Scaling Up

This refers to the need for Eclipse to deal with development and deployment on a larger and more complex scale. Increasing complexities arise from large development teams distributed in different locations, large source code bases, large amounts of data, multiple scripting and programming languages, and complex build environments that have been developed incrementally over time, the dynamic nature of new source code bases and their interaction with configuration management, and build environments involving many different tool chains and build rules.

This requires:

· Performance improvements in memory footprint, user perceived response times, and start-up times as the complexity and number of projects, files, users, and plug-ins grow (10X-100X over the next two years). This is particularly important in client/server environments where a single Solaris, AIX, Linux or HP-UX server must support dozens of concurrent Eclipse users where Eclipse competes mostly with commandline tools.

· Further reduce memory footprint

· Improve support for and performance with Motif based window managers on Solaris (drag and drop, etc)

· Improve remote X window performance

· Improve performance when creating, loading, importing and closing projects with slow filesystems (networks) in particular with ClearCase

· All Eclipse projects should identify common use cases and publish performance benchmarks on every milestone

· Ability to deal with extremely large projects and workspaces where there is a large number of developers working on different, and sometimes overlapping parts of the source tree simultaneously. This may include a more efficient way to manage multiple workspaces. Examples of large projects include Mozilla and Open Office.

· Improve the Eclipse project and workspace concept to allow overlapping environments

· Ability to fit into an existing environment of source files, build artifacts and version control repositories with minimal disruption to let developers complete a full edit-compile-debug cycle in the shortest possible time. This may include better support for multiple programming languages across *DTs for improved usability. This would also include a more flexible project model.
Progress made in 2005:

· Eclipse 3.1 startup time improvements

· CDT 3.0 parsing time improvements (ctags)

· Performance benchmarks being published

· A performance profiling and instrumentation infrastructure to help plug-in developers assess, root-cause, and fix performance issues. TPTP can be leveraged for this.

