Enterprise Ready

This theme discusses changes to Eclipse to ease adoption by large development organizations. As the size of a development organization grows, the manner in which an organization as a whole uses Eclipse changes. For example, emphasis shifts to manageability, maintainability, and support for various Eclipse versions. Here are the requirements to ensure that Eclipse can be used well in a large enterprise.

· Enable Eclipse and Eclipse based applications to be managed centrally

· Support pushing a core set of features to be installed and be visible on Eclipse deployments throughout the enterprise. This is complementary to the pull model inherent in the update manager paradigm.

· Provide ability for installed features / capabilities to be centrally managed / reported at the team / department level, and managed by an enterprise for its users.

· Deployment: We need to support changes to Eclipse to enable deployment of Eclipse based applications across the enterprise. This includes monitoring capabilities, enhancing of logging, tracing, and statistical models to enable prompt troubleshooting in a distributed environment, increasing interoperability with enterprise security infrastructure, and report generation. Develop robust mechanisms to ensure that products from different companies that work well separately on an Eclipse package work well together (e.g., 113806, 111687).

· Increase enterprise developer productivity

· Team Workspace: When joining a team, allow users to share their current preferences, workspaces, and plug-ins and make sure that all user configuration settings are stored in a preference file. Allow user preferences and pre-populated workspaces to be shared amongst a team.

· Seamless support for a broad variety of roles

· Improve development time integration across development roles

· Provide support for development time work flow. (e.g., an extensible process flow that could enforce a series of activities for a code branch commit – code review, statistics, unit test).

· This would include support for more roles and tools (e.g. extend our current Java only development model to cover defects, test cases, requirements)

· Security: Improve configurability (e.g. of capabilities) to allow for the definition of unique roles such as admin, developer. This configuration, then, can be used to control read, write, and other permissions based on roles.

· Support for digital signing of plug-ins will enable that these plug-ins can be executed only by specified roles.

· Integration

· Improve integration between Eclipse’s build system and external build systems and deployment tools

· Provide a batch mode mechanism that makes it easier for “headless” Eclipse tools to execute. For example, a batch mode for building and creating Eclipse itself.

· Integration with license management. This ensures that a framework exists such that license needs of various commercial applications integrating with Eclipse can ensure compliance with their specific license needs. The license needs could include a maximum number of concurrent users, duration of usage, etc.

· Manageability: JMX is rapidly becoming a standard for Java developers who want to incorporate manageability into their applications during development time. The new J2SE 1.5 JDK includes JMX support. Support for JMX design patterns which enable developers to model manageability and drive transformation to JMX MBeans and other management technologies. Additionally, Eclipse support for JMX creation, via wizards, code assist or other tooling, and monitoring would help in automating the management instrumentation process.

· Appealing to the Broader Community

While Eclipse has been very successful with Java developers on Windows systems, we would like to see Eclipse used and embraced in more diverse developer communities:

· Additional operating environments:

· Continue the kinds of improvements seen by adding J2SE5 support to the JDT, where a new and growing developer community was welcomed.

· Continue the work to provide basic tools and frameworks for supporting the construction, deployment and management of web service applications. Example tools include: UDDI browser, XSL/T editor, and WSDL tools.

· Improve SWT consistency across operating systems [#106188]: plug-in providers noted differences in the behaviour of Eclipse on Windows and Linux. Window systems sometimes differ in things like the exact sequence of events reported for a given action. This kind of inconsistency can result in platform specific code and increased testing requirements. More consistent behavior would ease the burden on plug-in providers. Over 80% of Eclipse downloads are for Windows, followed by ~20% for Linux, and a very small fraction are for operating systems such as the Macintosh, AIX, Solaris, and HP-UX.

· A broader range of supported platforms [#51628, #78839]: the Eclipse platform supports x86-64, ia64 on Linux already, as well as Mac OS X, but do all projects?

· Building bridges into other open source communities: examples would be LSB-compliant packaging [#108610], and cooperating closely with the Apache Harmony project in qualifying a fully open source JVM [#108614].

· Progress in supporting Vista (e.g., file system, SWT, ...)

· Vertical market-specific frameworks (e.g., the health care initiative)

· Using an open and transparent process, create, maintain and deliver language packs translated into multiple languages in a timely manner. The languages to consider are: English, Simplified Chinese, Traditional Chinese, Japanese, French, German, Spanish.

· Every project shall make a statement on their accessibility compliance. In the U.S., this means Section 508 compliance; in the European Union, this is the Web Accessibility Initiative of the World Wide Web Consortium (W3C).

Design for Extensibility: Be a Better Platform

Within the Eclipse community, many development projects are defining new development platforms on top of other Eclipse projects. Concrete examples include the Business Intelligence Reporting Tools, the Data Tools, and the Device Software Development Platform projects. It is recognized, however, that some function is not strictly required by the underlying projects but is important to exist at there in order to enable other platforms to succeed. This theme also includes effort to assure platform integrity.

· Assuring API compatibility release-to-release, including

· Robust API documentation

· API tools to detect use of internal interfaces

· Assuring release-to-release migration (e.g., resources, workspaces)

· Provide a better experience for the co-existence of offerings from multiple vendors in a single Eclipse installation

· Permit offering identity to show through (e.g. On the splash screen)

· Allow for license management of “products” (i.e. Aggregations of features)

· Allow for updating and uninstalling of products

· Improve serviceability – e.g. When a user encounters a problem, providing assistance on the where the problem originated, which product

· Open the internal JDT (UI) interfaces to enable tools to seamlessly facilitate and interact with the JDT core and UI layers. For example the parsing and AST functionality.

· Enhance the Debug API

· Provide a more flexible mechanism that can be used to debug non-Java programs. This is both in the debug model and presentation

· Provide for debugging a system comprised of multiple languages

· Provide an RCP-based installation utility that can install Eclipse plus other non-Eclipse artifacts. This needs to be integrated with Update Manager

· Loosen the strong file orientation by providing an abstraction layer of logical objects to allow one to extend Eclipse functionality tools working at a higher abstraction level. For example,

· Marker and Quick fix capabilities. In this connection a less restrictive structuring of projects would be desirable (some tools would like to structure and group projects in a more hierarchical way).

· Contributing actions on models that do not have a one-to-one mapping to files on the users hard disk. This would, for example, allow a team provider's repository operations to be made available on logical artifacts.

· Existing views like the navigator and problems view should be generalized to handle logical artifacts and, in general, there should be better control over what is displayed in views and editors based on the logical models that the end user is working on.

· Enable task automation

· Provide access to Eclipse APIs and resources from scripting languages

· Provide the capability to record, edit, playback macros, representing a set of user interface actions.

Simple to Use

The Eclipse components need to not only provide features that advanced users demand, but also be something that users find simple to use. The goal of this theme is to ensure that Eclipse-based products are simple to use for users with widely-varying backgrounds and skill sets performing a variety of tasks. Examples include:

· Provide Eclipse User Experience Guidelines to ensure consistency and usability (including Accessibility) across projects. [see 121303].

· Usability reviews and updates to new and existing user interfaces to streamline common processes and clarify concepts and terminology.

· Improving support for Cheat Sheets to assist users in performing tasks. [e.g. 56234, 69735]

· User personas/roles to streamline the user interface to adapt to specific user needs. [e.g. 73941]

· Enhanced user documentation, tutorials, white papers, demonstrations.

For example, if a user interface wizard provides a short path to performing a task, make sure that usability studies have identified the most common task performed by the target users.
Scaling Up

This refers to the need for Eclipse to deal with development and deployment on a larger and more complex scale. Increasing complexities arise from large development teams distributed in different locations, large source code bases, large amounts of data, multiple scripting and programming languages, and complex build environments that have been developed incrementally over time, the dynamic nature of new source code bases and their interaction with configuration management, and build environments involving many different tool chains and build rules.

This requires:

· Performance improvements in memory footprint, user perceived response times, and start-up times as the complexity and number of projects, files, users, and plug-ins grow (10X-100X over the next two years). This is particularly important in client/server environments where a single Solaris, AIX, Linux or HP-UX server must support dozens of concurrent Eclipse users where Eclipse competes mostly with commandline tools.

· Further reduce memory footprint

· Improve support for and performance with Motif based window managers on Solaris (drag and drop, etc)

· Improve remote X window performance

· Improve performance when creating, loading, importing and closing projects with slow filesystems (networks) in particular with ClearCase

· All Eclipse projects should identify common use cases and publish performance benchmarks on every milestone

· Ability to deal with extremely large projects and workspaces where there is a large number of developers working on different, and sometimes overlapping parts of the source tree simultaneously. This may include a more efficient way to manage multiple workspaces. Examples of large projects include Mozilla and Open Office.

· Improve the Eclipse project and workspace concept to allow overlapping environments

· Ability to fit into an existing environment of source files, build artifacts and version control repositories with minimal disruption to let developers complete a full edit-compile-debug cycle in the shortest possible time. This may include better support for multiple programming languages across *DTs for improved usability. This would also include a more flexible project model.
Progress made in 2005:

· Eclipse 3.1 startup time improvements

· CDT 3.0 parsing time improvements (ctags)

· Performance benchmarks being published

· A performance profiling and instrumentation infrastructure to help plug-in developers assess, root-cause, and fix performance issues. TPTP can be leveraged for this.

Embedded Development

Additions to Eclipse to provide standardization and extensibility to enable embedded tools providers, real-time operating system providers, semiconductor vendors, and hardware developers to create embedded-specific capabilities on top of standard Eclipse projects such as the Platform, JDT, eRCP, CDT, and TPTP. These capabilities should include:

· Hardware and Target OS bring-up capabilities

· Target OS independent debugging and profiling with extensible OS visibility

· Remote target launching, exploring, and management

· Configuring, building, deploying, and managing target images using multiple tool chains

· Embedded GUI design

· Target simulation and emulation capabilities

· Embedded testing capabilities – monitoring, profiling, and unit testing

In 2005, much progress was made on this theme:

· The Device Software Development Platform (DSDP) project was created as a blanket top-level project designed to build this extensibility in a variety of areas, including enhancements in the Eclipse Debug platform, remote target management, J2ME development, and embedded GUI design in C++.

· The eRCP project nearing its 1.0 release in the Technology Project.

· The CDT project focused on extensibility of the managed build system and scalability of the indexer for large embedded projects.

· TPTP? (Need an update from Jim Saliba)

Rich Client Platform

The Eclipse RCP is a Java-based application framework for the desktop. Building on the Eclipse runtime and the modular plug-in story, it is possible to build applications ranging from command line tools to feature-rich applications that take full advantage of SWT's native platform integration and the many other reusable components.

In 2005 a substantial amount of work was completed on PDE, to make it easier to package and deploy RCP applications. In addition, projects like Visual Editor made it easier to RCP applications.

In 2006, the key priorities for this theme are:

· Each project is requested to ensure they provide support for building RCP applications through frameworks, documentation and tutorials. It is important that that the projects assume they are not running in the context of an IDE. Ex. deploy within an OSGI bundle. [NOTE: we need to definite what are the intersection points. I think we should ask the architecture council to do this.

· More complete control over the branding of RCP applications, including the changing of all filenames from ‘eclipse’.

· To improve authentication and security (user authentication and credentials, role based security, and role-based plug-in loading)

· Framework for disconnected use; ex. how to disconnect and how to synchronize wheh reconnected.

· Make it easy to build standalone products on RCP from Eclipse plug-ins that also run in an IDE.

· Core framework installer for RCP and install metadata store (like JRE or .NET framework)

· RAD tooling for Eclipse RCP.

