November 29, 2006 OpenUP RM Content Telecon (Part IV)
1. Attendees:

Chris Sibbald
Jim Ruehlin

Ricardo Balduino

Brian Lyons

2. Agenda
· Review comments and feedback on RM Concepts.

· Review comments and feedback on RM Guidelines

· Review comments and feedback on RM Checklists

· Review comments and feedback on RM Templates

· Issues/Decisions
3. Review comments on RM Concepts

We reviewed the comments and feedback on Concepts and captured decisions. See attached spreadsheet. Note: we did not complete the review of concepts. We will continue from where we left off (Concept: Use Case) on Friday Dec. 1 at 9:00 am PST.

[image: image1.emf]Decisions on Concepts

Chris updated the relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162636)
4. Review comments on RM Guidelines

We did not have time to address these. They will be discussed on Friday Dec. 1.
5. Review comments on RM Checklists

We did not have time to address these. They will be discussed on Friday Dec. 1.
6. Review comments on RM Templates

We did not have time to address these. The will be discussed on Friday Dec. 1
7. Issues/Decisions
See attached spreadsheet. Next call will be Friday December 1 at 9:00 am PST. Chris will send out notice to epf-dev and update yahoo calendar.
_1226310519.xls
RM Concepts

		Jim's Comments on Concepts		Chris S comments		Ben W Comments		Keith Collyer Comments		Ana P. Comments		Discussion and Decisions from Nov.27 telecon

		Requirements

		Remove formal definition of requirements. Leave or refine the information definition. Specifically, requirements are the to-do items that also describe what the system has to do to solve the customer's problem.		I think the formal definition provides credibility and includes test requirements nicely.

Given Keith's comment I propose we change the informal definition to:
"Requirements define:
 What the stakeholders need
 What the system must include to satisfy the stakeholder needs
 How one will demonstrate that the requirements have been satisfied
"		Agree with Chris.		What I don't like about either the formal or the informal definition is that both assume that the requirements are about the system. Neither touches on the stakeholders. It is key to understand what the stakeholders want to achieve as opposed to what the system will do. The first few paragraphs all effectively say the same thing in different ways, but none of it really gets to the heart of the issue.		I like the option raised by Per on bug 162634: use generic Requirement artifact that could be specialized in extensions to be the different types (Use Case, User Stories, non-functional requirements, etc.)		Remove formal definition. Remove the last bullet concerning verification from the infromal definition. Update Term Definition: requriement to include updated informal definition.

		Remove reference to the definition of a Feature. Indicate simply that requirements can be found in use cases or the Supporting Requirements		A feature is a high level requirement for some capabililty in the system/product. Features captured in the Vision are the top level requirements that will drive validation and acceptance. I think they are important.		I agree with the fact that Features are important, but my gut reaction is that Features satisfy requirements. Stakeholders might describe features that they want but in my view this is not the correct thing to do. As Chris has stated what you must do in this instance is to derive requirements from the stated feature and then achieve concurrence on those derived requirements with the Stakeholder,		I agree with Chris				No action required.

		Reduce the description of non-functional requirements - it's security, performance, legal, etc, requirements that can't be easily represented in use cases				Jim, what do you mean by 'cant easily be represented'?		It is important to give examples. I think the existing list should be retained, but clarify that these are examples, and in no way exhaustive				No action required.

		Need to make the relationship between the WIL and requirements clearer. Describe that use cases are referenced from the WIL. Use Cases can be referenced as a single unit, as a scenario, or a single step		I think this detail belongs in the description of the WIL.		Agree with Chris.						Remove reference to the WIL guideline.

		Encourage use of WIL as the supporting requirements artifact		We discussed this a lot previously and agreed that the WIL does not replace the Supporting Requirements artifact. Has something changed?		Agree with Chris, Supporting Requirements should be a separate entity, referenced by items in the WIL.		I agree with Chris				No action.

		Need to do a better job describing how Test Case fits into requirements. There seems to be an important story about testing that's missing here. We need a robust description of how test cases fit into RM.		The formal definition is explicit that test requirements (test cases) are a form of requirement. The text also states:
"Requirements define:
 What the users want
 What the system must include to satisfy the user and business needs
 How one will demonstrate that the requirements have been satisfied
"
and

"Finally, Artifact: Test Case may be considered a form of requirement stating how the system will be verified."
I think this is sufficient.		Agree with Chris		I personally think that this is a source of confusion. Test Requirements are requirements that are induced by the need to test the system (for example, the provision of a test point or inspection hatch). Test Cases, on the other hand, should be designed to show that requirements are met. If a Test Case is a requirement, how do we test that the test case is met - what is the test case for the test case, what about the test case for the test case for a test case? That way lies madness.		The requirements can be described at several levels: identified, outlined, detailed and acceptante tests level. This last level adds specific acceptance test cases for each story/snenario contained in a use case specified at detail level. It enables the recipient to unambiguously determine whether the requirement has been met.		No action pending further review of OpenUP/Basic architecture and Test discipline. Jim will raise a bug on including or not the Test Case in intent.

		Provide examples of a couple of good and bad requirements and why they're good or bad		There are separate Guidelines(Writing Good Requirements, Requirement Pitfalls) and Checklists (Qualities of Good Requirements) that address this. I think this is sufficient.		Agree with Chris		I agree with Chris				No action.

		Reference the Collaboration principle		Where?		I cannot decide if the implicit relationship between collaboration and everything else, including Requirements is sufficient. Sometimes it is hard to put yourselves in the shoes of someone who doesn’t have detailed knowledge of these things.				I have an "old" book from Ellen Gottesdiener named "Requirements by Collaboration: Workshops for Defining Needs " that has somme guidance on collaborative workshops for eliciting requirements. Maybe we can add a guideline on this subject???		Need more discussion. Ricardo, feels that the practices should reference the method elements that support the practice, rather than having each method element reference relevant practices. Chris S. agrees. Look at comments on Overarching to ensure this one related to integrating principles and practices with other method content.

		Use Case		This concept was recently re-written (November 3, 2006) to address the comments of the copy editor. Many of the following comments have been addressed. We still need to decide how to split the concept into several pages, as it is too long as it stands.

		"Use case instance" has the same definition as "use case" (glossary) and "use case" is the generally accepted term - remove the word "instance"		This was taken from RUP for small projects. I think it is correct (a use case instance is not a use case).		Agree with Chris regarding the distinction.
My only other comment is that when browsing the OpenUP/Basic published website, a process consumer will see reference to 'instance' elements of the process, labelled as descriptors, but then be told about 'Use case Instances'.		the definitions are now distinct

		The term Scenario should be used to describe a single flow the there UC		Scenario is describe in the updated version of this concept.

		Change examples to reflect software applications rather than physical systems		The ATM example and Recycling Machine is used throughout (taken from RUP for small projects). It is a software intensive system. Changing the examples and ensuring consistency is a large effort. Propose we stick with the ATM example.		Agree with Chris in the short term.		I agree with Chris

		The test of the guideline doesn't wrap at the screen boundary, probably because of a table that's sized too large. Make the text wrap properly		Corrected Nov. 3, 2006.

		"use case (instance)" should be described as a goal with scenarios, not just as a collection of related scenarios		OK. Will clarify.				Scenarios are not currently referred to, except by reference to the "Detail Use Cases and Scenarios" guideline

		Parts of the explanation of the definition seem needlessly complex. This text should be simplified				Which parts are you referring to Jim?		yes

		This concept also describes a UC model (diagram). This should be moved or maintained in the Concept: UC Model and referenced from here, but only via the Guidelines attribute and not in the text (to maintain the integrity of the process)		OK		Agreed.		yes

		The following sections explain usage, not concept, and should be moved to a guideline: How to Find Use cases, How Use Cases Evolve, Are all use cases described in detail?		Agreed. They currently only reference existing guidelines anyway.		Agreed.		yes

		The following sections provide information that is probably not useful to small agile times and should be removed:

		The scope of a use case						I think this is useful, even for small projects

		How use cases are realized						this is useful , but far too detailed

		A use case has many possible instances						Useful, but could possibly be simplified

		Concurrency of use cases		Removed Nov. 3.

		Flow of events - style						Consistency of style is even more important on an agile project - developers don't have time to work out the implications of different approaches

		Extension points

		Use case diagrams (should be part of the UC model material)		Should be factored out into a contributing element. I placed this last in the text of Nov. 3 to simplify this refactoring.

		The remaining section should be ordered by relevance to the reader in the following order		Done Nov. 3.

		Explanation

		UC Characteristics

		Name

		Brief description

		Flow of events - contents

		Flow of events - structure

		Remove references and descriptions to subflows		Sub-flows are useful for structuring the use case and for iteration planning (so the implementation can fit within an iteration). The template also currently includes a section for subflows. Not sure we want to eliminate the concept?				I agree with Chris

		Remove the 2 items of sample text (provide full examples elsewhere)						ok

		Concurrency of UC instances: remove the reference to UC modeling		Concurrency of UC instances has been removed already.

		Provide 2 examples of well written use cases using different styles						ok

		Move Flow of Events - example to a separate page and link to it		Agree.

		Describe different styles of use cases		Guideline: Use Case Formats is referenced and covers this.				this would justify the removal of the "flow of events - style" section, provided that content was also incorporated. Similar arguments could be made for some of the other sections

		Basic outline

		Informally detailed

		Outline with plenty of bullet points

		Formally detailed

		others?

		Move this concept to the Intent subprocess for greater reusability		Not sure why this will provide greater re-useability.

		Reference the Collaboration principle		Where?

		Supporting Requirements

		The concept should start with a description or definition of what a supporting requirement is		Agreed, it discusses categories of Supporting Requirements but does not define Supporting Requirements very well. We could state that "Supporting requirements are requirements that address system quality attributes such as performance, scaleability, usability but do not add any capabilities to the product or system." The Term Definition: Supporting Requirements should be updated to be consistent with this as well.		Agreed.		yes		agree

		Change "functionality requirements" to "functional requirements" to be consistent across OpenUP and conform to common verbage		OK		Agreed.		yes		agree

		We need more information motivating why we should take the time to identify supporting requirements		The "Impact of Not Having" section of the Supporting Requirements Work Product is pretty clear on the motivation for having the artifact.		Agree with Chris		I agree with Chris, and would add that this might be better covered in the concept		agree

		Move this concept to the Intent subprocess for greater reusability				Can you clarify why moving this would achieve greater re-usability?

		Use Case Model

		Remove reference to packages as small teams will probably need need them		Not sure I agree. Even a small team will likely work on applications with sufficient complexity to warrant packages.		Agree with Chris. Removing is a risk.		I agree with Chris

		Remove reference to the UC model being a navigation map as this can be confused with a hyperlinked image on an HTML page		OK.		Agreed.		yes

		We need to do a better job of making the distinction between a UC, UC model, and UC diagram. The model is the collection of use cases and UML diagrams (UC diagram, activitiy diagrams, etc)) that illustrate the relationships		Agree.		Agreed.		yes - this has caused problems on a recent customer project. In fact, it applies to pretty much all constructs, not just use cases.

		Actors and use cases are already defined. Just reference them in the Basic Model Elements section		They are referenced. I think the sections referencing the artifacts should be kept for completeness.		Agree with Chris		I guess they should be referenced here, but not defined here, otherwise we run the risk of inconsistency when (not if!!) one or the other is changed

		Communicates-associations should be described as part of the UC diagram they're not referenced elsewhere		The communicates association is a basic model element. In accordance with the third comment above, I think we need to be clear on the distinction between a model element, a model, and a diagram.		Agree with Chris

		Use a sotware application as the example rather than a physical machine		ATM and recycling machine are used consistently throughout. It will be significant effort to create a new example and ensure it is used consistently. Not sure there is enough value to justify this work.		Agree with Chris		I agree with Chris

		We need more motivation as to why using a UC model will make a better system				I agree, though some of the benefits are more clearly described in the Purpose for the UC, as opposed to at the level of UC Model.		yes

		UC Diagram section - the purpose of actors is already defined elsewhere. Reference the artifact or concept about actors rather than re-explaining their purpose		This is an attempt to address the previous comment "motivation".

		Remove the Advanced Modeling section as small teams will not use this. Describe only the <<include>> relationship						I don't agree. Small teams will frequently use "extends" at least

		Describe abstract use cases only in the context of <<include>> use cases (they can be abstract or concrete)						ok

		Include Relationship between Use Cases. Describe the <<include>> relationship from a concreate rather than abstract perspective so it's easier to understand. E.g. "Sometimes you want to re-use the same text or flow in two different use cases. The way to do this is with the <<include>> relationship..."						ok

		The explanation of <<include>> should be able to be significantly reduced in length						ok

		Motivate the use of actor generalization as a way to simplify the diagram, not as a way to simplify user interactions. It doesn't make the model clearer to generalize actors that are semantically distinct even though a single user may fill the role of both actors. For example, a single person may fill 2 roles, Warehouse Clerk and Shipping Manager. He may update inventory as part of either role. But a Clerk is not a Manager, and vice- versa. Actor generalization should only be used when there's an "is-a" relationship. Otherwise it's less clear how the system is being used.		Need clarification.				I agree

		Remove the "Extend relationship between use cases" section as it's unlikely to be used in small projects		Not sure that this will never be used on a small project. Even a small project may have optional behavior that could be modeled using the extends relationship.				see above - it is very common to have common sub-tasks, for example

		Reference the Collaboration principle		Where?

		Requirements Attributes

		Remove examples from the brief description and focus on describing that attributes help manage the project		OK		Agreed.		agree

		First paragraph of the main description should be written to define attributes as extra information or meta information about the requirement. The existing paragraph is too vague and references an example that doesn't exist in OpenUP				Agreed.		agree

		Indicate that attributes help team members answer questions (queries) about the state of the development project				Agreed.		agree

		Drive the utility of attributes by providing examples of questions (queries) about the project, and showing the attributes necessary for those queries. How many requirements need to be completed in the current iteration? Attributes: Iteration, Complete. How many requirements is Charlie working on right now? Attributes: Assigned To, Iteration.				Agreed.		agree

		List recommended set of attributes for an OpenUP/Basic project. Note that these are correlated to the WIL. Remove other attributes listed in the concept as small projects will probably not use them: Iteration, Assigned To, Priority, Complete yes/no, 0 hours remaining = completed				Jim, are you suggestiong we removed the attributes that you listed there? I don’t agree. I think that even the smallest of projects will use, and gain value from those (in my view) necessary attributes.		agree, but who will define this list?

		Recommend that the attributes be tracked in the WIL				Requirements are only referenced in the WIL, and do not themselves exist in the WIL. As such storing requirements attributes in the WIL is not the correct thing to do.		What does it actually mean to say attributes are tracked in the WIL?

		This should be changed to a Guideline since there are prescriptions on how to use attributes				Ok.		ok

		Add definition to the glossary for "attribute"		OK		Ok, but attributes should not be exclusive to requirements.		ok

		Traceability

		Description: Change "... is a term used to describe..." to "...describes..."		OK		Agreed.		ok

		Rewrite bullet points for clarity and simplicity:						agree

		* Increases confidence that objectives will be met by permitting coverage analysis to ensure that everything agreed to has been done.

		* Allows the impact (cost, schedule, technical) of changes to be assessed before work begins.

		* Provides clarity on how the work contributes to the project as a whole.

		* Supports project tracking by assuring that requirements are implemented. For example, verifying that a design artifact and test exists for each requirement.

		It's unlikely a team will perform cost/benefit analysis based on traceability so that item was removed						the cost-bnenefit is not based on traceability, but it uses the results of traceability analysis

		Traceability guideline is needed A guideline is required to provide specific information on what should be traced in a small team. E.g., only high-priority or difficult requirements need to be traced.				Id be very careful about being too prescriptive here in terms of what 'needs' to be traced. There is an inherent overhead in establishing and maintaining traceability, but the benefits of doing so will vary from project to project. In general yes, larger projects will benefit more from greater levels of traceability, but small projects can also fail due to lack of sufficient traceability. I do not know what the answer is here.....just thoughts..		Dangerous! If you are going to limit what is traced, it is better to do it by tracing related groups, rather than sem-arbitrary subsets		I confess that in small projects I never have done much more that implicit traceability (using the UC ID)

