
Analyzing the Scrum Process Model with AVISPA
Julio Ariel Hurtado Alegrı́a
CS Department, Univ. de Chile

IDIS Group, Univ. del Cauca, Colombia
Email: jhurtado@dcc.uchile.cl

Marı́a Cecilia Bastarrica
Computer Science Department

Universidad de Chile
Email: cecilia@dcc.uchile.cl

Alexandre Bergel
Computer Science Department

Universidad de Chile
Email: abergel@dcc.uchile.cl

Abstract—Scrum is a widely known agile software process
model specifically designed for guiding non-technical activities
in software development. This process has been formally defined
in EPF and adopted by several software companies around the
world. But having a process definition does not necessarily mean
that it is well specified. We have developed AVISPA, a tool for
localizing error patterns in software process models specified with
EPF. In this paper, we analyze the public community specification
of Scrum using AVISPA and we report our findings.

I. INTRODUCTION

Software process definitions are relevant because they im-
prove development effectiveness [4]. According to Feiler and
Humphrey [3] software process definitions must be both useful
for practitioners and reasonably economical to produce. How-
ever, misconceptions or misspecifications may be introduced
during the process definition and/or specification process with
a high impact when it is applied by teams in projects. That is
why several organizations have decided to adopt standard pro-
cess models that have been already defined and are available
for use. This is the case of widely known processes such as
OpenUP [7], XP [2] or Scrum [12] that are publicly available
at the Eclipse web site, and also Tutelkán [16]1 for the Chilean
setting. Whereas we do not pretend to judge the motivation and
rational behind these processes, their specification deserves a
closer look. As far as we are aware of, the implementation
and definition of these processes have not been objectively
analyzed so that companies could have an idea about the actual
quality of the process they are adopting.

Scrum is an agile software process frequently used to
rapidly develop software. It has been defined by Jeff Suther-
land and more formally elaborated by Ken Schwaber [13].
Scrum stresses management values and practices, and it does
not include practices for technical parts (requirements, design,
and implementation); this is why it is usually used in combi-
nation with another agile method.

The application of Scrum enforces a few simple rules that
have the potential to make a team self-organize into a process
that can achieve 5 to 10 times the productivity of a waterfall-
based process. However, most Scrum teams never achieve this
goal [15]. According to Sutherland, teams face difficulties to
organize work in order to deliver working software at the end
of each sprint. Moreover, they also experience trouble working
with a Product Owner to get the backlog in a ready state

1Tutelkán: http://www.tutelkan.org

before bringing it into a sprint. Also, organizing into a hyper-
productive state during a sprint remains a challenging issue.
We believe that one of the reasons for this situation is, at least
in part, an improper definition and implementation of Scrum.

We have developed AVISPA2 [5], a software visualization
tool that helps the process engineer to localize a series of error
patterns within software process models formalized using EPF.
It automatically highlights potential errors and improvement
opportunities in different process blueprints so that it is not
only easier to localize the errors, but also less knowledge and
experience is required. This paper uses AVISPA for analyzing
the specification of the Scrum process model3 published
in the Eclipse Process Framework community where it has
been defined as a SPEM2.0 model [9] using Eclipse Process
Composer4.

The rest of the paper is structured as follows. In Sect. II
we provide some background concepts about software process
modeling in SPEM 2.0 in general, and specifically about
Scrum and its specification using SPEM 2.0. The AVISPA tool
is introduced in Sect. III. Its application for analyzing Scrum is
described in Sect. IV and a discusion of the obtained results is
presented in Sect. V. Finally, Sect. VI discusses some related
work and Sect. VII includes a series of conclusions and some
further work.

II. BACKGROUND

AVISPA is a tool that analyzes software process models
specified in SPEM 2.0, and in this paper we apply it to the
specification of Scrum. In this section we describe what SPEM
2.0 is, what Scrum is, and how Scrum is formalized using
SPEM 2.0.

A. Software Process Modeling with SPEM 2.0

The modeling of a software process refers to its definition as
a model [1]. Different model representations may describe, at
different levels of abstraction, the organization of the elements
of a current or planned process. They provide definitions of
the process to be used, instantiated, enacted or executed. So,
a process model can be analyzed, validated, simulated or
executed if it is defined with any of these goals.

Software and Systems Process Engineering Metamodel–
SPEM 2.0 [9]–is the OMG standard for process modeling.

2AVISPA: http://squeaksource.com/ProcessModel.html
3Scrum: http://www.eclipse.org/epf/downloads/scrum/scrum downloads.php
4EPF: http://www.eclipse.org/epf/



Fig. 1. Scrum Process Model

SPEM provides a standardized and managed representation of
method libraries in order to allow reuse of method content.
It aims to support development practitioners in defining a
knowledge base for software development.

The SPEM 2.0 metamodel separates reusable method con-
tents and their application in specific processes to promote
reusability. Method content provides step-by-step explana-
tions, describing how specific development goals are achieved
independently of the placement of these steps within a de-
velopment lifecycle. Processes take these method content
elements and relate them into partially-ordered sequences that
are customized to specific types of projects.

SPEM 2.0 is structured in seven packages:
Core Package contains classes and abstractions that build

the basis for all other packages.

Process Structure Package defines the basis for defining
process models as a breakdown of nested Activities with
the related performing Roles, as well as input/output Work
Products

Process Behavior Package extends the static structures of
the process models with externally defined behavioral models,
e.g. UML state and activity diagrams.

Managed Content Package introduces concepts for man-
aging content of development processes documented and man-
aged as natural language descriptions. These concepts can
either be used as standalone or in combination with process
structure concepts.

Method Content Package adds concepts for defining life
cycles and process independent reusable method content el-
ements that provide a basis of documented knowledge of
software development methods, techniques, and concrete re-
alizations of best practices. Method content describes how to

achieve fine-grain development goals, by which roles, with
which resources and results, independently of the placement
of these elements within a specific development lifecycle. The
basic concepts are Rol, Task, WorkProduct and Guidance.

Process with Methods Package facilitates integrating pro-
cesses defined with Process Structure with instances of Method
Content. Whereas Method Content defines fundamental meth-
ods and techniques for software development, processes place
these methods and techniques into the context of a lifecycle
model. Method Plug-in Package introduces concepts for

designing and managing maintainable, reusable, and config-
urable libraries of method content and processes. The concepts
introduced in this package allow arranging different parts of
such a library based on different layers of concern.

B. The Scrum Development Process

Scrum is an agile software development method that is
based on the idea that software processes are incompletely
defined. So, Scrum assumes that the analysis, design, and
development processes are inherently unpredictable. A control
mechanism is used to manage this unpredictability and con-
trol the corresponding risk improving the process flexibility,
responsiveness, and reliability [13]. Scrum is not a process
or a technique for building products; it is rather a rule based
framework where various processes and techniques may be
applied. The goal of Scrum is to achieve the major efficacy in
applying development practices while providing a framework
where complex products can be developed [14].

The Scrum framework is formed by a set Scrum teams,
time-boxes, artifacts and rules, as shown in Fig. 1.

Scrum teams are designed to maximize flexibility and
productivity; Scrum teams are self-organizing and cross-
functional, and they work in iterations. Each Scrum team



has three roles: the Scrum Master, who is responsible for
ensuring that the process is understood and followed; the
Product Owner, who is responsible for maximizing the value
of the work that the Scrum Team does; and the Team, which
does the work. The Team is formed by developers with all the
skills required to transform the Product Owner’s requirements
into a potentially releasable piece of the product by the end
of the Sprint.

The time-boxed elements are the release of the Planning
Meeting, the Sprint Planning meeting, the Sprint, the Daily
Scrum, the Sprint Review, and the Sprint Retrospective. Scrum
employs time boxes to create regularity. The focus of Scrum
is a Sprint, which is an iteration of one month or less that is of
consistent length throughout a development effort. All Sprints
use the same Scrum framework, and all Sprints deliver an
increment of the final product that is potentially releasable.

Scrum artifacts The Product Backlog is a prioritized list
of features required in the product. The Sprint Backlog is a
list of tasks to perform in a Sprint, producing an increment
of a potentially shippable product from the Product Backlog.
A burndown is the measure of remaining Backlog over time.
A release burndown measures remaining Product Backlog in
the context of a release plan. A Sprint burndown measures
remaining Sprint Backlog in the context of a Sprint.

Scrum lifecycle is defined by the Sprint and by three groups
of phases: pregame, game and postgame. In the pregame,
the planning and architecture phases are performed. In the
planning phase a new release is defined according to the
current Product Backlog, including an estimative of its sched-
ule and cost. In the architecture phase an architectural and
high level design is generated to determine how the backlog
items will be implemented. In the game phase, the Sprints are
performed. There are multiple, iterative development Sprints
that are used to develop the system. In the postgame the
Closure phase is performed. The release is prepared including
final documentation, pre-release staged testing, and the release
itself.

C. Scrum Process Model in SPEM 2.0

The Scrum process model presented by the Eclipse Pro-
cess Framework Community has been defined as a SPEM
2.0 method plug-in using Eclipse Process Framework. This
definition includes roles, work products and tasks, and a set
of guidance, and is organized only in method packages and
categories as shown in Fig. 2. The process structure has not
been defined because, Scrum is inerently incomplete as a
process and it is considered as a process framework more
than a process itself. As a consequence, the EPF community
has defined Scrum lifecycle as a Supporting Material element
(a specific Guidance) where it is graphically and textually
described. Although, this definition does not include all the
phases defined in [13], the Scrum lifecycle could be defined
and customized in a Delivery Process by each organization
reusing the Scrum plug-in. The method package elements have
been defined and linked according to a Scrum description as

was presented above. However, the question that still remains
is if the method elements will match this or other adapted life
cycle. For example, are the tasks outputs and inputs consistent
among the tasks within a value flow? These are relevant
questions mainly when the model is used for first time, or
for comparing or combining with other process models.

Fig. 2. Scrum specified as a SPEM 2.0 model

III. THE AVISPA TOOL

Process model blueprints are graphical representations
meant to help process designers to assess the quality of
software process models and identify potential anomalies [6].
The essence of these blueprints is to facilitate the comparison
between elements using a graph metaphor, composed of nodes
and edges. The size of a node or an edge tells us about
their relative importance. We have defined three blueprints that
help identifying opportunities for improving software process
models, each one focusing on a particular process element:
roles, tasks and work products, namely ROLE BLUEPRINT,
TASK BLUEPRINT, and WORK PRODUCT BLUEPRINT. The
approach has been complemented with the AVISPA tool (Anal-
ysis and VIsualization for Software Process Assessment) [5],
a visualization tool built on Mondrian, Moose and Glamour.

This tool imports process models defined in SPEM 2.0 from
EPF and automatically produces specialized blueprints where
empirically found error patterns are localized. Error patterns
are identified structurally as either disconnected elements or
elements whose relative size is beyond one standar deviation
from the mean. These error patterns have been empirically
found to occur frequently in industrial software process model
conceptualization and specification. They include: having no
guidance associated to certain element, having roles that have
too many responsibilities or that do not collaborate with others,
tasks that are not specific enough in their specification, work
products that are required for too many tasks, and independent
subprojects. Table I summarizes these error patterns and briefly
describes in which blueprint they can be identified.



Error pattern Description Localization Identification
No guidance associated An element with no guidance associated any blueprint A completely white node.
Overloaded role A role involved in too many tasks. ROLE BLUEPRINT Nodes over one deviation larger than the mean.
Isolated role A role that does not collaborate. ROLE BLUEPRINT A node that is not connected with an edge.
Multiple purpose tasks Tasks with too many output work products. TASK BLUEPRINT Nodes whose more than one deviation wider than the mean.
Demanded Work products Work products required for too many tasks. WORK PRODUCT BLUEPRINT Nodes more than one deviation higher than the mean.
Independent subprojects Independent subgraphs. TASK BLUEPRINT or Subgraphs that are not connected with edges.

WORK PRODUCT BLUEPRINT

TABLE I
ERROR PATTERNS IDENTIFIED BY AVISPA

IV. ANALYZING THE SCRUM PROCESS MODEL

The AVISPA tool was used for analyzing the Scrum process
model defined by the EPF process community. It is exported
from EPF as an XML file and imported in AVISPA. AVISPA is
guided by the kind of error patterns it is able to identify and
localize, so the analysis is organized accordingly.

A. No guidance associated

Roles, tasks or work products with no associated guidance
leave too much freedom for interpreting the purpose of each
element within the process. Scrum provides guidance, but
we have found that they are not always associated with the
corresponding nodes. In the ROLE BLUEPRINT we found
that absolutely no guidance is provided for any role. In the
WORK PRODUCT BLUEPRINT, the Taskboard and the Poten-
tiallyShippableProductIncrement have no guidance either. This
situation is even worse in the TASK BLUEPRINT because the
Sprint Retrospective, Sprint Planning Meeting, Sprint Review
Meeting and the Daily Scrum do not have associated guidance.
This situation is particularly serious for Scrum because of
its agility: if neither methods nor guidance is provided, it is
difficult to achieve the expected results.

Fig. 3. ROLE BLUEPRINT, WORK PRODUCT BLUEPRINT and TASK
BLUEPRINT identifying elements without guidelines

B. Overloaded role and Isolated role

Generating the ROLE BLUEPRINT, we found that there are
neither overloaded nor isolated roles, as shown in Fig. 4. Thus,
we can conclude that there are no problems in the specification
of Scrum with respect to error patterns referring roles.

Fig. 4. Identifying overloaded or isolated roles

C. Multiple purpose tasks

A task that is too wide in the TASK BLUEPRINT will be
colored in red in order to call the attention of the process
engineer. A task with too many output work products does
not have one clear goal, so it may be better to divide it
into more specific subtasks. In Fig. 5, we can see that the
Daily Scrum task is significantly wider than the others. This
is expected because this task is defined as a black box
hiding the complexity of the software development in Scrum,
because each Daily Scrum is implemented according to the
technicalities of another process model. But, as a software
development process in itself, the specification of Scrum is
not detailed enough. This is consistent with the literature and
the fact that Scrum should be combined with other methods.

Fig. 5. Localizing task without a clear purpose

D. Demanded work products

A work product required for the execution of too many
tasks could become a bottleneck, so a work product that is
too demanded reveals a problem in process conceptualization.
A node in the WORK PRODUCT BLUEPRINT that is too high
identifies this kind of problem. This is the case of the Product
backlog that can be clearly identified in red in Fig. 6.



Fig. 6. Identifying work products that are too demanded

E. Independent subprojects

Having independent subprojects reveals a misspecification
in the process model because all tasks and work products
should be useful for the project’s goals, and as such they
should be connected in the TASK BLUEPRINT and the WORK
PRODUCT BLUEPRINT, respectively. This error pattern may
be seen in either blueprint. In Fig. 7 we show how indepen-
dent subgraphs have different colors in the WORK PRODUCT
BLUEPRINT in the left, and in the TASK BLUEPRINT in the
right for Scrum. The work product in yellow, Potentially Ship-
pable Product Increment, belongs to an independent graph.
This implies that this work product is neither defined as
an input nor as an output of any task in Scrum. A similar
situation occurs in the green task Sprint Retrospective that is
disconnected in the TASK BLUEPRINT.

Fig. 7. Independent subprojects in the WORK PRODUCT BLUEPRINT and
TASK BLUEPRINT

V. ANALYSIS AND DISCUSSION

Some incompleteness were found in the specification of
the Scrum process model. An improved version can be com-
pleted: (i) guidance available in the Scrum definition should
be associated to each role; for instance Product Backlog
Example, Story Points Key Concept and Priorization of the
Backlog guideline should be associated to the Product Owner
Role, and the Taskboard Work Product should be completed
with a Taskboard example, and (ii) some tasks need to be
completed associating them with their required and produced
work products; for instance, because the Sprint Burn Down
and the Taskboard Work Products are used and modified in
the Spring Retrospective task, they need to be associated as

input and output, respectively, and the Potentially Shippable
Product Increment should be defined as an output of the Sprint
Review Meeting task.

Both, the Daily Scrum task that was found to be defined
with too little detail, and the Product backlog that was found
to be too demanded, are consistent with the agile phylosophy
behind Scrum, and should not be considered as errors. They
are rather warnings that causion should be taken with them.

VI. RELATED WORK

A close work by Osterweil and Wise [10] presents an
analysis of Scrum using Little-JIL. This analysis determines a
weak point when the product is integrated in each development
work. So, because continuous integration is not part of Scrum,
it can fall in long periods of development without integration,
generating a bottleneck. Their approach consists of analyzing
the whole process directly and this requires knowledge and
experience for being effective, whereas AVISPA focuses in
analyzing process models using a strategy based on metrics,
a visual metaphor, and error patterns, and thus encapsulating
the necessary knowledge. Therefore, our approach needs less
experienced process engineers.

The Agile Software Solution Framework (ASSF) [11] has
been used to evaluate Scrum along six aspects of an agile
software development methodology: agility, process, people,
product, tools and abstraction5. Their result shows that Scrum
has a higher level of agility for its practices compared to other
agile methods. The study realized with ASSF is orthogonal to
ours. We focus on a widely used specification of Scrum, not
on the benefit over other agile methods.

VII. CONCLUSIONS

A software process model definition can be left incomplete
for different reasons, as is the case of some features of Scrum
that need to be left as agile as possible. However, if a relevant
principle of the process is not included, it could be applied
in an inappropriate way. In this paper we have analyzed the
Scrum process model with the AVISPA tool and we have found
that the specification that is widely used by the community has
been incompletely defined. This may explain, at least in part,
the gap between the expected and the reported performance
of Scrum.

We are currently applying AVISPA also for analyzing soft-
ware process models that have been defined by Chilean
companies. As part of this work we have been able to prove its
usefulness for process engineers as a means for aiding their
work mainly when the process evolves. We have also been
able to validate and refine the error patterns that have been
originally identified.

REFERENCES

[1] Silvia Teresita Acuña and Xavier Ferré. Software process modelling.
In World Multiconference on Systemics, Cybernetics and Informatics,
ISAS-SCIs 2001, July 22-25, 2001, Orlando, Florida, USA, Proceedings,
Volume I: Information Systems Development, pages 237–242, 2001.

5ASSF is also employed to evaluate Knowledge and IT governance. We
restrict the scope of our comparison to Method core.



[2] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change. Addison-Wesley Professional, 2nd edition, November
2004.

[3] Peter H. Feiler and Watts S. Humphrey. Software Process Development
and Enactment: Concepts and Definitions. In ICSP, International
Conference of Software Process, pages 28–40, Berlin, Germany, 1993.
IEEE Computer Society.

[4] Watts S. Humphrey. Managing the software process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[5] Julio A. Hurtado, Marı́a Cecilia Bastarrica, and Alexandre Bergel.
AVISPA: Localizing Improvement Opportunities in Software Process
Models. Technical Report TR/DCC-2010-6, Computer Science Depart-
ment, Universidad de Chile, July 2010.

[6] Julio A. Hurtado, Alejandro Lagos, Alexandre Bergel, and Marı́a Cecilia
Bastarrica. Software Process Model Blueprints. In Münch et al. [8],
pages 285–296.

[7] Ivar Jacobson. The Road to the Unified Software Development Process.
Cambridge University Press, July 2000.

[8] Jürgen Münch, Ye Yang, and Wilhelm Schäfer, editors. New Modeling
Concepts for Today’s Software Processes, International Conference on
Software Process, ICSP 2010, Paderborn, Germany, July 8-9, 2010.
Proceedings, volume 6195 of Lecture Notes in Computer Science.
Springer, 2010.

[9] OMG. Software Process Engineering Metamodel SPEM 2.0 OMG
Specification. Technical Report ptc/07-11-01, OMG, 2008.

[10] Leon J. Osterweil and Alexander E. Wise. Using Process Definitions
to Support Reasoning about Satisfaction of Process Requirements. In
Münch et al. [8], pages 2–13.

[11] A. Qumer and B. Henderson-Sellers. A framework to support the
evaluation, adoption and improvement of agile methods in practice. J.
Syst. Softw., 81(11):1899–1919, 2008.

[12] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press,
1st edition, February.

[13] Ken Schwaber. SCRUM Development Process. In Proceedings of
the 10th Annual ACM Conference on Object Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 117–134, 1995.

[14] Ken Schwaber and Jeff Sutherland. Scrum, February 2010.
http://www.scrum.org/storage/scrumguides/Scrum

[15] Jeff Sutherland, Scott Downey, and Bjorn Granvik. Shock Therapy: A
Bootstrap for Hyper-Productive Scrum. In Yael Dubinsky, Tore Dybå,
Steve Adolph, and Ahmed Samy Sidky, editors, AGILE, pages 69–73.
IEEE Computer Society, 2009.

[16] Gonzalo Valdés, Hernán Astudillo, Marcello Visconti, and Claudia
López. The Tutelkán SPI Framework for Small Settings: A Methodology
Transfer Vehicle. In Proceedings of the 17th European Conference on
SPI, EuroSPI 2010, Systems, Software and Services Process Improve-
ment, volume 99, pages 142–152, Grenoble, France, September 2010.
Communications in Computer and Information Science.


