
Enhancing the performance of 5G slicing operations
via multi-tier orchestration

Miquel Puig Mena, Apostolos Papageorgiou,
Leonardo Ochoa-Aday, Shuaib Siddiqui

Software Networks group

i2CAT Foundation

Barcelona, Spain

apostolos.papageorgiou@i2cat.net

Gabriele Baldoni
Advanced Technology Office

ADLINK Technology Inc.

Paris, France

gabriele.baldoni@adlinktech.com

Abstract—End-to-end 5G network slicing that spans across
diverse access and core networks, as well as cloud and edge
infrastructure, promises to satisfy on-demand the requirements
of different vertical applications in a fast and cost-efficient
manner. However, in order to achieve this, slice management
systems need to combine different types of orchestrators. The
combined usage of such orchestrators can be performed in many
ways and related studies of standardization bodies have led to
various open issues. This paper presents a solution based on a
multi-tier orchestrator which glues NFV, MEC, and Cloud-native
orchestrators using API abstraction layers and inter-orchestrator
coordination workflows, while revisiting some standardized di-
rectives for NFV-MEC integration. The multi-tier orchestrator
is evaluated against standard approaches that are based on the
aforementioned directives, showing performance enhancements
of up to 13x in terms of CPU load of certain orchestrator hosts
in scenarios where up to 15 services are instantiated concurrently
in an integrated NFV-MEC environment.

Index Terms—NFV, MEC, slicing, 5G, orchestration

I. INTRODUCTION

The term network slicing was introduced around a decade

ago, but the concrete specifications of its diverse ingredients

are being still strongly shaped within the context of the evolv-

ing 5G technologies and standards. The common denominator

of related 3GPP [1], NGMN [2], and other related standards,

as well as prominent research studies [3], is that slices are

isolated and individually manageable and configurable sets of

network infrastructure resources together with the (physical

or virtual) network functions of standard network architectures

that are deployed on them. The usage of diversified slices shall

help to satisfy requirements of different tenants or vertical

applications with reduced costs [4].

In order to make sure that network slices can be created

quickly and on-demand to serve these diverse requirements,

the aforementioned slicing standards and solutions are very

tightly related to network softwarization, especially NFV

(Network Function Virtualization), because it enables a faster

and more dynamic setup and configuration of the network

services involved in the slices. Therefore, NFV orchestrators

(NFVO), comprising the central intelligence of NFV solutions,

will certainly play an important role in a slice management

system. However, end-to-end slices span across various tiers,

e.g., access networks of different technologies, core networks,

Data Centers (DC) in the Cloud and at the edge, intra-DC

networking elements, and more. Moreover, different groups

of resources on any of those tiers might be virtualized and

managed based on different technologies (e.g., containers

vs VMs). This will mean that end-to-end slice management

systems will not only have to use different orchestrators, but

also different types of orchestrators.

For example, an NFVO (as per the ETSI NFV specs) and a

MEC (Muli-access Edge Computing) Application Orchestrator

(MEAO) are likely to be required in many end-to-end slice

management systems. Further, the trend in favour of Cloud-

native systems [5] will mean that Cloud-native orchestrators

(e.g., orchestrators based on the kubernetes platform that are

relevant for the slicing/NFV lifecycle but use models and

workflows that are not strictly compatible with ETSI NFV or

ETSI MEC) will also need to be integrated. Although many

attempts for specifying the combined and coordinated usage

of NFVO and MEAO have been performed during the last

years (cf. [6]), they were not performed in the scope of end-

to-end slicing, while the potential co-existence of Cloud-native

orchestrators was also out of scope of such studies.

This paper suggests a solution in which a multi-tier or-

chestration layer with an inter-orchestrator coordination intel-

ligence mediates the triggering of NFV, MEC, and Cloud-

native orchestrators within the slice management lifecycle.

This involves harmonization of the descriptors and models

used by the different orchestrator types, as well as consid-

eration of slicing-related workflows which can be resource-

consuming if applied at scale. In this regard, section II explores

the background and related work in terms of NFV-MEC

integration and other multi-orchestrator solutions, section III

presents our solution along with a revision of related open

issues from ETSI specifications, section IV evaluates the

multi-tier-orchestration approach in terms of CPU load of the

involved orchestrator hosts, while section V concludes and

discusses future directions. The results show that our approach

can achieve up to 13 times lower CPU load of the MEAO host

compared to cases in which the MEAO needs to act as a master

in the integrated NFV-MEC environement.978-1-7281-5127-4/20/$31.00 c©2020 IEEE

papageorgiou
Text Box
Miquel Puig Mena, Apostolos Papageorgiou, Leonardo Ochoa-Aday, Shuaib Siddiqui, Gabriele Baldoni. Enhancing the Performance of 5G Slicing Operations via Multi-Tier Orchestration. 23rd Conference on Innovations in Clouds, Internet and Networks (ICIN 2020).

papageorgiou
Text Box
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

II. BACKGROUND AND RELATED WORK

Works related to the coordination of NFV and MEC or-

chestrators are the most relevant and important in our context,

because they look into coordinating different types of orches-

trators, and thus two standardized orchestrators which are also

used in our solution. However, other solutions that present

layered orchestrators are briefly explored as well.

A. NFV-MEC integration

The flagship publication on the topic of NFV-MEC inte-

gration is ETSI’s study on the Deployment of Mobile Edge

Computing in an NFV environment [6]. This work describes

a reference architecture for achieving such a deployment,

including and inter-relating all the involved NFV interfaces,

all the involved MEC interfaces, as well as three additional

interfaces that are meant to facilitate this integration. One of

these additional interfaces (called Mv1) is interconnecting the

NFVO with the MEAO and it is the only interface that is used

to enable a coordinated usage of the two orchestrators. In its

details, the study mainly describes the various implications

that the MEC deployment in an NFV environment has for the

descriptors and the lifecycle management of VNFs (Virtual

Network Functions) and MEC applications. More details will

be understood when comparing our approach to the solutions

proposed in [6] in Section III.

In the work of [7], we have revisited the 14 open issues

identified by [6] and suggested how they were handled in a

platform that is focused on enhancing the edge capabilities

of an NFV-based platform for 5G neutral hosts. That work

already introduced the concept of a multi-layer orchestrator

on top of the NFVO and MEAO. However, the current

paper extends that work beyond high-level architectural en-

hancements, providing a detailed description, analysis, and

evaluation related mainly to four of these fourteen issues (cf.

III-B).

Various other works consider NFV-MEC integration from

different perspectives. For example, [8] describes how to com-

bine MEC and NFV functional blocks in order to deploy CPU-

intensive services in a way that enhances application-specific

metrics such as transcoding efficiency. Further, [9] suggests to

define proximity zones for the MEC servers within an NFV

environment in order to reduce latency. Finally, [10] and [11]

investigate in the context of merged MEC-NFV environments

the topics of 5G core components management and VNF

placement, respectively. However, none of these works revisit

any aspect related to the NFVO-MEAO coordination or the

Mv1 interface, and thus they all implicitly or explicitly endorse

the solution of [6] for that part.

B. End-to-end orchestration

In contexts other than NFV-MEC integration, layered net-

work service orchestrators usually appear with name ”End-to-

end orchestrator”. For example, the Cloud CO (Central Office)

reference architecture of the BroadbandForum [12] includes an

End-to-end Service Orchestrator (E2E SO), which intercon-

nects Cloud CO domain orchestrators, which are practically

NFVOs that are extended or customized in a way that fits

the Cloud CO case. Therefore, this case does not present

any issues for harmonizing diverse orchestrator workflows

and concepts, since the coordinated orchestrators are of the

same type and technology. Similarly, the end-to-end network

service orchestration mechanisms described in [13] is applied

on top of per-domain NFVOs, not addressing any challenges

that would arise by orchestrator heterogeneity due to the

involvement of edge or Cloud-native orchestrators.

III. MULTI-TIER ORCHESTRATION

This section presents the architecture, the most important

workflows, algorithmic aspects, and some implementation

notes about our solution for performing slicing based on a

multi-tier orchestration layer. Further, it revisits some of the

ETSI-identified open issues for NFV-MEC integration, for

which our solution follows a different approach or provides

new insights.

A. Architecture and Way of Operation

As shown in Fig. 1, the Multi-tier Orchestrator (MTO) lies

between an end-to-end Slice Manager and the NFV/SDN and

Cloud-edge orchestration domains, and it mediates the trig-

gering of high-level actions such as onboarding, instantiation,

and monitoring of (network) services and platform rules and

configurations.

The MTO includes an Abstraction API, which is used to

trigger the required API invocation chains on the different

orchestrators when a high-level action is performed. However,

it is not a typical, plain abstraction layer that simply maps

and translates high-level API calls to low level invocations. It

contains a layer of intelligence (Forwarding and coordination

NFVI

MANO

Virtualization Layer

VNF VNF VNF

Virt.

Com.

Virt.

NW

Virt.

Stor.

Com. NW Stor.

NFVO

VNFM

VIM

EMS and SDN controllers

OSS

/BSS

End-to-end

Slice Manager

M
T

O

MEC

Orch.

Cloud-

native

Orch.

…

MEAO

MEC-

PF

…
e.g.,

kuber-

netes

…

NFV + SDN
domain

Abstraction API

Forwarding and

coordination logic

South - bound clients

End-to-end slicing domain

Cloud-edge
domain

Fig. 1. High-level architecture of multi-tier orchestration solution

MTO

MTO

MEAO

MEAO

NFVO

NFVO

VIM / NFVI

VIM / NFVI

NFVI MEC_PF

NFVI MEC_PF

MTO MEAO NFVO

The Slice Manager has requested from the MTO

to instantiate a service and the MTO has already

retrieved inputs about service descriptors,

placement directives, edge requirements etc.

Parse inputs of generic_service

alt [if generic_service contains MEC-related parameters]

Update VNFs part with required

connections to the MEC platform network

Verify service dependencies

included in the AppD

alt [if ""AppD service dependencies" not satisfied]

alert!

Send alert to Slice Manager

Trigger deployment of the NSD linked

in the generic_service inputs

loop [for each VNF and virtual link]

VNF / VirtualLink deployment and configuration

Deployment success

Due to the complexity of the actions of the loop above, the confirmation of a complete successful service deployment

needs to be pefrormed asynchronously and based on active status checks performed by the MTO as in the loop below.

loop [while not all service elements required to be in place for the AppD]

Check service elements deployment status

Deployed / Not Deployed

Network service deployed successfully

alt [if generic_service contains MEC-related parameters]

MEC service deployment request (AppD)

Activate MEC platform services (service_list)

MEC platform services activated

MEC services deployed successfully

Fig. 2. MTO workflow for NFV and MEC orchestrator coordination

logic), which implements new inter-orchestrator workflows

based on the high-level inputs. Finally, a series of Southbound

clients is used in order to connect to NFV, MEC, and Cloud-

native orchestrators. The NFV MANO (Management and

Orchestration) consists of the NFVO, the VNFM (Virtual Net-

work Function Manager), and the VIM (Virtual Infrastructure

Manager) and deploys VNFs (Virtual Network Functions) on

the virtualized compute, network (NW), and storage resources

of the NFVI (Network Function Virtualization Infrastructure),

as specified by the ETSI NFV architecture [14]. Similarly, the

MEC Orchestration involves the MEC Application Orches-

trator (MEAO) and the MEC platform (MEC-PF) (see also

[6]), while both the MEC Orchestrator and the Cloud-native

Orchestrators can also act upon the NFVI resources.

An important workflow that is implemented by the For-

warding and coordination logic is related to the coordinated

triggering of NFV and MEC orchestrators and is shown in

Fig. 2. For instantiating a cross-domain service for a certain

slice, the /generic service endpoint of the Abstraction API

of the MTO is triggered with inputs that are related to

different domains, including links to standardized descriptors

that are used by the different orchestrators, e.g., NFV Network

Service Descriptors (NSD) and MEC Application Descriptors

(AppD). If MEC-related inputs are present, then the MTO

adds to the VNFs of the NSD all the required connections

towards the MEC platform and checks with the MEAO for

further dependencies of the VNFs on services of the MEC

platform. In the next steps, it first deploys the VNFs and then

sets the MEC platform services and rules, by triggering the

respective orchestrators as shown in the diagram, reporting any

incompatibilities back to the Slice Manager. Similar workflows

apply to cases that involve other orchestrator types or other

kinds of actions (e.g., service status monitoring).

B. Comparison with ETSI NFV-MEC integration standards

With regard to the NFVO-MEAO interaction and coordi-

nation, the ETSI study about the deployment of MEC in an

NFV environment [6] suggests for the case of service and

application onboarding that either of the two orchestrators

should act as a master, thus mediating all calls to the other

orchestrator. For the rest of the service and application life-

cycle operations, it suggests that the MEAO should use the

NFVO-MEAO interface (Mv1) to trigger the subset of the

NFVO functionalities that it requires in order to accompany

the deployment of its (mobile edge) applications, which is

practically also a kind of master-based approach. Of the 14

open issues identified in the study, various are directly or

indirectly dependent on this approach. In the following we

revisit the ETSI-identified open issues that are tightly related to

the NFVO-MEAO coordination method and we discuss what

our MTO-based solution implies compared to the possible

master-based solutions:

• Communication between MEAO and NFVO via Mv1

(ETSI-identified issue #3): In the master-based solution,

the master (i.e., normally the MEAO) not only needs to

integrate the logic for becoming a client of the other

orchestrator, but in many cases it also needs to maintain

state across calls and to keep being synchronized about

the execution steps of diverse actions. For service instanti-

ation, for example, this could imply that the master keeps

monitoring the status of the deployment of the VNFs

and synchronizes its own orchestration tasks (e.g., edge

service activation, traffic redirection) accordingly. In the

MTO-based solution, the hideous task of synchronizing

such actions is taken outside both orchestrators in order to

avoid interfering with the actual tasks of the orchestrator.

The sequence of Fig. 2 is actually a high-level example

of such a case.

• VNF Package vs. MEC application package (ETSI-

identified issue #7): In the master-based solution, it is

suggested that the VNF package (i.e., the VNF descriptor

and potentially the VNF image) are extended in order

to include MEC-specific files. It is noted that care is

required in order to prevent that these extensions interfere

with the NFV lifecycle. In the MTO-based solution, VNF

and ME application packages are left intact, requiring an

external catalogue that inter-relates NS/VNF descriptors

with AppD’s. This implies a tradeoff of harder synchro-

nization of the used repositories for a cleaner separation

of concerns and lower complexity.

• VNF package onboarding (ETSI-identified issue #8): In

the master-based solution, both orchestrators are involved

for most cases of VNF package onboarding. In the

MTO-based solution, only the external catalogue and the

responsible orchestrator are triggered.

• NFV construct that corresponds to Mobile Edge Host

(ETSI-identified issue #11): In the master-based solution,

it is suggested that NFVI constructs such as NFVI-PoP

(Point of Presence) and Zone be used in order to represent

mobile edge hosts, based on definitions, assumptions, and

mappings that are yet to be defined. In the MTO-based

solution, higher-level elements such as the Slice Manager

and the MTO (cf. Fig. 1) are using abstractions of the

VIM in order to group and model compute resources,

with the mobile edge hosts being a type of them. For

example, our implementation uses the OpenStack avail-

ability zone concept for this purpose, In terms of NFVO-

MEAO coordination, this simply avoid that any aspect of

this mapping needs to be known and handled between

the two orchestrators.

C. Testbed Implementation

The Slice Manager and the MTO have been implemented

from scratch, while the rest of the core components of the

architecture presented in Fig. 1 have been implemented using

open-source technologies. Technical information for the latter

is provided below:

• NFVO: Open Source MANO (OSM release 6.0.1) has

been deployed as the orchestration component in our

experimental prototype. This platform includes also the

VNFM and provides end-to-end network service orches-

tration by following the ETSI MANO standards. Addi-

tionally, the used release has been enhanced with the

connectors that are required to seamlessly deploy services

on an edge infrastructure managed by a platform such as

fog05 [15] (more information follows).

• VIM: For the VIM, we selected the open-source Eclipse

project fog05. This can act as an edge VIM, which is not

only supported by the OSM orchestrator, but also pro-

vides provisioning and management of compute, storage

and networking resources in decentralized infrastructures.

Moreover, fog05 is a lightweight platform that enabled

us to instantiate NSDs based on lxc containers, which

minimizes the footprint in our datacenters.

• MEAO and MEC PF: These two elements have been im-

plemented on the same server instance using plug-ins on

top of the fog05 software, as described in [7]. The MEAO

orchestrator receives the service dependencies included

in the AppD from the MTO and it subsequently activates

the corresponding services on the MEC PF following the

TABLE I
RESOURCES ASSIGNED TO DEPLOYED ORCHESTRATORS.

Component CPU (cores) RAM (GB) Disk (GB)

NFVO 2 x 2.19 GHz 8 40

MEAO 1 x 2.19 GHz 1 10

ETSI MEC specifications. Further references to fog05 in

this paper will mainly refer to its MEAO functionality

(and not its VIM functionality).

• Monitoring System: To retrieve runtime information from

the deployed components, a monitoring component has

been added to our experimental testbed. To that end, we

used Zabbix [16] (release 4.4) as monitoring engine and

Grafana [17] (version 6.4.1) for visualizing the resource

utilization of the collected metrics.

The resources allocated to each orchestrator of our experi-

mental testbed are summarized in Table I. For the NFVO, we

have assigned the resources as recommended in the official

documentation of the release SIX [18] of this platform. On

the other hand, we have assigned less resources to the MEAO

orchestrator, since fog05 is often meant to be deployed directly

within in edge infrastructures, which are often expected to be

more limited in terms of computing, memory, and storage. The

MTO, where applicable, was deployed on a separate host, as it

is expected to reside next to (or inside) the OSS/BSS, without

expecting any significant overhead, as it is an extremely

lightweight Cloud-hosted proxy.

IV. EVALUATION

To validate the proposed solution we have implemented

the system described in the section III using a layered API.

Using our implementation along with the third-party software

mentioned in subsection III-C, we could take measurements

not only for our MTO-based solution, but also for scenarios

that simulate the cases in which no MTO exists, but the NFVO

or the MEAO act as a master, as implied in the ETSI study.

A. Scope and setup

This subsection describes the metrics, the variables, and

other settings that were applied in order to perform a com-

parison of the different MEC-NFV orchestration approaches.

Compared Approaches: The same experiments have been

performed for three different approaches. The first one repre-

sents our solution while the two others represent two possible

cases implied in the related ETSI study [6]. More concretely,

the compared approaches will be referred to as:

• MTO-based: This solution includes our Multi-Tier Or-

chestrator (MTO) as described in Section III, namely it re-

ceives high-level requests for deploying (generic) services

that require both NFV- and MEC-layer orchestration, and

implements the workflow of Fig. 2 while using OSM and

fog05 for the NFVO and MEAO logic, respectively.

• NFVO-mastered: In this approach, the NFVO receives the

high-level requests and handles the NFV-related service

OSM

(Rel 6.0.1)

fog05

MTO

func onality

NFVO Host

MEAO Host

MTO Host
(1)

generic service

deployment request

(2)

deploy NSD linked

in generic service

(3)

MEC service

deployment request

(a) MTO-based scenario

fog05OSM

(Rel 6.0.1)

MEAO HostNFVO Host
(1)

generic service

deployment request

(2)

deploy NSD linked

in generic service

(3)

MEC service

deployment request

(b) Scenario 2: NFVO-mastered scenario

OSM

(Rel 6.0.1)fog05

NFVO HostMEAO Host

(3)

MEC service

deployment request

(2)

deploy NSD linked

in generic service

(1)

generic service

deployment request

(c) Scenario 3: MEAO-mastered scenario

Fig. 3. Network topology scenarios for the three compared approaches.

instantiation while triggering the MEAO for applying the

MEC-related parts of the descriptor.

• MEAO-mastered: In this approach, the MEAO receives

the high-level requests and triggers the NFVO for han-

dling the NFV-related service instantiation while ex-

ecuting its tasks based the MEC-related parts of the

descriptor.

Fig. 3 represents the very high-level architecture and flow of

actions that take place in each of these three scenarios.

Metric: The measured metric is the Maximum CPU load

of the Virtual Machines (VM) that host the NFVO and the

MEAO during the time that it takes to instantiate a certain

number of services. The CPU load of the VMs is quite stable

during most of this time, but we focus on the peaks, because

it is them that can lead to overloads and outages.

Inputs and variables: The main setting that has been varied

was the number of services that were given to the system

concurrently in order to be instantiated. This number has been

varied between 1 and 15, because this range was sufficient for

demonstrating significant CPU loads of the CPU hosts. With

regard to the more concrete inputs, our experiments actually

use copies of exactly the same service, which includes a simple

NSD along with a simple associated AppD, which are bundled

together. As shown in Fig. 5, the NSD consisted of two sample

VNFs, which had no real telecom functionality but included

Fig. 4. Example details of resource utilization in the NFVO host during evaluation of the MEAO-mastered approach.

one virtual interface each, which was used as a connection

point, while the connection points of the two VNFs were

connected with a virtual link. On the other hand, the sample

AppD included only identification infromation (name, version,

description etc.) and a few directives, e.g. for supporting Radio

Network Information Services (RNIS) and publish-subscribe

(PubSub) MQTT transport based on oath2 authentication (cf.

Snippet 1).

Controlled variables: The host resources were fixed to the

values of Table I (refer to subsection III-C for justification),

while the additional load of the hosts during the experiments

was as close to zero as a VM can get in its idle state.

Measurement method and details: The used monitoring

environment (Zabbix and Grafana) produced detailed logs,

some of which were used to produce our selected evaluation

results (i.e., those related to the Maximum CPU load for the

different approaches). Further aspects that were measured by

the environment (but not discussed in detail in this paper)

can be understood by looking at Fig. 4. This is an example

output of our monitoring environment, in which the CPU usage

over time (across all service instantiations of a scenario), along

with the incoming and outgoing traffic, are visualized for the

NFVO host in the MEAO-mastered approach with 7 service

instantiations.

Snippet 1. Sample AppD used for all service instantiations of the evaluation

{

"appDId": "example-meapp1",

"appName": "example_mec_application",

"appProvider": "ADLINK",

"appDVersion": "1.0",

"appSoftVersion": "",

"mecVersion": ["1"],

"appDescription": "Simple MEC Application",

"appServiceRequired": [],

"appServiceOptional": [],

"appServiceProduced": [

{

"id": "0",

"serName": "Wifi RNIS",

"serCategory": {

"href": "http://rnis.in/the/catalog",

"id": "RNIS",

"name": "RNIS Services",

"version": "1.0"

},

"version": "0.1",

"transportSupported": [

{

"id": "0",

"transport": {

"type": "MB_PUBSUB",

"protocol": "MQTT",

"version": "5.0",

"security": {

"oauth2_info": "None",

"grant-types": ["

OAUTH2_IMPLICIT_GRANT"],

"token-endpoint": "None"

}

},

"serializers": ["JSON"]

}

]

}

],

"appFeatureRequired": [],

"appFeatureOptional": [],

"transportDependencies": [],

"appTrafficRule": [],

"appDNSRule": [],

"appLatency": {

"timeUnit": 10,

"latency": "ms"

}

}

Fig. 5. Visualization of the NSD used in the experiments.

B. Maximum CPU Load

This subsection presents and assesses the experimental

results related to the maximum CPU load on the NFVO and

MEAO hosts involved in the different approaches.

Fig. 6 shows the maximum CPU load for each host in the

MTO-based scenario when the number of concurrent service

instantiations increases from one to fifteen. Here we can

corroborate that the NFVO host exceeds the MEAO in terms of

the maximum CPU utilized despite the fact that significantly

more resources had been given to it (see Table I). The reason

for this is that the NFVO trigger a bigger number of internal

elements and procedures in order to fulfill its tasks and hence

the host of the OSM has a bigger footprint. Another aspect

that is notable about Fig. 6 is that the CPU load of the MEAO

host does not increase in tandem with the number of service

instantiation requests. Thus, it may be inferred that the number

of resources assigned to the MEAO server was sufficient to

effectively handle the service dependencies of each AppD

requested throughout the execution of this scenario.

Fig. 7 shows the results when the NFVO is acting as the

master of service deployment, which means that it receives

the high-level requests and handles the NFV-related service

instantiation by itself. On one hand, as expected, the maximum

CPU load in the NFVO host is higher than in the MTO-

based scenario. Specifically, the observed differences are up

to 10% or more. Therefore, this is an indication that for a

higher number of requests, the CPU load of the NFVO host

in the NFVO-mastered scenario is going to reach critical levels

sooner than in the MTO-based scenario. On the other hand,

the CPU load of the MEAO host maintained stable values

Fig. 6. Maximum CPU load in the MTO-based scenario.

Fig. 7. Maximum CPU load in the NFVO-mastered scenario.

Fig. 8. Maximum CPU load in the MEAO-mastered scenario.

since this orchestrator is performing the same functions as in

the MTO-based scenario when a generic service is instantiated

(i.e. just handling MEC-related parts of the descriptors).

The CPU loads for the case where the MEAO includes the

master functionality are plotted in Fig. 8. These results show

that the maximum CPU load of the MEAO host increased

between approximately 3 and 13 times compared to the

previous two scenarios. The maximum difference attained was

of up to 37.4% when the MEAO host receives 15 concurrent

service instantiation requests.

Furthermore, Fig. 8 makes visible how, in the MEAO-

mastered scenario, the maximum CPU load measured for the

MEAO host continually grows as the number of instantiated

generic services increases. This behaviour is significantly

different compared to the other scenarios, where the CPU

load of the MEAO host remained almost negligible across all

requests. This very issue might lead very fast to bottlenecks

for the MEAO-mastered scenario, which is the main option of

the related ETSI study, especially when the MEAO is hosted

in edge infrastructure with limited resources.

Although this novel functionality can be implemented on the

same host of the NFVO or MEAO, we do believe however that

deploying the Multi-Tier Orchestrator on a separate server will

improve the scalability of the orchestrators. Moreover, it will

also offload the CPU consumption in the orchestrator hosts, a

characteristic that is crucial in practical applications.

V. CONCLUSION

This paper has investigated the issue of integrating multiple

service orchestrators that belong to different layers, namely

they provide service orchestration functionalities that are dif-

ferent but inter-related. The most common such case, namely

the integration of NFV and MEC orchestrators, has been

discussed. In this context, a solution based on a multi-tier

orchestration component, which coordinates the basic action

flow of the two involved orchestrators, has been presented and

compared to solutions implied in a relevant ETSI study. The

latter solutions are based on one of the existing orchestrators,

typically the MEAO, playing the role of the master.

Some advantages of the proposed solution are related to bet-

ter programmability and separation of concerns, since none of

the existing orchestrators needs to be extended with complex

knowledge about other tiers. However, the gains of the multi-

tier orchetrator can be also related to performance. With this

regard, our evaluation has demonstarted how the CPU load

of the MEAO host can grow dangerously in current solutions

in which the MEAO acts as a master, as well as how this is

alleviated by deploying our multi-tier orchestrator on top of the

MEAO and the NFVO. The CPU loads using our solution were

up to 13 times lower than in the MEAO-mastered approach

when instantiating 15 services concurrently in our testbed.

This can grow even bigger if more service instantiations are

performed or if the MEAO host has less resources, which is

a possible scenario in edge environments.

Future enhancements of the multi-tier orchestrator solution

shall add the capability to trigger more types of orchestrators,

e.g., Cloud-native. This requires the revision of the service

instantiation workflow which was presented in this paper, as

well as architectural extensions. Further, experiments with

more complex services and MEC platforms could reveal the

exact circumstances under which our approach should be

preferred compared to master-based approaches.

ACKNOWLEDGMENT

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No. 761508 (5GCity project) and the

Spanish national project 5GCity (TEC2016-76795-C6-2-R).

REFERENCES

[1] 3GPP, “Study on Management and Orchestration of Network Slicing
for Next Generation Network,” 3rd Generation Partnership Project
(3GPP), Technical Report (TR) 28.801, Jan. 2018, version 15.1.0,
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3091.

[2] NGMN, “Description of Network Slicing Concept,” Next
Generation Mobile Networks alliance, Tech. Rep., Jan. 2016,
https://www.ngmn.org/fileadmin/user upload/
160113 Network Slicing v1 0.pdf.

[3] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Communications Maga-

zine, vol. 55, no. 5, pp. 94–100, May 2017.
[4] A. Galis and K. Makhijani, “Network Slicing Landscape: A Holistic

Architectural Approach, Orchestration and Management with Applica-
bility in Mobile and Fixed Networks and Clouds,” in IEEE Network

Softwarization (NetSoft), Jun. 2018.
[5] S. Sharma, R. Miller, and A. Francini, “A cloud-native approach to 5g

network slicing,” IEEE Communications Magazine, vol. 55, no. 8, pp.
120–127, 2017.

[6] ETSI, “Mobile Edge Computing (MEC) - Deployment of Mobile Edge
Computing in an NFV Environment, ETSI GR MEC 017 V1.1.1,” 2018.
[Online]. Available: www.etsi.org/deliver/etsi gr/MEC/001 099/017/
01.01.01 60/gr MEC017v010101p.pdf

[7] G. Baldoni et al, “Edge Computing Enhancements in an NFV-based
Ecosystem for 5G Neutral Hosts,” in 5GNetApp Workshop at the IEEE

Conference on NFV and SDN, Nov. 2018, pp. 1–5.
[8] G. Cattaneo, F. Giust, C. Meani, D. Munaretto, and P. Paglierani,

“Deploying cpu-intensive applications on mec in nfv systems: The
immersive video use case,” Computers, vol. 7, no. 4, p. 55, 2018.

[9] M. C. Filippou, D. Sabella, and V. Riccobene, “Flexible mec service
consumption through edge host zoning in 5g networks,” arXiv preprint

arXiv:1903.01794, 2019.
[10] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun,

“Cds-mec: Nfv/sdn-based application management for mec in 5g sys-
tems,” Computer Networks, vol. 135, pp. 96–107, 2018.

[11] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability
driven vnf placement in a mec-nfv environment,” in 2018 IEEE Global

Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–7.
[12] BBF, “TR-384: Cloud Central Office Reference Architectural Frame-

work,” The BroadbandForum, Technical Report (TR), Jan. 2018, issue
1, https://www.broadband-forum.org/download/TR-384.pdf.

[13] R. Muñoz, R. Vilalta, R. Casellas, R. Martı́nez, F. Vicens, J. Martrat,
V. López, and D. López, “Hierarchical and recursive nfv service plat-
form for end-to-end network service orchestration across multiple nfvi
domains,” in 2018 20th International Conference on Transparent Optical

Networks (ICTON). IEEE, 2018, pp. 1–5.
[14] ETSI, “Network Functions Virtualisation (NFV) - Terminology for

Main Concepts in NFV, GS ETSI NFV 003 v1.4.1,” 2018. [Online].
Available: http://www.etsi.org/deliver/etsi gs/NFV/001 099/
003/01.04.01 60/gs NFV003v010401p.pdf

[15] A. Corsaro and G. Baldoni, “fog5: Unifying the computing, networking
and storage fabrics end-to-end,” in 2018 3rd Cloudification of the

Internet of Things (CIoT), July 2018, pp. 1–8.
[16] Zabbix . Zabbix monitoring manuals, available at:

https://www.zabbix.com/manuals. Accessed on 23/10/2019.
[17] Grafana Labs. Grafana documentation, available at:

https://grafana.com/docs/. Accessed on 23/10/2019.
[18] Open Source MANO release six. (2019) Available at:

https://osm.etsi.org/wikipub/index.php/OSM Release SIX. Accessed
on 23/10/2019.

