.

X Y Z
Again: Mappings should be defined as MOF<MySimplifiedUML> -> MOF<YSU> but ignoring the concrete representations!

E.D.Willink GMT Framework

28 November 2003 Page 7

6 The Model Bus
While model editing, compiling and execution are important, we should support much more,
particularly debugging, optimisation and analysis.

How to debug highly optimised declarative transformations is a topic for research, so we
should ensure that our support is flexible.

Perhaps an IModelActivity or IModelStore has an accompanying IModelListener
interface while an IModelActivity also has an IModelActivityController interface. The
listener should at least enable announcements of progress such as transformation start and
finish to be detected. The controller should support operations such as
start/stop/step/resume.

I have no experience of implementing such tools, so I suspect that there may be significantly
more flexible and powerful solutions.

It would seem that these interfaces could all be added later, however at least a preliminary
attempt at IModelListener could support intelligent tracing (and automated testing) from the
outset.

7 Implementation Stages
The framework discussed above is very small and extensible. In addition to the flexibility that
it offers to its users, it makes for a very small amount of core code to which highly orthogonal
incremental contributions can be made by a community of largely independent developers.

7.1 Basic framework
IModelType and five concrete derivations provide just naming functionality, so these are
small.

IModelValue, IModelActivity and IModelStore are small interfaces.

IModelListener and IModelActivityController are again just interfaces.

ModelActivityRegistry and ModelStoreFactory require real code but they do not
amount to much more than dictionaries and a plug-in registration protocol.

7.2 Core plug-ins
A few variants of XmiModelValue are essential, with EmfModelValue, FuutjeModelValue,
UmlxModelValue, and WfcModelValue following close behind. EMF possibly provides the
XMI functionality anyway.

7.3 Transformation Component
This is where everyone can add their own transformations and (prototype) transformation
languages. Just to get started:

7.3.1 Invocation
A PDE-like plug-in is in progress to support definition of the parameterisation of a workflow.

7.3.2 Execution
A UMLX plug-in should be able to support definition and execution of a workflow without
much further development. Significant development is required to make UMLX fully
functional.

X Y Z
I would propose to do that. Eclipse also has this concept (I think it's called IProgressMonitor). We could subclass this interface...

E.D.Willink GMT Framework

28 November 2003 Page 8

7.3.3 Wizards
Extensible wizards should assist in creating plug-ins containing bridges to existing
transformations.

7.3.4 QVT
We hope that one or more of the competing QVT submissions will be available and
integrated into GMT via plug-in bridges, with some of the core technology such as OCL
available via direct Eclipse plug-ins.

7.4 Text Component
Traditionally transformations have covered a significant distance between input model and
output text. Such transformations can be installed without difficulty in the GMT framework.

Fuutje and EMF have transformations that can be accessed via bridges.

With an ability to sequence model-to-model transformations, the complexity of model-to-text
transformations may be reduced. There are a variety of template languages that should be
easily installed as simple model-to-text technologies.

7.5 Workflow Component
Some degree of workflow support is provided by the transformation component. More
interactive components, such as prompting for user authentication or editing may be installed
as transformations.

7.6 Mapping Component
Herein lies the next 20 years of work to support MDA via better and better transformations
between yet-to-be-standardised meta-models. Hopefully GMT provides the framework in
which this can be a very broad collaboration.

7.7 Modelling Tool
A (UML) modelling tool has always been seen as a tool that GMT exploits and extends,
rather than redevelops. As the use of disciplined meta-models underlies QVT approaches, a
visual MOF meta-modelling tool will be essential, and preferably one that is well-integrated
with Eclipse.

When inadequate Eclipse modelling support becomes a serious issue, this should probably
be addressed in a wider context than GMT.

8 FAQ
8.1 How do I define a meta-model?
Meta-models may be defined using any supported language. The basic GMT framework has
no built-in meta-modelling languages or meta-models, but plug-ins for widely used languages
and representations such as MOF, EMF, XMI will be available. Meta-models for standard
languages such as UML should be available in at least one of the widely used formats.

Custom languages may be supported by developing plug-ins.

Custom meta-models are supported by the textual or visual editor for a supported meta-
modelling language. Eclipse provides a text editor, which plug-ins may enhance with syntax
colouring and checking. Eclipse support for visual editing is limited and so an external tool
may be required.

X Y Z
do you know of any OCL plugin for eclipse? Or any other really workable OCL parsers?

X Y Z
another one should be provided for the b+m generator framework (I'll send details in a separate mail).

E.D.Willink GMT Framework

28 November 2003 Page 9

8.2 How do I invoke an installed transform/workflow?
Create a new workflow configuration (via a wizard), or edit an existing configuration. The
workflow configuration may use any transformation language able to specify the
transformation, its parameterisation, and its input and output resources.

The GMT/WFC (workflow configuration language) plug-in will support editing a file.xmi-
wfc in a similar fashion to the PDE editing of plugin.xml.

Then Run it.

8.3 How do I support my non-standard file format?
The basic GMT framework has no support for any file format. Each format is defined by a
plug-in. You may therefore use one of the supported formats as an example in developing a
plug-in for your own format. A wizard may eventually be provided.

8.4 How do I support my non-standard meta-model representation?
If your transformation uses less-standard model representations that GMT does not support,
you must either rewrite your transformation to use more-standard model representations, or
register further transformations between your less-standard and a more-standard form.
These transformations may be installed as fixed or generic transformations.

8.5 How do I install my fixed functionality transformation?
The basic GMT framework has no built-in transformations. All fixed function transformations
are registered from a plug-in. You may therefore use one of the transformation plug-ins as an
example in developing a plug-in to register bridges to your own transformations. An
extensible wizard should be provided for bridges with standard calling conventions.

8.6 How do I install my generic transformation technology?
Minimal support may be added as for fixed functionality, the registered bridge just acquires
your transformation program as an additional input.

Progressively improved support may involve additional Eclipse plug-ins emulating the Eclipse
JDT support:

A syntax colouring (text) editor plug-in.

Interactive syntax checking and intelligent correction.

Debugging.

In principle, the same support is also required for a visual transformation syntax, however
creation of a visual editor within Eclipse is hard. Until more flexible graphical support is
available, it may be necessary to support visual editing via a bridge to another tool such as
GME.

