OSGi In Practice

Neil Bartlett

December 17, 2009

Contents

Preface

I. Nuts and Bolts

1. Introduction
1.1. What is a Module?
1.2. The Problem(s) with JARs

1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.
1.2.6.

Class Loading and the Global Classpath
Conflicting Classes
Lack of Explicit Dependencies.
Lack of Version Information
Lack of Information Hiding Across JARs.
Recap: JARs Are Not Modules

1.3. J2EE Class Loading
1.4. OSGi: A SimpleIdea

1.4.1.
1.4.2.
1.4.3.

From Trees to Graphs
Information Hiding in OSGi Bundles
Versioning and Side-by-Side Versions

1.5. Dynamic Modules,
1.6. The OSGi Alliance and Standards
1.7. OSGi Implementations
1.8. Alternatives to OSGi

1.8.1.
1.8.2.
1.8.3.

Build Tools: Maven and Ivy
Eclipse Plug-in System
JSR 277 .« o o

First Steps in OSGi

2.1. Bundle Construction,
2.2. OSGi Development Tools

2.2.1.
2.2.2.

Eclipse Plug-in Development Environment
Bnd

2.3. Imstalling a Framework
2.4. Setting up Eclipse o 0
2.5. Running Equinox o oo
2.6. Installingbnd oo
2.7. Hello, World!

DRAFT PREVIEW prepared for Christopher Brind

iv Contents
2.8. Bundle Lifecycle o 36
2.9. Incremental Development 38
2.10. Interacting with the Framework 39
2.11. Starting and Stopping Threads 42
2.12. Manipulating Bundles 0oL, 42
213, Exercises . .. o. oo 43

3. Bundle Dependencies 45
3.1. Introducing the Example Application 46
3.2. Definingan APT 46
3.3. Exporting the APT 49
3.4. Importing the APL 51
3.5. Imterlude: How Bnd Works 55
3.6. Requiringa Bundle 0L 57
3.7. Version Numbers and Ranges 61

3.7.1. Version Numbers 61
3.7.2. Versioning Bundles 0. 63
3.7.3. Versioning Packages, 63
3.74. Version Ranges L. 63
3.7.5. Versioning Import-Package and Require-Bundle ... 65
3.8. Class Loading in OSGi 65
3.9. JREPackages oo 67
3.10. Execution Environments L0000 69
3.11. Fragment Bundles oo, 72
3.12. Class Space Consistency and “Uses” Constraints 73

4. Services 75

4.1. Late Bindingin Java 0. 75
4.1.1. Dependency Injection Frameworks 76
4.1.2. Dynamic Services oo 7

4.2. Registering a Service oL L. 79

4.3. Unregistering a Service oL, 81

4.4. Looking up a Service oo 84

4.5. Service Properties 86

4.6. Introduction to Service Trackers 88

4.7. Listening to Serviceso 90

4.8. Tracking Services oL Lo 92

4.9. Filtering on Properties Lo, 95

4.10. Cardinality and Selection Rules 97
4.10.1. Optional, Unary 98
4.10.2. Optional, Multiple 98
4.10.3. Mandatory, Unary 102
4.10.4. Mandatory, Multiple 102

4.11. Service Factories 102

DRAFT PREVIEW prepared for Christopher Brind

Contents v
5. Example: Mailbox Reader GUI 105
5.1. The Mailbox Table Model and Panel 105
5.2. The Mailbox Tracker 105
5.3. The Main Window 108
5.4. The Bundle Activator 111
5.5. Putting it Together Lo o 113

6. Concurrency and OSGi 117
6.1. The Price of Freedom 117
6.2. Shared Mutable State 119
6.3. Safe Publication 121
6.3.1. Safe Publication in Services 123

6.3.2. Safe Publication in Framework Callbacks 126

6.4. Don’t Hold Locks when Calling Foreign Code 128
6.5. GUI Development 131
6.6. Using Executors 133
6.7. Interrupting Threads 140
6.8. Exercises 143

7. The Whiteboard Pattern and Event Admin 145
7.1. The Classic Observer Pattern 145
7.2. Problems with the Observer Pattern 146
7.3. Fixing the Observer Pattern 147
7.4. Using the Whiteboard Pattern 148
7.4.1. Registering the Listener 151

7.4.2. Sending Events oL 153

7.5. Event Admin 156
7.5.1. Sending Events L. 156

7.5.2. The Event Object 157

7.5.3. Receiving Events 160

7.5.4. Running the Example 161

7.5.5. Synchronous versus Asynchronous Delivery 163

7.5.6. Ordered Delivery 164

7.5.7. Reliable Delivery 0. 164

7.6. Exercises 165

8. The Extender Model 167
8.1. Looking for Bundle Entries 168
8.2. Inspecting Headers 170
8.3. Bundle States 171
8.4. Using a Bundle Tracker 174
8.4.1. Testing the Help Extender 176

8.5. Bundle Events and Asynchronous Listeners 177
8.6. The Eclipse Extension Registry 180
8.7. Impersonatinga Bundle 183

DRAFT PREVIEW prepared for Christopher Brind

vi Contents
8.8. Conclusion 186

9. Configuration and Metadata 187
9.1. Configuration Admin L. 187
9.1.1. Audiences 189

9.2. Building Configurable Objects 190
9.2.1. Configured Singletons 190

9.2.2. Running the Example with Filelnstall 190

9.2.3. Configured Singleton Services 194

9.2.4. Multiple Configured Objects 197

9.2.5. Multiple Configured Objects with FileInstall 200

9.2.6. A Common Mistake 202

9.2.7. Multiple Configured Service Objects 203

9.2.8. Configuration Binding 203

9.3. Describing Configuration Data 204
9.3.1. Metatype Concepts 206

9.3.2. Creating a Metadata File 207

9.4. Building a Configuration Management Agent 207
9.4.1. Listing and Viewing Configurations 208

9.4.2. Creating and Updating Configurations 211

9.4.3. Creating Bound and Unbound Configurations 212

9.5. Creating a Simple Configuration Entry 213

Il. Component Oriented Development 215
10.Introduction to Component Oriented Development 217
10.1. What is a Software Component? 218
11. Declarative Services 219
11.1. The Goal: Declarative Living 219
11.2. Introduction 220
11.2.1. Summary of Declarative Services Features 220

11.2.2. A Note on Terminology and Versions 221

11.3. Declaring a Minimal Component 222
11.4. Running the Example 223
11.5. Providing a Service oo 224
11.5.1. Lazy Service Creation 226

11.5.2. Forcing Immediate Service Creation 228

11.5.3. Providing Service Properties 228

11.6. References to Services L ... 230
11.6.1. Optional vs Mandatory References 234

11.6.2. Static vs Dynamic References 236

11.6.3. Minimising Churn 238

11.6.4. Implementing the Dynamic Policy 239

DRAFT PREVIEW prepared for Christopher Brind

DRAFT PREVIEW prepared for Christopher Brind

Contents vii
11.6.5. Service Replacement 241
11.6.6. Running the Example 244
11.6.7. Minimising Churn with Dynamic References 245
11.6.8. Recap of Dynamic Reference Implementation 246

11.7. Component Lifecycle oo 246
11.7.1. Lifecycle and Service Binding/Unbinding 249
11.7.2. Handling Errors in Component Lifecycle Methods . 249

11.8. Unary vs Multiple References 250
11.8.1. Static Policy with Multiple References 251
11.8.2. Implementing Multiple References 251

11.9. Discussion: Are These True POJOs? 252

11.10Using Bnd to Generate XML Descriptors 254
11.10.1Bnd Headers for XML Generation 254
11.10.2XML Generation from Java Source Annotations 256
11.10.3 Automatic Service Publication 259

11.11Configured Components 259
11.11.1Sources of Configuration Data 261
11.11.2Testing with Filelnstall 262
11.11.3Dealing with Bad Configuration Data 262
11.11.4Dynamically Changing Configuration. 263
11.11.5Configuration Policies 265
11.11.6 Example Usage of Required Configuration 266

11.12Singletons, Factories and Adapters 267

I1l. Practical OSGi 269

12.Using Third-Party Libraries 271

12.1. Step Zero: Don’t Use That Library! 271

12.2. Augmenting the Bundle Classpath 273
12.2.1. Embedding JARs inside a Bundle 273
12.2.2. Problems with Augmenting the Bundle Classpath 274

12.3. Finding OSGi Bundles for Common Libraries 274

12.4. Transforming JARs into Bundles, Part T 275
12.4.1. Step 1: Obtain and Analyse Library 276
12.4.2. Step 2: Generate and Check 276

12.5. Transforming JARS into Bundles, Part IT 277
12.5.1. Step 3: Correcting Imports 278
12.5.2. Step 4: Submit to Repository 281

12.6. Runtime Issueso oL 282
12.6.1. Reflection-Based Dependencies 282
12.6.2. Hidden Static Dependencies 283
12.6.3. Dynamic Dependencies 283

12.7. ClassLoader Shenanigans 283

viii Contents

13. Testing OSGi Bundles 285
14.Building Web Applications 287
IV. Appendices 289
A. ANT Build System for Bnd 201

DRAFT PREVIEW prepared for Christopher Brind

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

2.1.
2.2.

2.3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.

5.1.
5.2,

6.1.
6.2.

7.1.
7.2.
7.3.
7.4.

8.1.

The standard Java class loader hierarchy. 7
Example of an internal JAR dependency. 9
A broken internal JAR dependency. 10
Clashing Version Requirements 11
A typical J2EE class loader hierarchy. 14
The OSGi class loader graph. 17
Different Versions of the Same Bundle. 20
Adding Equinox as a User Library in Eclipse 30
Creating a new Java project in Eclipse: adding the Equinox

library oo 31
Bundle Lifecycle o 36
The runtime resolution of matching import and export. 55
The runtime resolution of a Required Bundle 58
Refactoring with Import-Package: (Before) 59
Refactoring with Import-Package: (After) 59
Refactoring with Require-Bundle: (Before) 60
Refactoring with Require-Bundle: (After) 60
Simplified OSGi Class Search Order 66
Full OSGi Search Order 68
Service Oriented Architecture 78

Updating a Service Registration in Response to Another Service 91

The Mailbox GUI (Windows XP and Mac OSX) 114
The Mailbox GUI with a Mailbox Selected 115
Framework Calls and Callbacks in OSGi 118
The Dining Philosophers Problem, Simplified 130
The Classic Observer Pattern 146
An Event Broker 148
A Listener Directory o 149
The Event Admin Service 157
Inclusion Relationships of Bundle States 173

DRAFT PREVIEW prepared for Christopher Brind

List of Figures

8.2. Synchronous Event Delivery when Starting a Bundle 179
8.3. Asynchronous Event Delivery after Starting a Bundle 180
8.4. Editing an Extension Point in Eclipse PDE 182
8.5. Editing an Extension in Eclipse PDE 182
9.1. Overview of the Configuration Admin Service 189
11.1. Service Replacement, Before and After 243
11.2. Unary and Multiple Cardinalities in DS 268
11.3. One Component Per Service — Not Supported by DS 268
A.1. OSGi Project Structure 292

DRAFT PREVIEW prepared for Christopher Brind

List of Tables

11.1. Cardinality and Policy Indicators in Bnd

DRAFT PREVIEW prepared for Christopher Brind

List of Code Listings

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

A Typical OSGi MANIFEST.MF File 25
A Typical Bnd Descriptor File 27
Hello World Activator 34
Bnd Descriptor for the Hello World Activator 34
Bundle Counter Activator 41
Bnd Descriptor for the Bundle Counter 41
Heartbeat Activator 42
Hello Updater Activator 44
The Message Interface 47
The Mailbox Interface 48
Mailbox API Exceptions 49
Bnd Descriptor for the Mailbox APT 50
String Message o 52
Fixed Mailbox o oo 53
MANIFEST.MF generated from fixed_mailbox.bnd 54
Bnd Sample: Controlling Bundle Contents 56
Bnd Sample: Controlling Imports 56
Naive Solution to Instantiating an Interface 76
Welcome Mailbox Activator 79
Bnd Descriptor for the Welcome Mailbox Bundle 80
File Mailbox Activator L. 82
File Mailbox (Stub Implementation) 83
Bnd Descriptor for File Mailbox Bundle 83
Message Count Activator 85
Bnd Descriptor for the Message Counter Bundle 86
Adding Service Properties to the Welcome Mailbox 87
. Message Count Activator — ServiceTracker version 88
. Waiting for a Service L oL oL 89
. Database Mailbox Activator 93
. Building Filter Strings using String.format 96
.Log Tracker 99
. Sample Usage of Log Tracker 100
. Multi Log Tracker 101
. Summary of the ServiceFactory interface 103
. A Service Factory and Activator 104

DRAFT PREVIEW prepared for Christopher Brind

xiv List of Code Listings
5.1. The Mailbox Table Model 106
5.2. Mailbox Panel o 107
5.3. The Mailbox Tracker, Step One: Constructor 107
5.4. The Mailbox Tracker, Step Two: addingService method . . . 109
5.5. The Mailbox Tracker, Step Three: removedService method . . 109
5.6. The Mailbox Reader Main Window 110
5.7. Conventional Java Approach to Launching a Swing Application 111
5.8. Using Bundle Lifecycle to Launch a Swing Application 112
5.9. Bnd Descriptor for the Mailbox Scanner 113
6.1. Thread Safety using Synchronized Blocks 120
6.2. Thread Safety using Read/Write Locks 122
6.3. Unsafe Publication 123
6.4. Dictionary Service interface 123
6.5. Unsafe Publication in a Service 123
6.6. Safe Publication in a Service 124
6.7. Connection Cache interface 125
6.8. Unsafe Connection Cache 125
6.9. Is This Bundle Activator Thread-safe? 126
6.10. Mailbox Registration Service Interface 129
6.11. Holding a lock while calling OSGi APIs 129
6.12. Avoiding holding a lock while calling OSGi APIs 132
6.13. Updating a Swing Control in Response to a Service Event . . . 134
6.14. A Scala Utility to Execute a Closure in the Event Thread . . . 135
6.15. Updating a Swing Control — Scala Version 135
6.16. Single-threaded execution 136
6.17. The SerialExecutor class. 138
6.18. The Mailbox registration service using SerialExecutor 139
6.19. Registering a Thread Pool as an Executor Service. 140
6.20. Server Activator Lo 142
6.21. Exercise 2: Thread Pool Manager Interface 143
7.1. Mailbox Listener and Observable Mailbox Interfaces 146
7.2. Registering a Mailbox Listener 149
7.3. Mailbox Listener Tracker 150
7.4. Visitor Interface and Whiteboard Helper Class 151
7.5. Adding the MailboxListener Interface to MailboxTableModel 152
7.6. Mailbox Panel, with MailboxListener Registration 153
7.7. Growable Mailbox Activator and Timer Thread 154
7.8. Growable Mailbox 155
7.9. Random Price Generator 158
7.10. Event Admin Tracker 159
7.11. Bundle Activator for the Random Price Generator 159
7.12. Stock Ticker Activator 162
7.13. Bnd Descriptors for the Random Price Feed and Stock Ticker . 162

DRAFT PREVIEW prepared for Christopher Brind

List of Code Listings XV

8.1. Help Provider Service Interface 167
8.2. Scanning a Bundle for Help Documents 168
8.3. A Help Index File, index.properties 169
8.4. Scanning a Bundle for Help Documents with Titles (1) 169
8.5. ThePair Class ittt 170
8.6. MANIFEST.MF for a Help Provider 171
8.7. Scanning a Bundle for Help Documents with Titles (2) 172
8.8. The HelpExtender Class 175
8.9. Shell Command for Testing the Help Extender 177
8.10. Activator & Bnd Descriptor for the Help Extender Bundle . . . 178
8.11. Bnd Descriptor for a Sample Help Provider 178
8.12. An Eclipse plugin.xml File 181
8.13. Mailbox Service Extender 184
8.14. Activator and Bnd Descriptor for the Mailbox Service Extender 185
8.15. Minimal Mailbox Class and Bnd Descriptor 186
9.1. Configured Server Connection Singleton 191
9.2. Registering the Server Connection Singleton 192
9.3. A Configured Service L . 194
9.4. Activator for the Configured Service 195
9.5. A Simplified Configured Mailbox Service 196
9.6. Activator and Manager for the Simplified Configured Service . 198
9.7. The ManagedServiceFactory interface 199
9.8. A ManagedServiceFactory for HI'TP Port Listeners. 201
9.9. Activator for Multiple Configured Services 204
9.10. Factory for Multiple Configured Services 205
9.11. Activator for the JSON Configuration Bundle 209
9.12. Utility Methods for Viewing Configurations 210
9.13. Listing Configurations 210
9.14. Loading JSON Data 212
9.15. Loading Configuration Data from a File 214
11.1. Java Code for the Minimal DS Component 222
11.2. Minimal DS Component Declaration 222
11.3. Bnd Descriptor for the Minimal DS Component 223
11.4. A Simplistic Log Service Interface and Bnd descriptor. 225
11.5. The Console Log Class 225
11.6. DS Declaration & Bnd Descriptor for the Console Logger . . . 226
11.7. Declaration for the Console Logger as an “Immediate” Service . 228
11.8. Adding a Simple Service Property 229
11.9. Additional Service Properties 229
11.10A Logging Mailbox Listener 230

11.11DS Component Declaration for the Logging Mailbox Listener . 231
11.12Bnd Descriptor for the DS-Based Logging Mailbox Listener . . 231
11.13DS Declaration for the Optional Logging Mailbox Listener . . . 235

DRAFT PREVIEW prepared for Christopher Brind

xvi List of Code Listings

11.14Logging Mailbox Listener with Optional Log Field 236
11.15DS Declaration for a Database Mailbox 237
11.16The Database Mailbox Class (Excerpt) 237
11.17DS Declaration for the Dynamic Logging Mailbox Listener . . . 240
11.18Handling Dynamics by Copying a Field) 241
11.19Handling Dynamics with Atomic References (Excerpt) 242
11.20Incorrect Implementation of Unbind Methods 243
11.21Correct Implementation of Unbind Methods 244
11.22Template for Dynamic Service Usage with DS 246
11.23The Heartbeat Component 247
11.24The Heartbeat Component, XML Descriptor 248
11.25Implementing Multiple References 252
11.26 XML Generation Header for the Logging Mailbox Listener . . . 254
11.27Generated XML for the Logging Mailbox Listener 255
11.28 XML Generation Header for the Optional Logging Mailbox Lis-

tener 255
11.29Long Form Cardinality and Policy Attributes in Bnd 255
11.30LogMailboxListener with Bnd DS Annotations 257
11.31Heartbeat Component with Bnd DS Annotations 258
11.32Configured Component 260
11.33A Component with Modifiable Configuration 264
11.34A Component with Required Configuration 267
12.1. Bnd Descriptor for Joda Time 276
12.2. Bnd Descriptor for HSQLDB, First Pass 278
12.3. Generated Imports and Exports for HSQLDB, First Pass . . . 279
12.4. Package Uses for HSQLDB, First Pass (Abridged) 281
12.5. Bnd Descriptor for HSQLDB, Final Version 281
A.l. build.properties o 291
A2 build.xml L. 293

DRAFT PREVIEW prepared for Christopher Brind

Preface

DRAFT PREVIEW prepared for Christopher Brind

Part |I.

Nuts and Bolts

DRAFT PREVIEW prepared for Christopher Brind

1. Introduction

Consider the following question. In any large engineering project, for example
the design of a new bridge, skyscraper, or jet airliner, what is nearly always
the most difficult challenge to overcome?

The answer is Complezity.

The Boeing 747-400 “Jumbo Jet” has six million parts[l], of which half are
fasteners. It contains 171 miles (274 km) of wiring and 5 miles (8 km) of
tubing. Seventy-five thousand engineering drawings were used to produce the
original 747 design. It is a very, very complex machine, and because of this
complexity, no single person can have a complete understand of how a Boeing
747 works. Yet, this is a machine first designed in the 1960s — modern aircraft
have multiplied the level of complexity many times over. The only approach
that will allow human beings to design such incredible machines is to break
them down into smaller, more understandable modules.

Modularity enables several important benefits:

Division of Labour. We can assign separate individuals or groups to work on
separate modules. The people working on a module will have a thorough
understanding of their own module but not all the others. For example,
the designer of the entertainment system does not need to know anything
about how the landing gear works (and wvice versa!) but can concentrate
all her efforts on building the best possible entertainment system.

Abstraction. We can now think about the aircraft as an abstract whole, with-
out needing a complete understanding of every part. For example, we
grasp that a 747 is able to fly due to the lift provided by the wings and
the forward thrust of the engines, even if we do not understand exactly
how fuel is supplied to the engines or how many motors are required to
move the flaps up and down.

Reuse. Given the amount of effort that goes into designing even some of the
smaller components of an aircraft, it would be a shame to have to start
from scratch when we need an identical or very similar component in
another aircraft, or even in another part of the same aircraft. It would
be helpful if we could reuse components with minimal alterations.

Ease of Maintenance and Repair. It would be a shame to have to scrap an
entire aeroplane over a single burst tyre or torn seat cover. Modular

DRAFT PREVIEW prepared for Christopher Brind

4 Chapter 1. Introduction

designs allow for failed modules to be removed and either repaired or
replaced without affecting the rest of the machine.

It’s debatable whether the production of software can be characterised as an
engineering discipline, but nevertheless the complexity of sofware rivals what
is seen in other fields. Modern software is incredibly complex, and furthermore
is accelerating in its complexity. For example, the onboard computers of the
NASA Space Shuttle contained half a million lines of code, but today the DVD
player in your living room contains around one million lines of code. Microsoft
Windows XP is estimated to contain 40 million lines, and Windows Vista 50
million. A BMW T7-series car can contain up to 50 networked computers.

Just like aircraft engineers, software professionals are in the business of cre-
ating large and complex machines, which we can only hope to understand by
breaking them into modules.

The Java™ programming language is one of the most popular languages to-
day for building both large, enterprise applications and also small but widely
deployed mobile applications. However Java alone does not support modular-
ity in any useful way... we will see in the next section why Java’s existing
mechanisms fail to deliver all four of the above listed benefits of modularity.
However, Java’s great strength is its flexibility, which has allowed a powerful
module system to be built on top.

That module system is called OSGi. OSGi is nothing more nor less than the
way to build modular applications in Java.

1.1. What is a Module?

So, what should a software module look like? It should have the following
properties:

Self-Contained. A module is a logical whole: it can be moved around, installed
and uninstalled as a single unit. It is not an atom — it consists of smaller
parts — but those parts cannot stand alone, and the module may cease
to function if any single part is removed.

Highly Cohesive. Cohesion is a measure of how strongly related or focussed
the responsibilities of a module are. A module should not do many
unrelated things, but stick to one logical purpose and fulfil that purpose
well.

Loosely Coupled. A module should not be concerned with the internal im-
plementation of other modules that it interacts with. Loose coupling
allows us to change the implementation of one module without needing
to update all other modules that use it (along with any modules that
use those modules, and so on).

DRAFT PREVIEW prepared for Christopher Brind

1.2 The Problem(s) with JARs 5

To support all three properties, it is vital for modules to have a well-defined
interface for interaction with other modules. A stable interface enforces logical
boundaries between modules and prevents access to internal implementation
details. Ideally, the interface should be defined in terms of what each module
offers to other modules, and what each module requires from other modules.

1.2. The Problem(s) with JARs

The standard unit of deployment in Java is the JAR file, as documented by the
JAR File Specification[2]. JARs are archive files based on the ZIP file format,
allowing many files to be aggregated into a single file. Typically the files
contained in the archive are a mixture of compiled Java class files and resource
files such as images and documents. Additionally the specification defines a
standard location within a JAR archive for metadata — the META-INF folder
— and several standard file names and formats within that directly, most
important of which is the MANIFEST . MF file.

JAR files typically provide either a single library or a portion of the function-
ality of an application. Rarely is an entire application delivered as a single
JAR, unless it is very small. Therefore, constructing Java applications requires
composing together many JAR files: large applications can have a JAR count
in double or even triple figures. And yet the Java Development Kit (JDK)
provides only very rudimentary tools and technologies for managing and com-
posing JARs. In fact the tools available are so simplistic that the term “JAR
Hell”! has been coined for the problem of managing JARs, and the strange
error messages that one encounters when things go wrong.

The three biggest problems with JAR files as a unit of deployment are as
follows:

e There is no runtime concept that corresponds to a JAR; they are only
meaningful at build-time and deploy-time. Once the Java Virtual Ma-
chine is running, the contents of all the JARs are simply concatenated
and treated as a single, global list: the so-called “Classpath”. This model
scales very poorly.

e They contain no standard metadata to indicate their dependencies.

e They are not versioned, and multiple versions of JARs cannot be loaded
simultaneous.

e There is no mechanism for information hiding between JARs.

LA reference to the term DLL Hell: a comparable problem with managing DLL files on the
Microsoft Windows operating system.

DRAFT PREVIEW prepared for Christopher Brind

http://en.wikipedia.org/wiki/DLL_hell

6 Chapter 1. Introduction

1.2.1. Class Loading and the Global Classpath

The term “classpath” originates from the command-line parameter that is
passed to the java command when running simple Java applications from
the command shell (or the DOS prompt in Windows terms), or more usually
from some kind of launcher script. It specifies a list of JAR files and directo-
ries containing compiled Java class files. For example the following command
launches a Java application with both log4j.jar and the classes directory
on the classpath. First as it would be under UNIX (including Mac OS X):

java -classpath log4j.jar:classes org.example.HelloWorld
And then the DOS/Windows version:
java -classpath log4j.jar;classes org.example.HelloWorld

The final parameter is the name of the “main” class to execute, which we will
assume has been compiled into the org/example/HelloWorld.class file in
the classes directory. Somehow the Java Virtual Machine (JVM) must load
the bytes in that class file and transform them into a Class object, on which
it can then execute the static main method. Let’s look at how this works in a
standard Java runtime environment (JRE).

The class in Java that loads classes is java.lang.ClassLoader, and it has
two responsibilities:

1. Finding classes, i.e. the physical bytes on disk, given their logical class
names.

2. Transforming those physical bytes into a Class object in memory.

We can extend the java.lang.ClassLoader class and provide our own imple-
mentation of the first part, which allows us to extend the JRE to load code
from a network or other non-file-based storage system. However the second
part, i.e. transforming physical class bytes into Class objects, is implemented
in java.lang.ClassLoader by the defineClass method, which is both na-
tive and final. In other words, this functionality is built into the JRE and
cannot be overridden.

When we run the command above, the JRE determines that it needs to load
the class org.example.HelloWorld. Because it is the “main” class, it consults
a special ClassLoader named the application class loader. The first thing the
application class loader does is ask its “parent” to load the class.

This illustrates a key feature of Java class loading called parent-first delegation.
Class loaders are organised into a hierarchy, and by default all class loaders

DRAFT PREVIEW prepared for Christopher Brind

1.2 The Problem(s) with JARs 7

Bootstrap _
ClassLoader ® rijar
"
Delegate
Extension :
ClassLoader « ~ ~ ~ — 7 € extjar

Delegate ajar

Application
ClassLoader

Figure 1.1.: The standard Java class loader hierarchy.

first ask their parent to load a class; only when the parent responds that it
knows nothing about the specified class does the class loader attempt to find
the class itself. Furthermore the parent will also delegate to its own parent,
and so on until the top of the hierarchy is reached. Therefore classes will
always be loaded at the highest possible level of the hierarchy.

Figure 1.1 shows the three standard class loaders found in a conventional Java
application. The bootstrap class loader sits at the top of the tree, and it
is responsible for loading all the classes in the base JRE library, for exam-
ple everything with a package name beginning with java, javax, etc. Next
down is the extension class loader, which loads from “extension” libraries, i.e.
JARs which are not part of the base JRE library but have been installed into
the libext directory of the JRE by an administrator. Finally there is the
aforementioned application class loader, which loads from the “classpath”.

Returning to our “HelloWorld” example, we can assume that the HelloWorld
class is not present in the JRE base or extension libraries, and therefore it
will not be found by either the bootstrap or extension class loaders. Therefore
the application class loader will try to find it, and it does that by looking
inside each entry in the classpath in turn and stopping when it finds the first
match. If a match is not found in any entry, then we will see the familiar

DRAFT PREVIEW prepared for Christopher Brind

8 Chapter 1. Introduction

ClassNotFoundException.

The HelloWorld class is probably not inside log4j. jar, but it will be found
in the classes directory, and loaded by the class loader. This will inevitably
trigger the loading of several classes that HelloWorld depends on, such as
its super-class (even if that is only java.lang.0Object), any classes used in
its method bodies and so on. For each of those classes, the whole procedure
described above is repeated.

To recap:

1. The JRE asks the application class loader to load a class.

2. The application class loader asks the extension class loader to load the
class.

3. The extension class loader asks the bootstrap class loader to load the
class.

4. The bootstrap class loader fails to find the class, so the extension class
loader tries to find it.

5. The extension class loader fails to find the class, so the application class
loader tries to find it, looking first in log4j. jar.

6. The class is not in log4j.jar so the class loader looks in the classes
directory.

7. The class is found and loaded, which may trigger the loading of further
classes — for each of these we go back to step 1.

1.2.2. Conflicting Classes

The process for loading classes in Java does at least work for much of the time.
However, consider what would happen if we accidentally added a JAR file to
our classpath containing an older version of HelloWorld. Let’s call that file
obsolete. jar.

java -classpath obsolete.jar:log4j.jar:classes \
org.example.HelloWorld

Since obsolete. jar appears before classes in the classpath, and since the
application class loader stops as soon as it finds a match, this command will
always result in the old version of HelloWorld being used. The version in our
classes directory will never be used. This can be one of the most frustrating
problems to diagnose in Java: it can appear that a class is not doing what
it should be doing, and the changes we are making to it are not having any

DRAFT PREVIEW prepared for Christopher Brind

1.2 The Problem(s) with JARs 9

foobar.jar

Uses

v

Figure 1.2.: Example of an internal JAR dependency.

effect, simply because that class is being shadowed by another with the same
name.

Perhaps this scenario does not seem very likely, and it’s true that in a triv-
ial application like this, such a mistake is easily avoided. However, as we
discussed, a large Java application can consist of tens or even hundreds of
individual JAR files, all of which must be listed on the classpath. Also, JAR
files frequently have obscure names which give little clue as to their contents.
Faced with such problems it becomes much more likely — perhaps even in-
evitable — that the classpath will contain conflicting names. For example,
one of the commonest cause of conflicts is including two different versions of
the same library.

By simply searching classpath entries in order and stopping on the first match,
the JRE reduces JARs to mere lists of class files, which are dumped into a single
flat list. The boundaries of the “inner” lists — that is, the JARs themselves —
are essentially forgotten. For example, suppose a JAR contains two internal
classes, Foo and Bar, such that Foo uses Bar. This is shown in Figure 1.2.

Presumably, Foo expects to resolve to the version of Bar that is shipped along-
side it. It has almost certainly been built and tested under that assumption.
However at runtime the connection between the two classes is arbitrarily bro-
ken because another JAR happens to contain a class called Bar, as shown in
Figure 1.3

1.2.3. Lack of Explicit Dependencies

Some JAR files are “standalone”, i.e. they provide functionality without de-
pending on any other libraries except the base JRE libraries. However, many
build on the functionality offered by other JARs, and therefore they can only be
used if they are deployed alongside those other JARs. For example, the Apache
Jakarta Commons HttpClient[3] library depends on both Commons Codec and
Commons Logging, so it will not work without commons-logging.jar and
commons-codec. jar being present on our classpath.

DRAFT PREVIEW prepared for Christopher Brind

10 Chapter 1. Introduction

naughty.jar
(%
Resolves
foobar.jar

Foo.class
X
\4

Figure 1.3.: A broken internal JAR dependency.

But how do we know that such a dependency exists? Fortunately HttpClient
is well documented, and the dependency is explicitly noted on the project web
site. But many libraries do not have such good documentation. Instead the
dependency is implicit: lurking inside the class file in the JAR, ready to cause
a ClassNotFoundException when we try to use it.

In fact, even the good documentation exemplified by HttpClient is not re-
ally good enough. What we want is a standard way to declare dependencies,
preferably right in the JAR file, such that the declarations can be analysed
easily by tools.

There was an early attempt in Java to supply such information through the
Class-Path attribute, which can be specified in MANIFEST.MF. Unfortunately
this mechanism is almost entirely useless, because it only allows one to list
further JAR files to be added to the classpath using absolute file-system paths,
or paths relative to the file-system location of the JAR in question.

1.2.4. Lack of Version Information

The world does not stand still, and neither do the libraries available to us as
Java programmers. New libraries and new versions of existing libraries appear
all the time.

Therefore it is not enough merely to indicate a dependency on a particular
library: we must also know which wversion is required. For example, suppose
we determine somehow that a JAR has a dependency on Log4J. Which version
of Log4J do we need to supply to make the JAR work? The download site
lists 25 different versions (at time of writing). We cannot simply assume the

DRAFT PREVIEW prepared for Christopher Brind

1.2 The Problem(s) with JARs 11

latest version, since the JAR in question may not have been tested against it,
and in the case of Log4J there is an experimental version 1.3.x that almost
nobody uses.

Again, documentation sometimes comes to the rescue (e.g., “this library re-
quires version 1.2.10 of LogdJ or greater”), but unfortunately this kind of
information is very rare, and even when it does exist it is not in a format
that can be used by tools. So we need a way to tag our explicitly declared
dependencies with a version...... in fact, we need to specify a version range
because depending on a single specific version of a library would make our
system brittle.

Versions cause other problems. Suppose our application requires two libraries,
A and B, and both of these libraries depend in turn upon a third library, C.
But they require different versions: library A requires version 1.2 or greater of
C, but library B requires version 1.1 of C, and will not work with version 1.2!

Figure 1.4 illustrates the problem.

Figure 1.4.: Clashing Version Requirements

Application

This kind of problem simply cannot be solved in traditional Java without
rewriting either A or B so that they both work with the same version of C.
The reason for this is simply the flat, global classpath: if we try to put both
versions of C' on the classpath, then only the first version listed will be used,
so both A and B will have to use it. Note that version 1.2 in this example
does mot win because it is the higher version; it wins merely because it was
placed first in the classpath.

However, some classes from version 1.1 may still be visible if they have different

DRAFT PREVIEW prepared for Christopher Brind

12 Chapter 1. Introduction

names from the classes in 1.2! If B manages to use one of those classes, then
that class will probably attempt to use other classes that are shadowed by
version 1.2, and it will get the 1.2 version of those classes rather than the 1.1
version that it has been compiled against. This is an example of the class
loading conflict from Figure 1.2. The result is likely to be an error such as
LinkageError, which few Java developers know how to deal with.

1.2.5. Lack of Information Hiding Across JARs

All Object Oriented Programming languages offer various ways of hiding in-
formation across class and module boundaries. Hiding — or encapsulating —
internal details of a class is essential in order to allow those internal details
to change without affecting clients of the class. As such, Java provides four
access levels for members of a class, which include both fields and methods:

e public members are visible to everybody.

e protected members are visible to subclasses and other classes in the
same package.

e private members are visible only within the same class.

e Members not declared with any of the three previous access levels take
the so-called default access level. They are visible to other classes within
the same package, but not classes outside the package.

For classes themselves, only the public and default access levels are available.
A public class is visible to every class in every other package; a default access
class is only available to other classes within the same package.

There is something missing here. The above access modifiers relate to visibility
across packages, but the unit of deployment in Java is not a package, it is a
JAR file. Most JAR files offering non-trivial APIs contain more than one
package (HttpClient has eight), and generally the classes within the JAR need
to have access to the classes in other packages of the same JAR. Unfortunately
that means we must make most of our classes public, because that is the only
access modifier which makes classes visible across package boundaries.

As a consequence, all those classes declared public are accessible to clients
outside the JAR as well. Therefore the whole JAR is effectively public API,
even the parts that we would prefer to keep hidden. This is another symptom
of the lack of any runtime representation for JAR files.

1.2.6. Recap: JARs Are Not Modules

We’ve now looked in detail at some specific problems with JAR files. Now
let’s recap why they do not meet the requirements for a module system.

DRAFT PREVIEW prepared for Christopher Brind

1.3 J2EE Class Loading 13

Simply, JAR files have almost none of the characteristics of a module as de-
scribed in Section 1.1. Yes, they are a unit that can be physically moved
around. .. but having moved a JAR we have no idea whether it will still work,
because we do not know what dependencies might be missing or incorrect.

JARs are often tightly coupled: thanks to the lack of information hiding,
clients can easily use internal implementation details of a JAR, and then break
when those details change. And those are just the clients who break encapsu-
lation intentionally; other clients may accidentally use the internals of a JAR
thanks to a classpath conflict. Finally, JARs often have low cohesion: since a
JAR does not really exist at runtime, we might as well throw any functionality
into whichever JAR we like.

Of course, none of this implies that building modular systems in Java is im-
possible?. It simply means that Java provides no assistance towards the goal
of modularity. Therefore building modular systems is a matter of process and
discipline. Sadly, it is rare to see large Java applications that are modular,
because a disciplined modular approach is usually the first thing discarded
when an important deadline looms. Therefore most such applications are a
mountain of “spaghetti code”, and a maintenance nightmare.

1.3. J2EE Class Loading

The Java 2 Enterprise Edition (J2EE) specification defines a platform for dis-
tributed, multi-tier computing. The central feature of the J2EE architecture is
the so-called “application server” which hosts multiple application components
and offers enterprise-class services to them such as transaction management,
security and high availability. Application servers are also required to have
a deployment system so that applications can be deployed and un-deployed
without restarting the server and without interfering with each other.

These requirements meant that the simplistic class loading hierarchy of Figure
1.1, as used by standalone Java applications, was not sufficient. With a single
flat classpath, the classes from one application could easily interfere with other
applications. Therefore J2EE application servers use a more complex tree,
with a branch for each deployed application. The precise layout of the tree
depends on the individual application server, since it is not mandated by
the specification, but Figure 1.5 shows the approximate layout used by most
servers.

J2EE applications are deployed as “Enterprise ARchive” (EAR) files, which
are ZIP files containing a metadata file — application.xml — plus one or
more of each of the following kind of file:

2Although certain scenarios are practically impossible, such as the side-by-side usage of
different versions of the same library.

DRAFT PREVIEW prepared for Christopher Brind

14

Chapter 1. Introduction

Bootstrap
ClassLoader

Extension
ClassLoader

Application
ClassLoader

EAR
ClassLoader

EAR
ClassLoader

Figure 1.5.: A typical J2EE class loader hierarchy.

DRAFT PREVIEW prepared for Christopher Brind

1.4 OSGi: A Simple Idea 15

e Plain Java library JAR files
o JAR files containing an EJB application (EJB-JARs)

o “Web ARchive” (WAR) files, containing classes implementing Web func-
tionality, such as Servlets and JSPs.

The plain Java library JAR files contain classes that are supposed to be avail-
able to all of the EJBs and Web artifact within the EAR. They are therefore
loaded by the EAR Class Loader, at the top of the sub-tree for the deployed
application.

Referring back to the class loading procedure described in section 1.2.1, it
should be clear that, in a branching tree, an individual class loader can only
load classes defined by itself or its ancestors; it cannot load classes sideways
in the tree, i.e. from its siblings or cousins. Therefore classes that need
to be shared across both the EJBs and Web artifacts must be pushed up
the tree, into the EAR Class Loader. And if there are classes we wish to
share across multiple deployed applications, we must push them up into the
system application class loader. Usually this is done by configuring the way
the application server itself is started, adding JARs to the global classpath.

Unfortunately, libraries pushed up to that level can no longer be deployed and
un-deployed at will. Also, they become available to all deployed applications,
even the ones that do not want or need to use them. They cause class conflicts:
classes found higher in the tree always take precedence over the classes that
are shipped with the application. In fact, every application in the server must
now use the same version of the library.

Because of these problems, J2EE developers tend to avoid sharing classes
across multiple applications. When a library is needed by several applications,
it is simply shipped multiple times as part of the EAR file for each one. The
end result is a “silo” or “stovepipe” architecture: applications within the J2EE
server are little more than standalone systems, completely vertically integrated
from the client tier to the database, but unable to horizontally integrate with
each other. This hinders collaboration amongst different business areas.

1.4. OSGi: A Simple ldea

OSGi is the module system for Java. It defines a way to create true modules
and a way for those modules to interact at runtime.

The central idea of OSGi is in fact rather simple. The source of so many
problems in traditional Java is the global, flat classpath, so OSGi takes a
completely different approach: each module has its own classpath, separate
from the classpath of all other modules. This immediately eliminates almost

DRAFT PREVIEW prepared for Christopher Brind

16 Chapter 1. Introduction

all of the problems that were discussed, but of course we cannot simply stop
there: modules do still need to work together, which means sharing classes.
The key is control over that sharing. OSGi has very specific and well-defined
rules about how classes can be shared across modules, using a mechanism of
explicit imports and exports.

So, what does an OSGi module look like? First, we don’t call it a module: in
OSGi, we refer to bundles.

In fact a bundle is just a JAR file! We do not need to define a new standard
for packaging together classes and resources: the JAR file standard works just
fine for that. We just need to add a little metadata to promote a JAR file into
a bundle. The metadata consists of:

e The name of the bundle. We provide a “symbolic” name which is used
by OSGi to determine the bundle’s unique identity, and optionally we
can also provide a human-readable, descriptive name.

e The wversion of the bundle.

o The list of imports and exports. We will see shortly exactly what is being
imported and exported.

o Optionally, information about the minimum Java version that the bundle
needs to run on.

e Miscellaneous human-readable information such as the vendor of the
bundle, copyright statement, contact address, etc.

These metadata are placed inside the JAR file in a special file called MANI-
FEST.MF, which is part of all standard JAR files and is meant for exactly this
purpose: it is a standard place to add arbitrary metadata.

The great advantage of using standard JAR files as OSGi bundles is that a
bundle can also be used everywhere that a JAR file is expected. Not everybody
uses OSGi (yet...) but since bundles are just JAR files, they can be used
outside of the OSGi runtime. The extra metadata inside MANIFEST.MF is
simply ignored by any application that does not understand it.

1.4.1. From Trees to Graphs

What does it mean to provide a separate classpath for each bundle? Simply, we
provide a class loader for each bundle, and that class loader can see the classes
and resources inside the bundle’s JAR file. However in order for bundles
to work together, there must be some way for class loading requests to be
delegated from one bundle’s class loader to another.

Recall that in both standard Java and Enterprise Edition, class loaders are
arranged in a hierarchical tree, and class loading requests are always delegated

DRAFT PREVIEW prepared for Christopher Brind

1.4 OSGi: A Simple Idea 17

Figure 1.6.: The OSGi class loader graph.

upwards, to the parent of each class loader. Recall also that this arrangement
does not allow for sharing of classes horizontally across the tree i.e., between
siblings or cousins. To make a library available to multiple branches of the
tree it must be pushed up into the common ancestor of those branches, but
as soon as we do this we force everybody to use that version of that library,
whether they like it or not.

Trees are simply the wrong shape: what we really need is a graph. The de-
pendency relationship between two modules is not a hierarchical one: there is
no “parent” or “child”, only a network of providers and users. Class loading
requests are delegated from one bundle’s class loader to another’s based on
the dependency relationship between the bundles.

An example is shown in Figure 1.6. Here we have five libraries with a complex
set of interdependencies, and it should be clear that we cannot easily force this
into a hierarchical tree shape.

The links between bundles are based on imported and exported packages.
That is, Java packages such as javax.swing or org.apache.log4j.

Suppose bundle B in Figure 1.6 contains a Java package named org.foo. It
may choose to export that package by declaring it in the exports section of
its MANIFEST.MF. Bundle A may then choose to import org.foo by declaring
it in the imports section of its MANIFEST.MF. Now, the OSGi framework will
take responsibility for matching up the import with a matching export: this
is known as the resolution process. Resolution is quite complex, but it is
implemented by the OSGi framework, not by bundles themselves. All that

DRAFT PREVIEW prepared for Christopher Brind

18 Chapter 1. Introduction

we need to do, as developers of bundles, is write a few simple declarative
statements.

Once an import is matched up with an export, the bundles involved are “wired”
together for that specific package name. What this means is that when a class
load request occurs in bundle A for any class in the org.foo package, that
request will immediately be delegated to the class loader of bundle B. Other
imports in A may be wired to other bundles, for example A may also import
the package org.bar that is exported by bundle C, so any loading requests
for classes in the org.bar package will be delegated to C’s class loader. This
is extremely efficient: whereas in standard Java class load events invariably
involve searching through a long list of classes, OSGi class loaders generally
know immediately where to find a class, with little or no searching.

What happens when resolution fails? For example, what if we forget to include
bundle B with our application, and no other bundle offers package org.foo
to satisfy the import statement in bundle A? In that case, A will not re-
solve, and cannot be used. We will also get a helpful error message telling
us exactly why A could not be resolved. Assuming our bundles are correctly
constructed (i.e., their metadata is accurate) then we should never see errors
like ClassNotFoundException or NoClassDefFoundError®. In standard Java
these errors can pop up at any time during the execution of an application, for
example when a particular code path is followed for the first time. By contrast
an OSGi-based application can tell us at start-up that something is wrong. In
fact, using simple tools to inspect the bundle metadata, we can know about
resolution errors in a set of bundles before we ever execute the application.

1.4.2. Information Hiding in OSGi Bundles

Note that we always talk about matching up an import with an export. But
why are the export declarations even necessary? It should be possible simply
to look at the contents of a bundle JAR to find out what packages are con-
tained within it, so why duplicate this information in the exports section of
the MANIFEST.MF?

The answer is, we don’t necessarily want to export all packages from a bundle
for reasons of information hiding as discussed in Section 1.2.5. In OSGi, only
packages that are explicitly exported from a bundle can be imported and used
in another bundle. Therefore all packages are “bundle private” by default,
making it easy for us to hide the internal implementation details of our bundles
from clients.

3An exception to this is where dynamic reflection is used to load arbitrary classes at
runtime, a topic which is discussed in Chapter 77

DRAFT PREVIEW prepared for Christopher Brind

1.5 Dynamic Modules 19

1.4.3. Versioning and Side-by-Side Versions

OSGi does not merely offer dependencies based on package names: it also adds
versioning of packages. This allows us to cope with changes in the released
versions of libraries that we use.

Exports of packages are declared with a version attribute, but imports declare
a version range. This allows us to have a bundle depend on, e.g., version 1.2.0
through to version 2.1.0 of a library. If no bundle is exporting a version of
that package that falls within the specified range, then our bundle will fail to
resolve, and again we get a helpful error message telling us what is wrong.

We can even have different versions of the same library side-by-side in the same
application, so the scenario described in Section 1.2.4 (wherein two libraries
each need to use different versions of a third library) will work under OSGi.

Note that, because exports are declared on each exported package, there is no
need for all exports from a bundle to be the same version. That is, a single
bundle can export both version 1.2 of org.foo and version 3.5 of org.bar.
Of course, it cannot export two versions of the same package.

1.5. Dynamic Modules

OSGi is not just the module system for Java. It is the dynamic module system
for Java. Bundles in OSGi can be installed, updated and uninstalled without
taking down the entire application. This makes it possible to, for example,
upgrade parts of a server application — either to include new features or to fix
bugs found in production — without affecting the running of other parts. Also,
desktop applications can download new versions without requiring a restart,
so the user doesn’t even need to be interrupted.

To support dynamic modules, OSGi has a fully developed lifecycle layer, along
with a programming model that allows “services” to be dynamically published
and consumed across bundle boundaries. We will look at these facilities in
depth in later osgi-in-practice.

Incidentally, many developers and system administrators are nervous or scepti-
cal about OSGi’s dynamic capabilities. This is perfectly understandable after
the experience of J2EE, which offered limited and unreliable hot deployment
of EAR modules. These people should still consider using OSGi anyway for
its great modularity benefits, and feel free to ignore the lifecycle layer. Never-
theless, OSGi’s dynamic capabilities are not mere hype: they really do work,
and some experimentation will confirm that.

DRAFT PREVIEW prepared for Christopher Brind

20 Chapter 1. Introduction

->1'2+4n

1.1 —> Cvi.d

Application

Figure 1.7.: Different Versions of the Same Bundle.

1.6. The OSGi Alliance and Standards

OSGi is a standard defined by an Alliance of around forty companies. Its
specifications are freely available and are comprehensive enough that a highly
compliant implementation can be written using only the documents for refer-
ence.

Two of the commonest questions about the name OSGi are: what does it
stand for, and why is the “i” lower-case? Here is the definitive answer to both
questions: officially OSGi doesn’t stand for anything! However, it used to stand
for “Open Service Gateway initiative”, and this is the source of the lower-case
letter “i”, since “initiative” was not considered to be stylistically part of the
brand name. But the long name is now deprecated, since OSGi has expanded
far beyond its original role in home gateways. As a result, the OSGi name is
rather odd, but it has the great advantage of being easily Google-able since it
seems not to be a word (or even part of a word) in any language. In speech,
the name is always spelt out (“Oh Ess Gee Eye”) rather than pronounced as
a word (e.g., “Ozjee”).

The OSGi Alliance’s role is to define the specification for new releases of the
platform, and to certify implementations of the current release of the specifica-
tion. The technical work is done by a number of Expert Groups (EGs) which
include the Core Platform Expert Group (CPEG), Mobile (MEG), Vehicle
(VEG) and Enterprise (EEG) Expert Groups. In this book we will mostly
look at the work of the CPEG.

DRAFT PREVIEW prepared for Christopher Brind

1.7 OSGi Implementations 21

1.7. OSGi Implementations

Several independently implemented OSGi frameworks exist today, including
four that are available as open source software.

Equinox [4] is the most widely deployed OSGi framework today owing to its
use in the core runtime of Eclipse. It can also be found in many in-house
custom applications as well as packaged products such as Lotus Notes
and IBM WebSphere Application Server. Equinox implements Release
4.1 of the OSGi specifications and is licensed under the Eclipse Public
License (EPL)[5].

Knopflerfish [(] is a popular and mature implementation of both OSGi Release
3 and Release 4.1 specifications. It is developed and maintained by
Makewave AB, a company based in Sweden, and is licensed under a
BSD-style license. Makewave also offers Knopflerfish Pro, a commercially
supported version of Knopflerfish.

Felix [7] is a community implementation of the OSGi Release 4.x under the
Apache Group umbrella. It is designed particularly for compactness and
ease of embedding, and is the smallest (in terms of minimal JAR size) of
the Release 4 implementations. It is licensed under the Apache License
Version 2.0.

Concierge [8] is a very compact and highly optimized implementation of OSGi
Release 3. This makes it particularly suited to resource-constrained plat-
forms such as mobile phones. Concierge is licensed under a BSD-style
license. However, OSGi Release 3 is not covered by this book®.

All of the example code and applications in this book should work on any
of the three listed Release 4 implementations, except where explicitly noted.
However, the way we work with each of these frameworks — for example
the command line parameters, the built-in shell, the management of bundles
— differs enough that it would be awkward to give full instructions for all
three. Therefore it is necessary to pick a single implementation for pedagogical
purposes, and for reasons explained later we will work with Equinox.

1.8. Alternatives to OSGi

At its core, OSGi is very simple and, as with all good and simple ideas, many
people have independently invented their own versions at different times and
places. None of these have achieved the maturity or widespread usage that

4Also note that Concierge has not been certified compliant with OSGi R3, since OSGi
Alliance rules only allow implementations of the current specification release to be cer-
tified.

DRAFT PREVIEW prepared for Christopher Brind

22 Chapter 1. Introduction

OSGi now enjoys, but it is informative to review some of these alternatives. At
the very least we may learn something about why OSGi has made the design
choices it has made, but we may also find good ideas that can be brought into

OSGi.

1.8.1. Build Tools: Maven and lvy

Maven and Ivy are both popular tools that have some characteristics of a
module system, but they are build-time tools rather than runtime frameworks.
Thus they do not compete directly with OSGi, in fact they are complementary
and many developers are using Maven or Ivy to build OSGi-based systems.

Maven is a complete, standalone build tool, whereas Ivy is a component that
can be integrated into an ANT-based build. Both tools attempt to make JARs
more manageable by adding modular features to them. Principally this means
dependencies: both allow us to specify the versioned dependencies of a JAR
using metadata in XML files. They use this information to download the
correct set of JARs and construct a compile-time classpath.

However, as they do not have any runtime features neither Maven nor Ivy can
solve the runtime problems with JARs, such as the flat global classpath, the
lack of information hiding, and so on. Also the metadata formats used by these
tools is unfortunately not compatible with the format used by OSGi, so if we
use Maven or Ivy to build an OSGi-based system we typically have to specify
the metadata twice: once for OSGi and once for the build tool. However, some
efforts are currently being made to better integrate Maven with OSGi.

1.8.2. Eclipse Plug-in System

As already noted, the Eclipse IDE and platform are based on an implemen-
tation of OSGi. However this was not always the case: prior to version 3.0,
Eclipse used its own custom module system.

In Eclipse terminology, a module is a “plug-in”. In fact, Eclipse developers
often still use the term plug-in as an alternative name for an OSGi bundle.
In the old Eclipse system, a plug-in was a directory containing a file at the
top level named plugin.xml. This file contained metadata that was broadly
similar to the metadata in an OSGi manifest: the name of the plug-in, vendor,
version, exported packages and required plug-ins.

Notice a key difference here. In the Eclipse plug-in system, dependencies were
not declared at the level of Java packages but of whole plug-ins. We would
declare a dependency on a plug-in based on its ID, and this would give us
access to all of the exported packages in that plug-in. OSGi actually supports

DRAFT PREVIEW prepared for Christopher Brind

1.8 Alternatives to OSGi 23

whole-bundle dependencies also, but the use of this capability is frowned upon
for reasons we will examine in Chapter 3.

The biggest deficiency of the Eclipse plug-in system was its inability to install,
update or uninstall plug-ins dynamically: whenever the plug-in graph changed,
a full restart was required. In early 2004 the core Eclipse developers began a
project, code-named Equinox, to support dynamic plug-ins. They intended to
do this either by enhancing the existing system or selecting an existing module
system and adapting it to Eclipse. In the end, OSGi was selected and Equinox
became a leading implementation of it.

1.8.3. JSR 277

Java Specification Request (JSR) number 277 is titled Java Module System]9]
and as such one would expect it to attempt to solve a similar set of problems
to OSGi. However JSR 277 tackles them in a different way to OSGi.

The most important point to note is that, at the time of writing, JSR 277
is an incomplete specification with no implementation yet. It is scheduled to
be included with Java 7 but it is unclear when (or even if!) Java 7 will be
released. An Early Draft Review (EDR) of JSR 277 was released in October
2006, which is the best information currently available.

Like the old Eclipse plug-in system, JSR 277 does not support package-level
dependencies, instead using whole-module dependencies. However JSR 277
differs further by using programmatic resolution “scripts” rather than declar-
ative statements to resolve module dependencies. This allows for extreme
flexibility, but it’s debatable whether such flexibility is ever necessary or desir-
able. Programmatic code can return different results at different times, so for
example we could write a module that resolves successfully only on Tuesday
afternoons! Therefore we completely lose the ability to use static dependency
analysis tools.

Furthermore, JSR 277 is not dynamic, it requires the Java Virtual Machine to
be restarted in order to install, update or uninstall a module.

In a sense, JSR 277 is an affirmation from its sponsors (principally Sun) that
modularity is important and currently missing from standard Java. Sadly,
JSR 277 comes many years later than OSGi, includes some questionable design
features, and is substantially less ambitious despite its opportunity to change
the underlying Java runtime. Therefore we hope that JSR 277 will at the
very least be compatible with OSGi, since it currently appears to represent a
significant step backwards for modularity in Java.

DRAFT PREVIEW prepared for Christopher Brind

e B N A N

2. First Steps in OSGi

OSGi is a module system, but in OSGi we refer to modules as “bundles”. In
this chapter we will look at the structure of a bundle, how it depends on other
bundles, and how to create an OSGi project using standard Java tools.

2.1. Bundle Construction

As discussed in the Introduction, an OSGi bundle is simply a JAR file, and the
only difference between a bundle JAR and a “plain” JAR is a small amount
of metadata added by OSGi in the form of additional headers in the META-
INF/MANIFEST.MF file. Bundles can be used outside of an OSGi framework,
for example in a plain Java application, because applications are required to
ignore any attributes in the manifest that they do not understand.

Listing 2.1 A Typical OSGi MANIFEST.MF File

Manifest- Version: 1.0

Created-By: 1.4.2__06-b03 (Sun Microsystems Inc.)
Bundle—ManifestVersion: 2

Bundle—Name: My First 0SGi Bundle
Bundle—SymbolicName: org.osgi.examplel
Bundle—Version: 1.0.0
Bundle—RequiredExecutionEnvironment: J2SE—1.5
Import—Package: javax.swing

Listing 2.1 shows an example of a manifest containing some of the most com-
mon attributes used in OSGi. The lines in dtalic font are standard in all JAR
file manifests, although only the Manifest-Version attribute is mandatory
and it must appear as the first entry in the file. The JAR File Specification[?]
describes several other optional attributes which can appear, but applications
and add-on frameworks (such as OSGi) are free to define additional headers.

All of the other attributes shown here are defined by OSGi, but most are
optional. To create a valid bundle, only the Bundle-SymbolicName attribute
is mandatory.

DRAFT PREVIEW prepared for Christopher Brind

26 Chapter 2. First Steps in OSGi

2.2. OSGi Development Tools

In theory, one does not need any tools for building OSGi bundles beyond
the standard Java tools: javac for Java source code compilation, jar for
packaging, and a straightforward text editor for creating the MANIFEST . MF.

However very few Java programmers work with such basic tools because they
require lots of effort to use, both in repeatedly typing long command lines and
in remembering to execute all the steps in the right sequence. In practice we
use build tools like Ant or Maven, and IDEs like Eclipse, NetBeans or IntelliJ.
The same is true when developing for OSGi.

Likewise, directly editing the MANIFEST.MF file and constructing bundles with
the jar command is burdensome. In particular the format of the MANIFEST . MF
file is designed primarily for efficient processing by the JVM rather than for
manual editing, and therefore it has some unusual rules that make it hard
to work with directly. For example, each line is limited to 72 bytes (not
characters!) of UTF-8 encoded data'. Also OSGi’s syntax requires some
strings to be repeated many times within the same file. Again, this is done for
speed of automated processing rather than for convenient editing by humans?.

There are tools that can make the task of developing and building bundles
easier and less error-prone, so in this section we will review some of the tools
available.

2.2.1. Eclipse Plug-in Development Environment

Eclipse is built on OSGi. For the Eclipse platform and community to grow,
it was (and still is) essential to make it easy to produce new plug-ins that
extend the functionality of Eclipse. Therefore, Eclipse provides a rich set of
tools for building plug-ins. Taken together these tools are called the Plug-
in Development Environment, usually abbreviated to PDE, which works as a
layer on top of the Java Development Tools (JDT). Both PDE and JDT are
included with the “Classic” Eclipse SDK download package, but PDE is not
included with the “Eclipse IDE for Java Developers” download.

Since Eclipse plug-ins are just OSGi bundles®, the PDE can be used for OSGi

LA single UTF-8 character is represented by between one and six bytes of data.

21t is the author’s opinion that these goals — efficient processing by machines, and ease
of editing by humans — are fundamentally at odds. Formats convenient for humans to
write are hard for machines to parse, and vice versa. XML attempts to be convenient
for both, but manages to be difficult for humans to read and write while still being
inefficient for machines to parse and generate.

3The term “plug-in” has always been used by Eclipse since its first version, which was not
based on OSGi. Today there is no difference at all between a “plug-in” and a bundle.

More details about the relationship between Eclipse and OSGi can be found in Chapter
77

DRAFT PREVIEW prepared for Christopher Brind

2.2 OSGi Development Tools 27

development. In fact it is one of the simplest ways to very quickly and easily
create new bundles.

However, we will not use PDE for the examples in this book, for a number of
reasons:

e Most importantly, using PDE would force you to use Eclipse to work
through the examples. Eclipse is a great IDE and the author’s first
choice for Java development, but OSGi should be accessible to users of
other IDEs — such as NetBeans and IntelliJ] — and even to those who
prefer to use Emacs or Vim?!

e Second, PDE is a highly interactive and graphical tool. Unfortunately
this is inconvenient for pedagogical purposes, since it is difficult to de-
scribe the steps needed to complete a complex operation without filling
up the book with numerous large screenshots.

e Finally, in the author’s opinion PDE encourages some “anti-patterns”,
or practices which go against the recommended OSGi approach®.

2.2.2. Bnd

Bnd[?] is a command-line tool, developed by Peter Kriens, for building OSGi
bundles. Compared to PDE it may seem primitive, because it offers no GUI,
instead using plain text properties files and instructions issued on the command
line. However the core of the tool is very elegant and powerful, and it combines
well with standard and familiar build tools such as ANT.

Listing 2.2 A Typical Bnd Descriptor File

sample.bnd
Private—Package: org.example
Bundle—Activator: org.example.MyActivator

Listing 2.2 shows an example of a typical Bnd descriptor file. This looks very
similar to a bundle manifest file, so to avoid confusion we will prefix bnd files
with a comment indicating the file name, e.g. # sample.bnd. These files are much
easier to edit than a MANIFEST.MF thanks to the following differences:

o As an alternative to the colon+space separator for the name/value pairs,
an equals sign (=) can be used with or without surrounding spaces.

e There is no line length limit.

4Though I draw the line at Notepad.

5Specifically I feel that PDE has very weak support for the Import-Package form of depen-
dency declaration, thus encouraging the use of Require-Bundle. The meaning of these
terms is explained in Chapter 3.

DRAFT PREVIEW prepared for Christopher Brind

28 Chapter 2. First Steps in OSGi

e Line continuations, i.e. long strings broken over several lines to make
them more readable, are indicated with a backslash character (\) at the
end of the continued line.

e Shortcuts and wildcards are available in the bnd syntax for entering
data that, in the underlying MANIFEST.MF syntax, would need to be
repeated.

This descriptor file is used by bnd to generate not just the MANIFEST.MF but the
JAR itself. The descriptor tells bnd both how to generate the MANIFEST . MF and
also what the contents of the JAR should be. In this case the Private-Package
instruction tells bnd that the JAR should contain the classes and resources
found in the org.example package. It will use its classpath — which can be
supplied either on the command line, or through the properties of the Ant task
— to source the contents of the specified package.

2.3. Installing a Framework

In the introduction were listed four open source implementations of the OSGi
standard. As was mentioned, all the sample code in this book is intended to
run on all of the OSGi Release 4 implementations — i.e. Equinox, Knopflerfish
and Felix, but not Concierge which is a Release 3 implementation® — however
each framework has its own idiosyncratic way to be launched and controlled.
Sadly it would be impractical to show instructions for working with all three
frameworks, so we must choose one, but fortunately the differences are slight
enough that almost all the instructions can still be followed on another frame-
work simply using the cross-reference of commands in Appendix 77.

We will mainly work with Equinox. It has a few advantages: in particular it
is the “Reference Implementation” and as such tends to support new OSGi
features a little earlier. Also it is, at the time of writing, slightly faster and
more scalable, although this may change as all of the frameworks are contin-
ually improving in this area. Neither of these reasons is particularly strong
and they are certainly not criticismsof the other frameworks. Nevertheless we
must choose one and Equinox is it.

The main download page for Equinox is at:
http://download.eclipse.org/equinox

On opening this page, the first choice you are presented with is the desired
version. For the purposes of following the advanced osgi-in-practice in the

6In fact many code samples will work on Concierge/OSGi R3, however in general R4 is
assumed.

DRAFT PREVIEW prepared for Christopher Brind

http://download.eclipse.org/equinox

2.4 Setting up Eclipse 29

latter half of the book, it is best to choose the most recent released version,
which at the time of writing is 3.5.1. Next we are asked to choose how much
or how little of the Equinox runtime we wish to download. The smallest useful
download is 1.1Mb and it includes only the core Equinox runtime. However we
will very soon need to use additional bundles from the Equinox distribution,
and it is also useful to have source code because this enables our IDE to give
us more information when we are calling or implementing APIs. Therefore the
best download to choose is the “Eclipse Equinox SDK?” file, which comes in at
24Mb.

Once you have downloaded this ZIP file, it can be extracted to a location of
your choosing. It is a good idea to extract it to a directory named something
like Equinox-SDK-3.5. 1 as this helps to distinguish it from other versions and
editions of Equinox which we may download in the future. We will refer to
this top-level directory henceforth as EQUINOX_HOME . After decompressing we
will have a directory named plugins. In that directory we will find all the
JARs (and source JARs) that implement Equinox and its supporting bundles.

2.4. Setting up Eclipse

Section 2.2.1 discussed several problems with the Eclipse Plug-in Development
Environment. However, in the examples we will still use the Eclipse IDE,
because Java development is far easier and more productive in an IDE than
in a plain text editor, and because Eclipse is by far the most popular IDE for
Java. But rather than using PDE, a tool which is available only in Eclipse, we
will use the basic Java Development Tooling (JDT), which has direct parallels
in other Java IDEs. Therefore, although the instructions given are specific
to Eclipse, they can be directly translated to those other IDEs. Please check
the documentation for your preferred IDE: most include a section on how to
translate from Eclipse concepts.

Before creating any projects, we will first define a “User Library” for the
Equinox framework, which will help us to reference Equinox from many indi-
vidual projects. To do this open the system preferences dialogue by selecting
Window — Preferences (Mac users: Eclipse — Preferences) and navi-
gating the tree on the left edge to Java — Build Path — User Libraries.
Then click the New button and type the library name “Equinox”. Next, with
the Equinox library selected, click Add JARs and add plugins/org.eclipse.-
osgi_version.jar from the Equinox directory (EQUINOX_HOME) (where ver-
sion is the actual version tag attached to the JAR file, which depends on the
version of Equinox that was downloaded).

Next you need to inform Eclipse of the location of the source code. Ex-
pand the Equinox JAR file entry in the User Library list, select “Source

DRAFT PREVIEW prepared for Christopher Brind

30 Chapter 2. First Steps in OSGi

attachment” and click Edit. Click External File and browse to the file
plugins/org.eclipse.osgi.source_verstion.jar under EQUINOX_HOME.

You should now have something that looks like Figure 2.1.

8.00 references
{ type filter text] User Libraries . R
> General User libraries can be added to a Java Build path and bundle a number of
» Ant external archives. System libraries will be added to the boot class path when
launched.
P Help) o
Defined user libraries:
P InstallfUpdate
¥ Java ¥ Eil Equinox New...
=
» Appearance ¥ @@ org.eclipse.osgi_3.5.0v20090311-1300 jar -
¥ Build Path @ Source attachment: org.eclipse.osgi.sourc
Classpath Variable @ Javadoc location: (None)
User Libraries .‘?‘5 Native library location: (None) (" Add JARs...)
B Code Style ;5?:Acce55 rules: (Mo restrictions)
F Debug
P Editor
FindBugs i
P Installed JREs —
Wnit Down
Properties Files Editor
» Plug-in Development
» Run/Debug
[———] AR
3 <« »

@ (Cancel) E—Bl(—a

4

Figure 2.1.: Adding Equinox as a User Library in Eclipse

Now we can create a new Java Project by selecting File — New — Java
Project. Eclipse will show a wizard dialogue box. Enter the project name
“OSGi Tutorial” and accept all the other defaults as given. Click Next to go to
the second page of the wizard. Here we can add the Equinox library by select-
ing the Libraries tab and clicking Add Library. A sub-wizard dialogue pops
up: select User Library and click Next, then tick the box next to Equinox
and click Finish. Back in the main wizard, which should now look like Figure
2.2, we can click Finish, and Eclipse will create the project.

DRAFT PREVIEW prepared for Christopher Brind

2.4 Setting up Eclipse 31

Java Settings
Define the Java build settings.

—f@ Source [=% Projects W—'&@ Order and Export 1

JARs and class folders on the build path:

b =i Egquinox ¢ Add JARs...
» = JRE System Library [J25E-1.5]

[: Add External JARs...

[: Add Variable...

[: Add Library...

[: Add Class Folder...

[: Add External Class Folder...

[: Edit...

[: Remove

L N L W L W .

(Migrate JAR File...

e,

@ C < Back)"f Next > -\' C Cancel) H

A

Figure 2.2.: Creating a new Java project in Eclipse: adding the Equinox library

DRAFT PREVIEW prepared for Christopher Brind

32 Chapter 2. First Steps in OSGi

2.5. Running Equinox

We’re now going to run Equinox using the Eclipse launcher. We could run
Equinox from a shell or command prompt window, but if we run under Eclipse
we can easily switch to debugging mode when things go wrong.

From the main menu, select Run — Run Configurations (or Open Run Dia-
log in older Eclipse versions). On the left hand side select “Java Application”
and click the “New” button. Change the Name field at the top to “Equinox”.
Ensure the Project field is set to the “OSGi Tutorial” project, and then click
the Search button next to the Main class field. The only available “main”
class should be the one called EclipseStarter, so choose that one.

Now flip to the Arguments tap of the Run Configurations dialog. In the Pro-
gram Arguments field enter the following arguments exactly:

—console —configuration runtime

The first argument -console indicates that Equinox should create an interac-
tive console for us to work with — if we forget this argument then it will start
up and then immediately exit! The second argument (consisting of two words,
-configuration runtime) asks Equinox to create its “configuration area” in
a local directory named runtime. The configuration area is where Equinox
stores its temporary state information.

Now click Run. Equinox will print the following:

osgi>

This is Equinox’s standard shell prompt and indicates it is waiting for input
from us. We are now ready to run some commands. The most frequently used
command is ss, which prints the list of currently installed bundles along with
their state. Let’s try running ss now:

osgi> ss
Framework is launched.

id State Bundle
0O ACTIVE org.eclipse.osgi_3.5.0.v20090311 —1300

The only bundle here is Equinox itself, listed under the name of the Equinox
JAR file. It is also called the “System Bundle”, and it always has the bundle
ID of zero.

For the moment, there is not much more we can do with Equinox until we
install some more interesting bundles. However you may at this point wish to
explore the commands available by typing help. When bored with this, don’t
shutdown Equinox just yet; leave it running for now.

DRAFT PREVIEW prepared for Christopher Brind

2.6 Installing bnd 33

For reference, if we wanted to run Equinox from the command line then we
could do so as follows, assuming we have a shell variable named EQUINOX_HOME
set to the installation directory we created earlier:

java —jar $EQUINOX_HOME/plugins/org.eclipse.osgi_*.jar
—console —configuration runtime

2.6. Installing bnd

Peter Kriens’ bnd is an ingenious little tool. It is packaged as a single JAR
file, yet it is simultaneously:

e a standalone Java program, which can be invoked with the java —jar
command;

e an Eclipse plug-in;
e an Ant task;
e a Maven plug-in.

We will install it as an Eclipse plug-in, but we will also be using it standalone
and as an Ant task soon. First download it from:

http://www.aqute.biz/Code/Download#bnd

then take a copy and save it into the plugins directory underneath your
Eclipse installation directory”. Put another copy into the project directory in
Eclipse. Finally, restart Eclipse with the ~clean command line parameter.

Next we will configure Eclipse to use its standard Java “properties” file editor
to open files ending in the .bnd extension. To do this, open the system pref-
erences and navigate to General — Editors — File Associations. Click
the Add button next to the upper list and type *.bnd. Now click the Add
button next to the lower list and select Internal Editors — Properties
File Editor. Click OK to close the preferences window.

2.7. Hello, World!

In keeping with long-standing tradition, our first program in OSGi will be
one that simply prints “Hello, World” to the console. However, most such
programs immediately exit as soon as they have printed the message. We will

7Or the dropins directory if you are using Eclipse 3.4 or later.

DRAFT PREVIEW prepared for Christopher Brind

http://www.aqute.biz/Code/Download#bnd

'S

© ®w o

11
12
13
14

34 Chapter 2. First Steps in OSGi

embrace and extend the tradition with our first piece of OSGi code: since
OSGi bundles have a concept of lifecycle, we will not only print “Hello” upon
start-up but also “Goodbye” upon shutdown.

To do this we need to write a bundle activator. This is a class that implements
the BundleActivator interface, one of the most important interfaces in OSGi.

Bundle activators are very simple. They have two methods, start and stop,
which are called by the framework when the bundle is started and stopped
respectively. Our “Hello/Goodbye, World!” bundle activator is as simple as
the class HelloWorldActivator as shown in Listing 2.3.

Listing 2.3 Hello World Activator

package org.osgi.tutorial;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class HelloWorldActivator implements BundleActivator {
public void start(BundleContext context) throws Exception {
System.out.println("Hello, World!");
public void stop(BundleContext context) throws Exception {
System.out.println("Goodbye, World!");
}
}

There’s not a lot to explain about this class, so let’s just get on and build it.
We need a bnd descriptor file, so create a file at the top level of the project
called helloworld.bnd, and copy in the following contents:

Listing 2.4 Bnd Descriptor for the Hello World Activator

helloworld.bnd
Private—Package: org.osgi.tutorial
Bundle—Activator: org.osgi.tutorial.HelloWorldActivator

This says that the bundle we want to build consists of the specified package,
which is private (i.e. non-exported), and that the bundle has an activator,
namely the class we just wrote.

If you installed bnd as an Eclipse plug-in, you can now right-click on the
helloworld.bnd file and select Make Bundle. As a result, bnd will generate
a bundle JAR called helloworld. jar. However, if you are not using Eclipse
or the bnd plug-in for Eclipse, you will have to build it manually: first use the
javac compiler to generate class files, then use the command

java —jar bnd.jar build —classpath classes helloworld.bnd

DRAFT PREVIEW prepared for Christopher Brind

2.7 Hello, World! 35

where classes is the directory containing the class files. Alternatively you could
try the ANT build script given in Appendix A.

Now we can try installing this bundle into Equinox, which you should still
have running from the previous section (if not, simply start it again). At the
Equinox shell prompt, type the command:

install file:helloworld. jar

The install command always takes a URL as its parameter rather than
a file name, hence the file: prefix which indicates we are using the local
file URI scheme(?]. Strictly, this URL is invalid because it is relative rather
than absolute, however Equinox allows you, in the interests of convenience, to
provide a path relative to the current working directory. Therefore since the
working directory is the project directory, we need only the file name in this
case.

Equinox will respond with the bundle ID that it has assigned to the bundle:

Bundle id is 1

That ID will be used in subsequent commands to manipulate the bundle. It’s
worth noting at this point that the bundle ID you get may be different to what
you see in this text. That’s more likely to happen later on, but it’s important
to be aware of your actual bundle IDs and try not to copy slavishly what
appears in these examples.

Let’s take a quick look at the bundle list by typing ss. It should look like this:

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.5.0.v20090311 —1300
1 INSTALLED helloworld_0.0.0

Now the moment of truth: start the new bundle by typing start 1. We should
see:

osgi> start 1
Hello, World!

What does the bundle list look like now if we type ss? We’ll ignore the rest
of the listing, as it hasn’t changed, and focus on our bundle:

1 ACTIVE helloworld_0.0.0

The bundle is now in the “ACTIVE” state, which makes sense since we have
explicitly started it. Now stop the bundle with stop 1:

osgi> stop 1

Goodbye , World!

This works as expected. What does the bundle list look like now?

DRAFT PREVIEW prepared for Christopher Brind

36 Chapter 2. First Steps in OSGi

install

1
refresh/

update

4[INSTALLED j<—l STARTING]

\
\

resolve refresh/

uninstall \ update start
“/ v
RESOLVED j [ACTIVE j
uninstall \\\\ stl)p

Ab[UNINSTALLED j [STOPPING j

————— -» Implicit/Automatic Transition

————» Explicit Transition

Figure 2.3.: Bundle Lifecycle

1 RESOLVED helloworld_0.0.0

This is interesting. When we started the bundle it changed its state from
Installed to Active, but when we stopped the bundle it didn’t go back to
Installed: instead it went to a new state “RESOLVED”. What’s going on
here? Time to look at the lifeycle of a bundle.

2.8. Bundle Lifecycle

It was mentioned that OSGi bundles have a lifecycle, but what exactly is that
lifecycle? How and why do bundles move from one state to another? Figure
2.3 shows the full lifecycle.

It’s worth spending some time to trace the path through this diagram that
was taken by our “Hello/Goodbye, World” bundle. Like all bundles, it started
at the black circle, the entry point of the diagram, before we installed it by

DRAFT PREVIEW prepared for Christopher Brind

2.8 Bundle Lifecycle 37

executing the install command. At that point it entered the INSTALLED
state.

Next we executed the start command and it appeared to transition directly
to the ACTIVE state, although the diagram shows no direct link between
those two states. Strictly speaking, bundles can only be started when they
are in RESOLVED state, however when we attempt to start an INSTALLED
bundle, the framework simply attempts to resolve it first before proceeding to
start it.

RESOLVED means that the bundle’s constraints have all been satisfied. In
other words:

e The Java execution environment — e.g. CDC Foundation, Java 5, etc
— matches or exceeds what was specified by the bundle;

o The imported packages of the bundle are available and exported with
the right version range by other RESOLVED bundles, or bundles that
can be RESOLVED at the same time as this bundle;

e The required bundles of the bundle are available and RESOLVED, or
can be RESOLVED.

Once those constraints are satisfied, a bundle can be resolved, i.e. moved from
the INSTALLED state to the RESOLVED state.

When we executed the start command on an INSTALLED bundle, the frame-
work noticed that it first needed to attempt to resolve the bundle. It did so
immediately, because in this case our bundle was so simple that it didn’t have
any constraints that needed to be satisfied. So the transition to RESOLVED
state was automatic, and quickly followed by a transition to STARTING state.

STARTING simply means that the bundle is in the process of being activated.
For example, the framework is currently calling the start method of its bundle
activator. Usually the STARTING state is over in the blink of an eye, and you
would not be able to see any bundles in this state on the bundle list.

Once the STARTING process is complete, the bundle reaches ACTIVE state.
In this state the bundle is not necessarily actively running any code. The
activity that happens during the ACTIVE state of a bundle generally depends
on whatever was kicked off by the start method of the bundle activator.

When the stop command is executed, the bundle transitions to STOPPING
state while the framework calls the stop method of it bundle activator. This
is a chance for the bundle to terminate and clean up anything that it created
during the STARTING phase. STOPPING is also a transient state which
exists for a very short period of time before the bundle returns to RESOLVED
state.

DRAFT PREVIEW prepared for Christopher Brind

38 Chapter 2. First Steps in OSGi

Finally we can choose to un-install the bundle, although we did not do it in
the example above. Although the UNINSTALLED state is shown here, we
can never see a bundle in that state, and an UNINSTALLED bundle cannot
transition to any other state. Even if we reinstall the same bundle JAR file,
it will be considered a different bundle by the framework, and assigned a new
bundle 1D.

2.9. Incremental Development

Development tends to work best as an incremental process: we prefer to make
small changes and test them quickly, because we can find and correct our
mistakes and misunderstandings sooner. If we write large blocks of code before
testing them, there’s a good chance we will have to rewrite them in full, so
incremental development wastes less effort.

In some programming languages such as Scheme, development is centred around
a “Read-Evaluate-Print Loop” (REPL) or interactive shell which gives us quick
feedback about small changes to our code. This style of development has al-
ways been difficult in Java, as in other compiled languages, since the code must
be built and deployed before it can be run, and redeployment usually implied
restarting the JVM. In extreme cases such as J2EE development we might
have to run a five-minute build script and then spend another five minutes
restarting our application server.

OSGi can help. Although we are unlikely to ever be able to make the devel-
opment cycle for Java as tight as that for Scheme, the modularity of our code
and the ability to install and un-install individual bundles on the fly means
that we don’t need to “rebuild the world” when we make a small change, and
we don’t need to restart anything except the individual bundle.

Suppose we make a change to the “Hello, World!” bundle, for example we
would like to print the messages in French instead of English. We can change
the code as necessary and rebuild just this bundle by right-clicking on hel-
loworld.bnd and selecting Make Bundle.

Back in the Equinox shell, we could choose to un-install the old helloworld
bundle and install it again, but that would result in a new bundle with a new
bundle ID. In fact we can simply update the existing bundle:

osgi> update 1

osgi> start 1
Bonjour le Monde !

osgi> stop 1
Au revoir !

DRAFT PREVIEW prepared for Christopher Brind

2.10 Interacting with the Framework 39

Note that we didn’t have to tell Equinox where to update the bundle from:
it remembers the URL from which it was originally installed, and simply re-
reads from that URL. This still works even if Equinox has been shutdown
and restarted since the bundle was installed. Of course sometimes we wish
to update from a new location, in which case we can pass that location as a
second parameter to the update command:

osgi> update 1 file:helloworld_new.jar

2.10. Interacting with the Framework

Taking a look back at the code for HelloWorldActivator, we see that some-
thing else happens in the bundle activator. When the framework calls our
activator’s start and stop methods, it passes in an object of type Bundle-
Context.

The bundle context is the “magic ticket” we need to interact with the OSGi
framework from our bundle code. All interaction with the framework goes
through the context, and the only way to access a bundle context is to imple-
ment an activator and have the framework give it to us®.

So, what sort of things can we do with the framework via BundleContext?
Here is an (incomplete) list:

e Look up system-wide configuration properties;
e Find another installed bundle by its ID;
e Obtain a list of all installed bundles;

e Introspect and manipulate other bundles programmatically: start them,
stop them, un-install them, update them, etc;

o Install new bundles programmatically;

« Store or retrieve a file in a persistent storage area managed by the frame-
work;

o Register and unregister bundle listeners, which tell us when the state of
any bundle in the framework changes;

e Register and unregister service listeners, which tell us when the state of
any service in the framework changes (services and service listeners are
the subject of Chapter 4);

8In fact this is a small lie. There is another way to get a bundle context, which is discussed
in Section 8.7 of Chapter 8, but this is an advanced technique and would only confuse
matters at this stage.

DRAFT PREVIEW prepared for Christopher Brind

40 Chapter 2. First Steps in OSGi

e Register and unregister framework listeners, which tell us about general
framework events.

Time for another example. Suppose we are very interested in the total number
of bundles currently installed. We would like a bundle that lets us know if a
bundle is installed or un-installed, along with the new total number of bundles.
It should also print the total number when it starts up.

One way to approach this would be to attempt to track the running total
of bundles ourselves, by first retrieving the current total when our bundle
is started, and incrementing and decrementing the total as we are notified
of bundles being installed and un-installed. However, that approach quickly
runs into some tricky multi-threading issues. It is also unnecessary since the
framework tracks all bundles anyway, so we can simply ask the framework for
the current total each time we know that the total has changed. This approach
is shown in Listing 2.5.

This bundle activator class is also a bundle listener: it implements both inter-
faces. When it starts up, it registers itself as a bundle listener and then prints
the total number of bundles. Incidentally, we must do it that way around: if
we first printed the total and then registered as a listener, there would be a po-
tential problem, as follows. Suppose the bundle count were 10, and then a new
bundle happened to be installed just before our listener started working. That
is, a bundle is installed between our calls to getBundles and addBundleLis-
tener. We would get no message regarding the new bundle because we missed
the event, so we would still think the bundle count is 10 when in fact it is
11. If another bundle were to be installed later, we would see the following
confusing series of messages:

There are currently 10 bundles

Bundle installed
There are currently 12 bundles

By registering the listener first, we can be sure not to miss any events, but
there is a price: we may get duplicate messages if a bundle is installed or
un-installed between registering the listener and printing the total. In other
words we may see this series of messages:

Bundle installed

There are currently 11 bundles
There are currently 11 bundles

The repetition may be annoying, but it is substantially less confusing than
the apparent “jump” from ten bundles to twelve. Listing 2.6 shows the bnd
descriptor that we need to build the bundle, bundlecounter.bnd.

To test the bundle counter, install and start it as before and then test it by
un-installing and re-installing the helloworld bundle.

DRAFT PREVIEW prepared for Christopher Brind

[IS N

[

11

13
14

16
17
18

20
21
22

24
25
26
27
28
29
30
31
32
33
34

37
38
39
40

2.10 Interacting with the Framework

41

Listing 2.5 Bundle Counter Activator

package org.osgi.tutorial;

import
import
import
import

public

pri

org.osgi.framework.BundleActivator;
org.osgi.framework.BundleContext;
org.osgi.framework.BundleEvent;
org.osgi.framework.BundleListener;

class BundleCounterActivator implements BundleActivator,

BundleListener {

vate BundleContext context;

public void start(BundleContext context) throws Exception {

this.context = context;

context.addBundlelListener (this); //1
printBundleCount (); 2

public void stop(BundleContext context) throws Exception

}

context.removeBundleListener (this);

public void bundleChanged(BundleEvent event) {

}

pri

switch (event.getType()) {

case BundleEvent.INSTALLED:
System.out.println("Bundle installed");
printBundleCount ();
break;

case BundleEvent.UNINSTALLED:
System.out.println("Bundle uninstalled");
printBundleCount ();
break;

vate void printBundleCount () {
int count = context.getBundles ().length;
System.out.println("There are currently " + count + "

{

bundles");

Listing 2.6 Bnd Descriptor for the Bundle Counter

bundlecounter .bnd
Private—Package: org.osgi.tutorial
Bundle—Activator: org.osgi.tutorial.BundleCounterActivator

DRAFT PREVIEW prepared for Christopher Brind

10
11
12
13

15
16
17
18

20

22
23
24
25
26
27
28
29
30
31
32

42 Chapter 2. First Steps in OSGi

2.11. Starting and Stopping Threads

One of the things that we can do from the start method of a bundle activator
is start a thread. Java makes this very easy, but the part that we must worry
about is cleanly stopping our threads when the bundle is stopped.

Listing 2.7 Heartbeat Activator

package org.osgi.tutorial;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class HeartbeatActivator implements BundleActivator {
private Thread thread;

public void start(BundleContext context) throws Exception {
thread = new Thread(new Heartbeat ());
thread.start ();

}

public void stop(BundleContext context) throws Exception {
thread.interrupt ();

}

class Heartbeat implements Runnable {

public void run() {
try {
while (!Thread.currentThread ().isInterrupted()) {
Thread.sleep(5000);
System.out.println("I’m still here.");

} catch (InterruptedException e) {
System.out.println("I’m going now.");
}

}
}

The code in Listing 2.7 shows a simple “heartbeat” thread that prints a mes-
sage every five seconds. In this case, we can use Java’s interruption mechanism,
which is a simple boolean status that can be set on a thread by calling the
interrupt method. Unfortunately it is not always so easy to wake up a thread
and ask it to stop, as we will see in Chapter 6.

2.12. Manipulating Bundles

The OSGi framework gives us quite a lot of programmatic control over other
bundles. Let’s look at an example in which we tie the lifecycle of a “target”
bundle to its source file in the filesystem.

DRAFT PREVIEW prepared for Christopher Brind

2.13 Exercises 43

The proposed scenario is as follows: we have a bundle — our original “Hello,
World!” bundle, say — that is changing frequently (we just can’t decide which
language those messages should be in!). Every time the bundle is rebuilt we
could simply type the update command, but even this can be a hassle after
a while. It can be easy to forget to update a bundle, and then wonder why
the code you just wrote isn’t working. Therefore we would like some kind of
“manager” bundle that will continually monitor the helloworld. jar file and
execute the update for us when the file changes.

The code in Listing 2.8 does exactly that. It uses a polling loop, like the
heartbeat example from the last section, but on each beat it checks whether
the file helloworld. jar is newer, according to its last-modified timestamp,
than the corresponding bundle. If it is, then it updates the bundle, causing it
to re-load from the file. If the bundle is up to date, or if either the bundle or
the file do not exist, then it does nothing.

2.13. Exercises

1. Write a bundle that periodically checks the contents of a directory in the
filesystem. Whenever a new file with the extension . jar appears in that
directory, attempt to install it as a bundle, but only if a corresponding
bundle is not already present.

2. Extend the last exercise by checking for deleted files. If a file correspond-
ing to an installed bundle is deleted, then un-install that bundle.

3. Finally, extend your bundle to detect changes in all files in the directory
that correspond to bundles, and update those bundles as necessary.

DRAFT PREVIEW prepared for Christopher Brind

44 Chapter 2. First Steps in OSGi

Listing 2.8 Hello Updater Activator

1 package org.osgi.tutorial;

3 import java.io.File;

5 import org.osgi.framework.Bundle;

6 import org.osgi.framework.BundleActivator;
7 import org.osgi.framework.BundleContext;

8 import org.osgi.framework.BundleException;

10 public class HelloUpdaterActivator implements BundleActivator {

12 private static final long INTERVAL = 5000;

13 private static final String BUNDLE = "helloworld. jar";

15 private final Thread thread = new Thread(new BundleUpdater ());
16 private volatile BundleContext context;

18 public void start(BundleContext context) throws Exception {
19 this.context = context;

20 thread.start ();

21 }

23 public void stop(BundleContext context) throws Exception {
24 thread.interrupt ();

25 }

27 protected Bundle findBundleByLocation(String location) {

28 Bundle [] bundles = context.getBundles ();

29 for (int i = 0; i < bundles.length; i++)

30 if (bundles[i].getLocation().equals(location)) {

31 return bundles[i];

32 }
33 }

35 return null;

36 }

38 private class BundleUpdater implements Runnable {

39 public void run() {

40 try {

41 File file = new File(BUNDLE);

42 String location = "file:" + BUNDLE;

43 while (!Thread.currentThread ().isInterrupted()) {

44 Thread.sleep (INTERVAL);

45 Bundle bundle = findBundleByLocation(location);

46 if (bundle != null && file.exists()) {

47 long bundleModified = bundle.getLastModified ();
48 long fileModified = file.lastModified ();

19 if (fileModified > bundleModified) {

50 System.out.println("File is newer, updating");
51 bundle.update ();

53 }

54

55 } catch (InterruptedException e) {

56 System.out.println("I’m going now.");

57 } catch (BundleException e) {

58 System.err.println("Error updating bundle");
59 e.printStackTrace ();

DRAFT PREVIEW prepared for Christopher Brind

3. Bundle Dependencies

In the last chapter we created some simple bundles and showed how those
bundles can interact with the framework. In this chapter, we will start to look
at how bundles can interact with each other. In particular we will see how to
manage dependencies between bundles.

As discussed in the Introduction, managing dependencies is the key to achiev-
ing modularity. This can be a big problem in Java — and in many other lan-
guages as well, since few provide the kind of module systems that are needed
to build large applications. The default module system in Java (and it is
a stretch to call it that) is the JAR-centric “classpath” model, which fails
mainly because it does not manage dependencies, but instead leaves them up
to chance.

What is a dependency? Simply, it is a set of assumptions made by a program
or block of code about the environment in which it will run.

For example, a Java class may assume that it is running on a specific version
of the Java VM, and that it has access to a specific library. It therefore
depends on that Java version and that library. However those assumptions
are implicit, meaning we don’t know that they exist until the code first runs in
an environment in which they are false, and an error occurs. Suppose a Java
class depends on the Apache LogdJ library — i.e. it assumes the LogdJ JAR
is available on the classpath — and then it is run in an environment where
that is false (Log4J is not on the classpath). It will produce errors at runtime
such as ClassNotFoundException or NoClassDefFoundError. Therefore we
have no real idea whether the class will work in any particular environment
except by trying it out, and even if it initially appears to work, it may fail at
a later time when a particular execution path is followed for the first time and
that path exposes a new, previously unknown, dependency.

OSGi takes away the element of chance, by managing dependencies so that
they are explicit, declarative and versioned.

Explicit A bundle’s dependencies are in the open for anybody to see, rather
than hidden in a code path inside a class file, waiting to be found at
runtime.

Declarative Dependencies are specified in a simple, static, textual form for
easy inspection. A tool can calculate which set of bundles are required to

DRAFT PREVIEW prepared for Christopher Brind

46 Chapter 3. Bundle Dependencies

satisfy the dependencies of a particular bundle without actually installing
or running any of them.

Versioned Libraries change over time, and it is not enough to merely depend
on a library without regard to its version. OSGi therefore allows all
inter-bundle dependencies to specify a version range, and even allows
for multiple versions of the same bundle to be present and in use at the
same time.

3.1. Introducing the Example Application

Rather than working on multiple small example pieces of code which never
amount to anything interesting, for the remainder of this book we will start to
build up a significant example application. The example will be based around
the concept of a “message centre”, for processing and displaying messages from
multiple sources.

Thanks to the internet, we are today bombarded by messages of many kinds.
Email is an obvious example, but also there are the blogs that we subscribe
to through RSS or ATOM feeds; SMS text messages; “microblogging” sites
such as Twitter[?] or Jaiku[?]; IM systems such as AOL, MSN or IRC; and
perhaps for professionals in certain fields, Reuters or Bloomberg newswire
feeds and market updates. Sadly we still need to flip between several different
applications to view and respond to these messages. Also there is no coherent
way to apply rules and automated processing to all of our inbound messages.
For example, I would like a way to apply my spam filters, which do a reasonable
job for my email, to my SMS text messages, as spam is increasingly a problem
in that medium.

So, let’s build a message centre application with two principal components:

e A graphical “reader” tool for interactively reading messages.

o An agent platform for running automated processing (e.g. filtering) over
inbound message streams. This component will be designed to run either
in-process with the reader tool, or as a separate server executable.

3.2. Defining an API

To support multiple kinds of message sources, we need to build an abstraction
over messages and mailboxes, so a good place to start is to think about what
those abstractions should look like. In Java we would represent them as in-
terfaces. Listing 3.1 contains a reasonable attempt to define a message in the
most general way.

DRAFT PREVIEW prepared for Christopher Brind

3.2 Defining an API 47

Listing 3.1 The Message Interface

1 package org.osgi.book.reader.api;
3 import java.io.InputStream;

5 public interface Message {

7 Jx ok

8 * @return The unique (within this message’s mailboxr) message ID.
9 */

10 long getId();

12 /% x

13 * @Qreturn A human—readable text summary of the message. In some
14 * messaging systems this would map to the "subject' field.
15 */

16 String getSummary ();

18 JHx

19 # @return The Internet MIME type of the message content.

20 */

21 String getMIMEType ();

23 VAZ]

24 * Access the content of the message.

25 *

26 * @throws MessageReaderExzception

27 */

28 InputStream getContent () throws MessageReaderException;

30 }

DRAFT PREVIEW prepared for Christopher Brind

1

3

5

24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42

44

48 Chapter 3. Bundle Dependencies

Objects implementing this interface are really just message headers. The body
of the message could be of any type: text, image, video, etc. We need the
header object to tell us what type the body data is, and how to access it.

Listing 3.2 The Mailbox Interface

package org.osgi.book.reader.api;
public interface Mailbox {
public static final String NAME_PROPERTY = "mailboxName";

VAZ]

* Retrieve all messages available in the mailbox.
*

* @return An array of message IDs.

* @throws MailboxExzception

*/

long [|] getAllMessages () throws MailboxException;

[

* Retrieve all messages received after the specified message.
*

#* @param td The message ID.

* @return An array of message IDs.

* @throws MailboxException

*

long [|] getMessagesSince(long id) throws MailboxException;

/

*

Mark the specified messages as read/unread on the back—end
message source, where supported, e.g. IMAP supports this
feature.

@param read Whether the specified messages have been read.
@param ids An array of message IDs.
@throws MailboxExzception

* % ¥ X X X X ¥

*/

void markRead(boolean read, long[] ids) throws MailboxException;

VAT

* Retrieve the specified messages.

*

#* @param ids The IDs of the messages to be retrieved.
* @return An array of Messages.

* Q@throws MailbozException

*/

Message [|] getMessages (long[] ids) throws MailboxException;

}

Next we need a way to retrieve messages. The interface for a mailbox could
look like Listing 3.2. We need a unique identifier to refer to each message,
so we assume that an ID of type long can be generated or assigned by the
mailbox implementation. We also assume that the mailbox maintains some
temporal ordering of messages, and is capable of telling us about all the new
messages available given the ID of the most recent message known about by
the reader tool. In this way the tool can notify us only of new messages, rather
than ones that we have already read.

DRAFT PREVIEW prepared for Christopher Brind

1

3

5

11
12
13

15
16
17

19

1

10
11

13
14
15

3.3 Exporting the API 49

Many back-end message sources, such as the IMAP protocol for retrieving
email, support storing the read/unread state of a message on the server, al-
lowing that state to be synchronized across multiple clients. So, our reader
tool needs to notify the mailbox when a message has been read. In other pro-
tocols where the back-end message source does not support the read/unread
status, this notification can be simply ignored.

Finally we need the code for the exceptions that might be thrown. These are
shown in Listing 3.3.

Listing 3.3 Mailbox API Exceptions

package org.osgi.book.reader.api;

public class MessageReaderException extends Exception {
private static final long serialVersionUID = 1L;
public MessageReaderException(String message) {

super (message);

public MessageReaderException(Throwable cause) {
super (cause);

public MessageReaderException(String message, Throwable cause) {
super (message , cause);

}

package org.osgi.book.reader.api;
public class MailboxException extends Exception {
public MailboxException(String message) {

super (message);

public MailboxException(Throwable cause) {
super (cause);

public MailboxException(String message, Throwable cause) {
super (message , cause);

3.3. Exporting the API

Now let’s package up these classes into an API bundle. Create a bnd descriptor
named mailbox_api.bnd, as shown in Listing 3.4.

DRAFT PREVIEW prepared for Christopher Brind

50 Chapter 3. Bundle Dependencies

Listing 3.4 Bnd Descriptor for the Mailbox API

mailbox_api.bnd
Export —Package: org.osgi.book.reader.api

Unlike the previous bnd descriptor files, this descriptor does not have either a
Private-Package or a Bundle-Activator entry. The bundle we are building
here does not need to interact with the OSGi framework, it simply provides
API to other bundles, so we need the Export-Package directive, which in-
structs bnd to do two separate things:

e It ensures that the contents of the named packages are included in the
output bundle JAR.

o It adds an Export-Package header to the MANIFEST.MF of the JAR.

From this descriptor, bnd will generate mailbox_api. jar, so let’s take a look
inside the JAR. On Windows you can use a tool such as WinZip[?] to peek
inside; on UNIX platforms including Linux and Mac OS X there is a wider
variety of tools, but the command-line tool unzip should be available on nearly
all of them.

The file content listing of the JAR should be no surprise: we simply have the
four API classes (two interfaces, two exceptions) in the normal Java package
directory tree:

$ unzip —1 mailbox_api.jar

Archive: mailbox_api. jar
Length Name
302 META—INF/MANIFEST . MF
0 org/
0 org/osgi/
0 org/osgi/book/
0 org/osgi/book/reader/
0 org/osgi/book/reader /api/
379 org/osgi/book/reader /api/Mailbox.class
677 org/osgi/book/reader /api/MailboxException.class
331 org/osgi/book/reader /api/Message.class
759 org/osgi/book/reader /api/MessageReaderException.class
2448 10 files

Let’s take a look at the generated manifest. WinZip users can right click on
MANIFEST.MF and select “View with Internal Viewer”. UNIX users can run
unzip with the -p (“pipe”) switch:

$ unzip —p mailbox_api.jar META—INF/MANIFEST.MF
Manifest—Version: 1.0

Bundle—Name: mailbox_api

Created—By: 1.5.0_13 (Apple Inc.)

Import —Package: org.osgi.book.reader.api
Bundle—ManifestVersion: 2

Bundle—SymbolicName: mailbox_api

Tool: Bnd —0.0.223

DRAFT PREVIEW prepared for Christopher Brind

3.4 Importing the API 51

Bnd—LastModified: 1198796713427
Export —Package: org.osgi.book.reader.api
Bundle—Version: 0

Here we see the Export-Package header, along with a few other headers which
have been added by bnd. This header tells OSGi to make the named list of
packages (in this case only one package) available to be imported by other
bundles. We will take a look at how to import packages shortly.

As we saw in Section 1.2.5, plain Java makes all public classes in all packages
of a JAR available to clients of that JAR, making it impossible to hide imple-
mentation details. OSGi uses the Export-Package header to fix that problem.
In fact the default is reversed: in OSGi, all packages are hidden from clients
unless they are explicitly named in the Export-Package header.

In bnd the general form of the Export-Package directive is a comma-separated
list of patterns, where each pattern is either a literal package name, or a “glob”
(wildcard) pattern, or a negation introduced with the ! character. For example
the following directive instructs bnd to include every package it can find on
the classpath except for those starting with “com.”:

Export—Package: !com.*, *

3.4. Importing the API

Now let’s write some code that depends on the API: an implementation of
a mailbox and message types. For the sake of simplicity at this stage, this
will be a mailbox that holds only a fixed number of hard-coded messages.
The code will live in a new package, org.osgi.book.reader.fixedmailbox.
First we write an implementation of the Message interface, giving us the class
StringMessage in Listing 3.5, and next the Mailbox interface implementation,
giving us FixedMailbox' in Listing 3.6.

Now, what should the bnd descriptor look like? In the last section we used the
Export-Package directive to include the specified package in the bundle, and
also export it. This time, we want to include our new package in the bundle
but we don’t want to export it, so we use the Private-Package instruction:

fixed_mailbox.bnd
Private—Package: org.osgi.book.reader.fixedmailbox

Unlike Export-Package, the Private-Package directive does not correspond
to a recognized MANIFEST . MF attribute in OSGi. It is merely an instruction to
bnd that causes the specified packages to be included in the bundle JAR —

You may be curious at this stage why methods of FixedMailbox are declared as synchro-
nized. This is required to keep the implementation thread-safe when we extend it later,
in Chapter 7

DRAFT PREVIEW prepared for Christopher Brind

11

13
14
15

17
18
19
20
21

23
24

27
28
29

31
32
33

52

Chapter 3. Bundle Dependencies

Listing 3.5 String Message

package org.osgi.book.reader.fixedmailbox

import
import

import
import

public

)

java.io.ByteArrayInputStream;
java.io.InputStream;

org.osgi.book.reader.api.Message;
org.osgi.book.reader.api.MessageReaderException;

class StringMessage implements Message {

private static final String MIME_TYPE_TEXT = "text/plain";

private final long id;
private final String subject;
private final String text;

pub

}

pub

}

pub

pub

}

pub

}

lic StringMessage(long id, String subject, String text) {
this.id = id;

this.subject = subject;

this.text = text;

lic InputStream getContent () throws MessageReaderException {

return new ByteArrayInputStream(text.getBytes ());

lic long getId() {
return id;

lic String getMIMEType () {
return MIME_TYPE_TEXT;

lic String getSummary () {
return subject;

DRAFT PREVIEW prepared for Christopher Brind

10

12

14
15
16
17
18
19

21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52
53
54

3.4 Importing the API

Listing 3.6 Fixed Mailbox

package org.osgi.book.reader.fixedmailbox;

import
import
import
import

import

public

java.util.ArraylList;
java.util.List;

org.osgi.book.reader.api.Mailbox;
org.osgi.book.reader.api.MailboxException;

org.osgi.book.reader.api.Message;

class FixedMailbox implements Mailbox {

protected final List<Message> messages;

public FixedMailbox () {

}

messages = new ArraylList<Message >(2);
messages .add(new StringMessage (0, "Hello", "Welcome to 0SGi"));
messages.add(new StringMessage(l, "Getting Started",

"To learn about 0SGi, read my book."));

public synchronized long|[] getAllMessages () {

}

long [] ids = new long[messages.size ()];
for (int i = 0; i < ids.length; i++) {
ids[i] = i}

return ids;

public synchronized Message|[] getMessages(long|[] ids)

}

throws MailboxException {
Message [|] result = new Message[ids.length];
for (int i = 0; i < ids.length; i++) {
long id = ids[i];
if (id < 0 || id >= messages.size()) {
throw new MailboxException("Invalid message ID: " 4 id);
}

result[i] = messages.get ((int) id);

}

return result;

public synchronized long|[] getMessagesSince(long id)

}

throws MailboxException {
int first = (int) (id + 1);
if (first < 0) {

throw new MailboxException("Invalid message ID: " 4+ first);
}
int length = Math.max (0, messages.size() — first);
long [] ids = new long[length];
for (int i = 0; i < length; i++) {
ids[i] = i + first;

return ids;

public void markRead(boolean read, long|[] ids) {

// Ignore

DRAFT PREVIEW prepared for Christopher Brind

53

54 Chapter 3. Bundle Dependencies

you can verify this by looking at the contents of the JAR. Listing 3.7 shows
what the generated MANIFEST.MF should look like.

Listing 3.7 MANIFEST.MF generated from fixed_mailbox.bnd

Manifest—Version: 1.0

Bundle—Name: fixed_mailbox

Created—By: 1.5.0_13 (Apple Inc.)

Private—Package: org.osgi.book.reader.fixedmailbox
Import—Package: org.osgi.book.reader.api

Bundle —ManifestVersion: 2

Bundle—SymbolicName: fixed_mailbox

Tool: Bnd —0.0.223

Bnd—LastModified: 1198893954164

Bundle—Version: 0

The Private-Package header does appear here, because bnd copies it, but it
will be ignored by the OSGi framework. One of the other headers inserted by
bnd is very important though: the Import-Package header.

Just as packages are not made available from bundles except when explicitly
exported using the Export-Package header, bundles cannot use the classes
from a package unless they have explicitly imported that package using the
Import-Package header (or the Require-Bundle header, which we will see
shortly). Since the bundle we are building currently has code-level dependency
on the package org.osgi.book.reader.api, it must import that package.

All packages that we use in the code for a bundle must be imported, except for
packages beginning with java.*, which must not be imported. The java.*
packages, and only those packages, are always available without being im-
ported. There is a common misconception that packages in the standard Java
runtime APIs do not need to be imported. They do. For example, if a bundle
uses Swing, it must import javax.swing, but it need not import java.awt. If
a bundle uses SAX parsing for XML documents, it must import org.xml.sax.

If we represent an exported package diagrammatically as follows:

exported package >

and an imported package as follows:

imported package <

DRAFT PREVIEW prepared for Christopher Brind

3.5 Interlude: How Bnd Works 55

then the runtime resolution of the two bundles will be as in Figure 3.1. The
thick, dashed line in this figure represents the “wiring” together by the frame-
work of the import with its corresponding export.

mailbox_api fixed_mailbox
e W (N
org.osgi.book.reader.api>— -_— > org.osgi.book.reader.api
\ J' 1 y,

Figure 3.1.: The runtime resolution of matching import and export.

A package import is one of the constraints that the framework must satisfy
in order to resolve a bundle, i.e. move it from the INSTALLED state to the
RESOLVED state. In this case the constraint on the fixed_mailbox bundle
was satisfied by matching it with the corresponding export on the mailbox_api
bunde. In general the framework must match all of the imported packages
against packages exported from RESOLVED bundles before it can satisfy the
import constraints of a bundle. Note that the framework can move two or more
bundles into RESOLVED state simultaneously, making it possible to resolve
bundles that have circular dependencies.

3.5. Interlude: How Bnd Works

In the previous example, the bnd descriptor for the mailbox implementation
bundle contained only a single line — the Private-Package instruction — yet
the generated manifest contained a correct Import-Package statement. How
did that happen?

In fact this is one of the main features of bnd: it is able to calculate the
imports of a bundle through careful inspection of the class files that we tell it
to include in the bundle. Since we are making so much use of bnd, we need to
take a closer look at how it generates bundles and manifests.

Bnd has several modes in which it can be used, but we will mostly be using
it in its “build” mode for constructing bundles. In build mode, bnd follows a
two-stage process: first it works out what the contents of the bundle should be,
i.e. which packages and classes need to be included; and second, it calculates
the dependencies of the included classes and generates an Import-Package
statement.

DRAFT PREVIEW prepared for Christopher Brind

56 Chapter 3. Bundle Dependencies

The Export-Package and Private-Package instructions determine the con-
tents of the bundle. Any package named in either of these instructions, either
explicitly or through a wildcard pattern, will be included in the bundle JAR.
Listing 3.8 shows an example.

Listing 3.8 Bnd Sample: Controlling Bundle Contents

bnd sample
Export—Package: org.osgi.book.readerx*
Private—Package: org.osgi.tutorial

This will result in all packages beginning with org.osgi.book.reader being
included in the bundle and exported; and the package org.osgi.tutorial
included but not exported.

Once bnd knows what should be in the JAR, it can calculate the imports.
As mentioned, it inspects the bytecode of each class file found in the included
packages, which yields a list of classes and packages. By default, every package
found is added to the Import-Package header, but we can assert more control
over this process by including an Import-Package instruction in our bnd file.
For example, Listing 3.9 shows how to apply a specific version range to some
imports and mark others as optional.

Listing 3.9 Bnd Sample: Controlling Imports

bnd sample

Import —Package: org.apache.logé4j*;version="[1.2.0,1.3.0)",\
javax.swings*;resolution:=optional,)\
*

The entries in this list are patterns. Each package dependency found through
bytecode analysis is tested against the patterns here in order, and if a match is
found then the additional attributes are applied to the import. In this sample,
if a dependency on a Log4J package is found then it will be marked with the
version attribute specified; if a dependency on any Swing package is found
then it will be marked as optional. The final “*” is a catch-all; any packages
matching neither of the first two patterns will pass straight into the manifest
without any additional attributes.

The use of wildcards like this can be initially alarming if one does not under-
stand the way that bnd checks the actual discovered dependencies against
the patterns in the Import-Package statement. For example the pattern
javax.swing* may appear to be importing the whole of Swing; i.e. all 17
packages of it. If that were the case then the simple * on its own would be
even more alarming! The confusion arises because bnd’s instructions, such as

DRAFT PREVIEW prepared for Christopher Brind

3.6 Requiring a Bundle 57

Import-Package, have exactly the same name as OSGi manifest headers, but
they are treated quite differently.

We can also explicitly add and remove packages from the imports:

bnd sample

Import —Package: !org.foo,)\
com.bar ,\
*

This results in org.foo being excluded from the imports list, even if bnd
detects a dependency on it. This is dangerous, but useful if the dependency
exists only in a part of the code that we know can never be reached. The
second entry inserts the package com.bar into the imports list, whether or
not bnd is able to detect a dependency on it. This is mainly useful in cases
where the bundle code uses reflection to dynamically load classes. Note that
only fully named packages can be used: if we wrote com.bar*, that would be
a pattern, and only included if a package starting with com.bar were to be
found in bytecode analysis.

Note that the final asterisk is very important. If you omit it then only the
dependencies listed explicitly will be included in the generated manifest. Any
others that bnd finds will be excluded, which is generally not what one wants
to achieve.

3.6. Requiring a Bundle

Another kind of constraint that can be placed on a bundle is the Require-Bundle
header. This is similar to Import-Package header in that it makes exported
packages from another bundle available to our bundle, but it works on the
whole bundle rather than individual packages:

Require—Bundle: mailbox-—api

If we represent a required bundle as follows:

required bundle <

Then the runtime resolution of a bundle using Required-Bundle looks like
Figure 3.2. In this figure, Bundle B has a Require-Bundle dependency on
Bundle A, meaning that Bundle B cannot resolve unless Bundle A is in RE-
SOLVED state.

The effect at runtime is as if Bundle B had declared an Import-Package header
naming every package exported by Bundle A. However, Bundle B is giving up

DRAFT PREVIEW prepared for Christopher Brind

58 Chapter 3. Bundle Dependencies

Bundle A
(W
org.sample.foo > Bundle B

| & ~
~
; ~
org.sample.bar -~
r

-—
-— -

-
-

r -

> J
\)

Figure 3.2.: The runtime resolution of a Required Bundle

A
org.sample.baz - 1

a lot of control, because the list of imports is determined by the set of packages
exported by Bundle A. If additional exports are added to Bundle A, then they
are automatically added as imports to Bundle B.

The use of Require-Bundle is strongly discouraged by most OSGi practition-
ers except where absolutely necessary, because there are several flaws with this
kind of dependency scheme.

First, a bundle using Require-Bundle to import code from another bundle is
at the mercy of what is provided by that bundle — something that can change
over time. We really have no idea what packages will be provided by another
bundle at any point in the future, yet nevertheless our bundle will successfully
resolve even if the required bundle stops exporting some functionality that
we rely on. The result will almost certainly be class loading errors such as
ClassNotFoundException or NoClassDefFoundError arising in bundles that
were previously working.

The second and closely related problem is that requiring bundles limits our
ability to refactor the composition of those bundles. Suppose at some point
we notice that Bundle A has grown too big, and some of the functionality
it provides is really unrelated to the core and should be separated into a
new bundle, which we will call Bundle A’. As a result, some of the exports
of A move into A’. For any consumers of that functionality who are using
purely Import-Package, the refactoring of A into A and A’ will be entirely
transparent: the imports will simply be wired differently at runtime by the
framework. Figures 3.3 and 3.4 show the “before” and “after” states of per-

DRAFT PREVIEW prepared for Christopher Brind

3.6 Requiring a Bundle 59

forming this refactoring where Bundle B depends on the packages of Bundle
A using Import-Package. After refactoring, Bundle B will continue to work
correctly because it will still import all the packages it needs — and it will be
oblivious of the fact that they now come from two bundles rather than one.

Bundle A Bundle B
e 1 (N

org.packagel

—— — org.packagel

org.package2

.) L)

—_— e - org.package2

Figure 3.3.: Refactoring with Import-Package: (Before)

Bundle A

Bundle B
(N

org.package1

A
org.packagel >~ -
7 >

Bundle A' =

) >
org.package2 >— -
V 4

org.package2

L)

Figure 3.4.: Refactoring with Import-Package: (After)

However, Figures 3.5 and 3.6 show the “before” and “after” states when Bundle
B requires Bundle A using Require-Bundle. After refactoring, Bundle B will
no longer import one of the packages it needs, but it will still be able to enter
the RESOLVED state because the Require-Bundle constraint is still satisfied.
Therefore we are likely to get NoClassDefFoundErrors when B attempts to
use classes from org.package?2.

Third, whole-module dependency systems tend to cause a high degree of “fan-
out”. When a bundle requires another bundle, we have no idea (except by low-
level examination of the code) which part of the required bundle it is actually
using. This can result in us bringing in a large amount of functionality when
only a small amount is really required. The required bundle may also require
several other bundles, and those bundles require yet more bundles, and so
on. In this way we can easily be required to pull in fifty or more bundles
just to resolve a single, small bundle. Using purely Import-Package gives us
the opportunity to break this fan-out by finding instances where only a small
portion of a large bundle is used, and either splitting that bundle or finding

DRAFT PREVIEW prepared for Christopher Brind

60 Chapter 3. Bundle Dependencies

Bundle A Bundle B
e 1 (N
org.packagel
g-packag >— - T
. A

—-—
org.package2 >— -
\ J 1

Figure 3.5.: Refactoring with Require-Bundle: (Before)

Bundle A Bundle B
e N\ N
org.packagel P~
-— - - (
\ J A
Bundle A'
()
org.package2 ‘L
/
\

Figure 3.6.: Refactoring with Require-Bundle: (After)

an alternative supplier for the functionality we need.

Essentially, using Require-Bundle is like grabbing hold of the wrapper around
what we need, rather than the contents itself. It might actually work if JARs
in Java were more cohesive, and the constituent packages did not change over
time, but that is not the case.

Require-Bundle was only recently introduced into OSGi in Release 4, and
given all the problems listed, it may seem mysterious that it was introduced
at all. The main reason was to support various legacy issues in Eclipse, which
abandoned an earlier module system in favour of OSGi. The pre-OSGi module
system used by Eclipse was based on whole-module dependencies, and if OSGi
had offered only Import-Package then the challenges of making thousands
of existing Eclipse plug-ins work as OSGi bundles would have been insur-
mountable. Nevertheless, the existence of Require-Bundle remains highly
controversial, and there are very, very few good reasons ever to use it in new
bundles.

DRAFT PREVIEW prepared for Christopher Brind

3.7 Version Numbers and Ranges 61

3.7. Version Numbers and Ranges

Versioning is a critically important part of OSGi. Modules, or libraries, are
not immortal and unchanging entities — they evolve as their requirements
change and as new features are added.

To take the example of Apache LogdJ again, the most widely used version
is 1.2. Earlier versions than this are obsolete, and there were also significant
changes in the API between 1.1 and 1.2, so any code that has been written to
use version 1.2 will almost certainly not work on 1.1 or earlier. There is also
a 1.3 version, but it introduced a number of incompatibilities with 1.2 and is
now discontinued — it is considered a failed experiment, and never produced a
“stable” release. Finally there is a new version 2.0, but it is still experimental
and not widely used.

This illustrates that we cannot simply use a bundle without caring about
which version we wish to use. Therefore OSGi provides features which allow
us first to describe in a consistent way the versions of all our bundles and their
exports, and second to allow bundles to describe the range of versions that are
acceptable for each of their dependencies.

3.7.1. Version Numbers

OSGi follows a consistent scheme for all version numbers. It uses three numeric
segments plus one alphanumeric segment, where any segment may be omitted.
For example the following are all valid versions in OSGi:

o 1
e 1.2
¢« 1.2.3

e 1.2.3.beta_3

The three numeric segments are known as the major, minor and micro num-
bers and the final alphanumeric segment is known as the qualifier. When any
one of the numeric segments is missing, it takes the implicit value of zero, so
1 is equivalent to 1.0 and 1.0.0. When a version string is not supplied at all,
the version 0.0.0 is implied.

Versions have a total ordering, using a simple algorithm which descends from
the major version to the qualifier. The first segment with a difference in value
between two versions “short-circuits” the comparison, so later segments need
not be compared. For example 2.0.0 is considered higher than 1.999.999,
and this is decided without even looking at the minor or micro levels.

DRAFT PREVIEW prepared for Christopher Brind

62 Chapter 3. Bundle Dependencies

Things get interesting when we consider the qualifier, which may contain let-
ters A-Z in upper or lower case, numbers, hyphens (-) and underscores (_).
The qualifier is compared lexicographically using the algorithm found in the
compareTo () method of the standard Java String class. There are two points
to beware of: qualifier strings are compared character by character until a dif-
ference is found, and shorter strings are considered lower in value than longer
strings.

Suppose you are getting ready to release version 2.0 of a library. This is a
significant new version and you want to get it right, so you go through a series
of “alpha” and “beta” releases. The alphas are numbered as follows:

e 2.0.0.alphal

e 2.0.0.alpha2

This works fine up until the ninth alpha, but then when you release version
2.0.0.alphal0 you find that it doesn’t appear to be the highest version! This
is because the number ten starts with the digit 1, which comes before the digit
2. So version alpha10 will actually come between versions alphal and alpha2.
Therefore, if you need to use a number component inside the qualifier, always
be sure to include some leading zeros. Assuming that 99 alpha releases are
enough, we should have started with alpha01, alpha02 and so on.

Finally after lots of testing, you are ready to unleash the final release version,
which you call simply 2.0.0. Sadly this doesn’t work either, as it comes before
all of the alpha and beta releases. The qualifier is now the empty string, which
comes before all non-empty strings. So we need to add a qualifier such as final
to the final release version.

Another approach that can work is to always add a date-based qualifier, which
can be generated as part of the build process. The date would need to be
written “backwards” — i.e. year number first, then month, then day and
perhaps time — to ensure the lexicographic ordering matches the temporal
order. For example:

¢ 2.0.0.2008-04-28_1230

This approach scales well, so it is especially useful for projects that release
frequently. For example, Eclipse follows a very similar scheme to this. However
this approach can be inconvenient because the version strings are so verbose,
and it’s difficult to tell which versions are important releases versus mere
development snapshots.

DRAFT PREVIEW prepared for Christopher Brind

[

3.7 Version Numbers and Ranges 63

3.7.2. Versioning Bundles

A version number can be given to a bundle by supplying the Bundle-Version
manifest header:

Bundle—Version: 1.2.3.alpha

Bundle-level versioning is important because of Require-Bundle, and also
because OSGi allows multiple versions of the same bundle to be present in
the framework simultaneously. A bundle can be uniquely identified by the
combination of its Bundle-SymbolicName and its Bundle-Version.

3.7.3. Versioning Packages

However, bundle-level versioning is not enough. The recommended way to
describe dependencies is with Import-Package, and a single bundle could
contain implementations of multiple different APIs. Therefore we need version
information at the package level as well. OSGi allows us to do this by tagging
each exported package with a version attribute, as follows:

Export—Package: org.osgi.book.reader.api;version="1.2.3.alpha",
org.osgi.book.reader.util;version="1.2.3.alpha’

Unfortunately in the manifest file, the version attributes must be added to
each exported package individually. However bnd gives us a shortcut:

bnd sample
Export—Package: org.osgi.book.reader*;version="1.2.3.alpha"

We can also, if we wish to, keep the bundle version and the package export
versions synchronized:

bnd sample

ver: 1.2.3.alpha

Bundle—Version: ${ver}

Export—Package: org.osgi.book.reader*;version=${ver}

3.7.4. Version Ranges

When we import a package or require a bundle, it would be too restrictive to
only target a single specific version. Instead we need to specify a range.

Recall the discussion of Apache Log4J and its various versions. Suppose we
wish to depend on the stable release, version 1.2. However, “1.2” is not just a
single version, it is in fact a range from 1.2.0 through to 1.2.15, the latest at
the time of writing, meaning there have been fifteen “point” releases since the
main 1.2 release. However, as in most projects, Log4J tries to avoid changes
in the API between point releases, instead confining itself to bug fixes and

DRAFT PREVIEW prepared for Christopher Brind

64 Chapter 3. Bundle Dependencies

perhaps minor API tweaks that will not break backwards compatibility for
clients. Therefore it is likely that our code will work with any of the 1.2 point
releases, so we describe our dependency on 1.2 using a version range.

A range is expressed as a floor and a ceiling, enclosed on each side either by a
bracket “[” or a parenthesis “(”. A bracket indicates that the range is inclusive
of the floor or ceiling value, whereas a parenthesis indicates it is exclusive. For
example:

e [1.0.0,2.0.0)

This range includes the value 1.0.0, because of the opening bracket. but
excludes the value 2.0.0 because of the closing parenthesis. Informally we
could write it as “1.z”.

If we write a single version number where a range is expected, the framework
still interprets this as a range but with a ceiling of infinity. In other words
1.0.0 would be interpreted as the range [1.0.0,00). To specify a single exact
version, we have to write it twice, as follows: [1.2.3,1.2.3].

For reference, here are some further examples of ranges, and what they mean
when compared to an arbitrary version x:

[1.2.3,4.5.6) | 1.2.3 <2< 4.5.6
[1.2.3,4.5.6] | 1.2.3<2<4.5.6
(1.2.3,4.5.6) | 1.2.3<xr<4.5.6
(1.2.3,4.5.6] | 1.2.3<x<4.5.6
1.2.3 1.2.3<x
0.0.0< ¢

In our Log4J example and in real world usage, the first of these styles is most
useful. By specifying the range [1.2,1.3) we can match any of the 1.2.z
point releases. However, this may be a leap of faith: such a range would
match all future versions in the 1.2 series, e.g. version 1.2.999 (if it were ever
written) and beyond. We cannot test against all future versions of a library, so
we must simply trust the developers of the library not to introduce breaking
changes into a future point release. If we don’t or can’t trust those developers,
then we must specify a range which includes only the known versions, such as
[1.2,1.2.15].

In general it is probably best to go with the open-ended version range in most

cases. The cost in terms of lost flexibility with the more conservative closed
range outweighs the risk of breaking changes in future versions.

DRAFT PREVIEW prepared for Christopher Brind

3.8 Class Loading in OSGi 65

3.7.5. Versioning Import-Package and Require-Bundle

We can add version ranges to the Import-Package statement in exactly the
same way as we added a version to Export-Package, using an attribute:

Import —Package: org.apache.logé4j;version="[1.2,1.3)",
org.apache.log4j.config;version="[1.2,1.3)"

Again, bnd can help to reduce the verbosity:

bnd
Import —Package: org.apache.logé4j*;version="[1.2,1.3)

We can also add a version range when requiring a bundle, but the attribute
name is slightly different:

Require—Bundle: mailbox—api;bundle—version="{1.0.0,1.1.0)"

It’s always possible that a package import could match against two or more
exports from different bundles, or a required bundle could match two or more
bundles. In that case, the framework chooses the provider with the highest
version, so long as that version is in the range specified by the consumer.
Unfortunately, even this rule sometimes fails to come up with a single winner,
because two bundles can export the same version of a package. When that
happens the framework arbitrarily chooses the one with the lowest bundle 1D,
which tends to map to whichever was installed first.

3.8. Class Loading in OSGi

In Section 1.2.1 in the Introduction, we saw how normal hierarchical class
loading works in Java. Figure 3.7 shows, in slightly simplified form, the process
by which classes are searched in OSGi.

All resolved bundles have a class loader, and when that class loader needs to
load a class it first checks whether the package name begins with java.* or is
listed in a special configuration property, org.osgi.framework.bootdelega-
tion. If that’s the case, then the bundle class loader immediately delegates to
its parent class loader, which is usually the “application” class loader, familiar
from traditional Java class loading.

Why does OSGi include this element of hierarchical class loading, if it is sup-
posed to be based on a graph of dependencies? There are two reasons:

e The only class loader permitted to define classes for the java.* packages
is the system bootstrap class loader. This rule is enforced by the Java
Virtual Machine, and if any other class loader (e.g. an OSGi bundle
class loader) attempts to define one of these classes it will receive a
SecurityException.

DRAFT PREVIEW prepared for Christopher Brind

66 Chapter 3. Bundle Dependencies

Parent
Class
Loader

(1) java.* and
Boot Delegation

1

1

i

1 n
, i (3) Required Bundle
\ /><_:_ Bundles

1

1

Classloader

(2) Imported
Packages

~
-

(5) Fragment
Classpath

(4) Internal

Classpath _I
{ Fragment Classes

o
| Internal Classes

Figure 3.7.: Simplified OSGi Class Search Order

o Unfortunately some Java Virtual Machines, including most versions of
Sun’s VM and OpenJDK, rely on the incorrect assumption that parent
delegation always occurs. Because of this assumption, some internal VM
classes expect to be able to find certain other internal classes through any
arbitrary class loader. Therefore OSGi provides the org.osgi.frame-
work.bootdelegation property to allow for parent delegation to occur
for a limited set of packages, i.e. those providing the internal VM classes.

The second step that the bundle class loader takes when searching for a class
is to check whether it is in a package imported with Import-Package. If so
then it “follows the wire” to the bundle exporting the package and delegates
the class loading request to that bundle’s class loader. The exporting bundle’s
class loader will run the same procedure, and as a result may itself delegate
to another bundle’s class loader. This means it is quite valid for a bundle to
re-export a package that it itself imports.

The third step is to check whether the class is in a package imported using
Require-Bundle. If it is then it the class loading request is delegated to the
required bundle’s class loader.

Fourth, the class loader checks the bundle’s own internal classes, i.e. the classes
inside its JAR.

DRAFT PREVIEW prepared for Christopher Brind

3.9 JRE Packages 67

Fifth, the class loader searches the internal classes of any fragments that might
be currently attached to the bundle. Fragments will be discussed in Section
3.11.

There is a sixth step that is omitted by Figure 3.7, which is related to dynamic
class loading. This is an advanced topic that will be discussed in Chapter ?7.

Figure 3.8 shows the full class search order in the form of a flowchart. This
diagram is derived from Figure 3.18 in the OSGi R4.1 Core Specification.

The class search algorithm as described always attempts to load classes from
another bundle in preference to classes that may be on the classpath of the
present bundle. This may seem counterintuitive at first, but in fact it makes a
lot of sense, and it fits perfectly with the conventional Java approach. A tra-
ditional Java class loader always first delegates to its parent before attempting
to define a class itself. This helps to ensure that classes are loaded as few
times as possible, by favouring already-defined copies of a class over redefining
it in a lower-level class loader. The opposite approach would result in many
copies of the same class, which would be considered incompatible because they
were defined by different class loaders. Back in OSGi, where the class loaders
are arranged in a graph rather than a tree, the same principle of minimising
class loading translates to making every effort to find a class from a bundle’s
imports rather than loading it from the internal bundle classpath.

Remember, the identity of a class is defined by the combination of its fully qual-
ified name and the class loader which loaded it, so class org.foo.Bar loaded by
class loader A is considered different from org.foo.Bar loaded by class loader
B, even if they were loaded from the same physical bytes on disk. When this
happens the result can be very confusing, for example a ClassCastException
being thrown on assignment of a value of type org.foo.Bar to a variable of
type org.foo.Bar!

3.9. JRE Packages

In Section 3.4 we saw that it is necessary to always import all packages used
in the bundle except for java.*. Therefore all of the other packages in the
base JRE libraries, e.g. those beginning javax.*, org.omg.*, org.w3c.* etc
must all be imported if used.

As ordinary imports, these packages are not subject to parent delegation, so
they must be supplied in the normal way by wiring the import to a bundle
that provides them as an export. However, you do not need to create that
bundle yourself: the system bundle performs this task.

Recall from Section ?7? that the system bundle is always present, and it rep-
resents the framework itself as a bundle. One of the jobs performed by the

DRAFT PREVIEW prepared for Christopher Brind

68 Chapter 3. Bundle Dependencies

START FAIL
No
@ Yes — De;egate to Yes SUCCESS
arent

No
Boot 1 Delegate to
Yes Soae @ Yes SUCCESS
No N
f o

Delegate to
Imported? Yes — Wired Yes SUCCESS
Exporter
No

No

Search Required Yes SUCCESS FAIL
Bundles
No

Search Bundie Yes SUCCESS
asspath
N

[o]

Search
Fragments' Yes SUCCESS
Classpath
No

Delegate to
Wired Yes SUCCESS
Exporter

Figure 3.8.: Full OSGi Search Order

DRAFT PREVIEW prepared for Christopher Brind

3.10 Execution Environments 69

system bundle is to export packages from the base JRE libraries. As it is a
special bundle, the class loader inside the system bundle follows different rules
and is able to load from the main application or bootstrap class loaders.

However, the list of packages exported by the system bundle is not fixed, but
subject to configuration: if you take a look at Felix’s config.properties file
you will see a property named org.osgi.framework.system.packages which
lists the packages to be exported from the system bundle. The list is different
depending on which version and edition of Java we are running, because later
versions of Java have more packages in their API.

This approach of importing JRE libraries using the normal wiring system
provides a very clean approach to environmental dependencies. An advantage
is that the importing bundle doesn’t necessarily know or care that the exporter
of a package is the system bundle. Some APIs which are distributed as part
of the base JRE libraries in recent versions of Java can still be used on older
Java versions if they are obtained as separate JAR files. For example, Java 6
includes scripting capabilities? in the javax.script package, however there
is also a JAR available® which implements the same functionality and works
on Java 1.4 and Java 5. We could take that JAR and create a bundle from
it, so that if another bundle wishes to use scripting functionality it can simply
import the javax.script package.

3.10. Execution Environments

Unfortunately not all environmental dependencies can be handled through
importing packages. As well as the javax.* packages, different versions of
Java have different sets of java.* packages, different classes in those packages
and even different fields and methods in those classes.

Some of these changes are easy to catch. For example, Java 5 introduced
several new methods on core classes such as java.lang.String. The following
code will not compile on Java 1.4 because the contains () method was added
in Java b:

public class JavabTest {
public boolean stringTest(String s) {
return s.contains("foo");
}

}

Java provides a simple defence mechanism against us compiling this code with
a Java 5 compiler and then running it on a Java 1.4 environment, in the form
of the class file version. The Java 5 compiler will tag all class files it creates

2as defined by JSR 223[?]
3From https://scripting.dev.java.net/

DRAFT PREVIEW prepared for Christopher Brind

https://scripting.dev.java.net/

70 Chapter 3. Bundle Dependencies

with version 49.0, which will be rejected by a Java 1.4 VM as it expects the
version to be no higher than 48.0.

In principle we could work around this mechanism using the -source and
-target flags of the javac compiler, in which case the class would successfully
load in the 1.4 VM but throw a NoSuchMethodError when it reached the
contains () method. However it’s difficult to imagine why anybody would
inflict this kind of pain on themselves.

Unfortunately this defence mechanism still kicks in rather later than we would
like it to. In OSGi terms, our bundle will resolve without any issues, but as
soon as the offending class is loaded — which could happen at any arbitrary
time after bundle resolution — we will get an exception. Even the error
message is unhelpful:

Exception in thread "main" java.lang.UnsupportedClassVersionError:
Javab5Test (Unsupported major.minor version 49.0)
at java.lang.ClassLoader .defineClassO(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:539)
at

It would be far better if we could see a clear error message “this code requires
Java 5”7 and if that error happened at bundle resolution time.

Another problem is that a simple class version number cannot accurately rep-
resent the complex evolution tree of Java. There’s not only the line of standard
edition releases from 1.1 through to 6, but also the mobile edition releases CDC
1.0, CDC 1.1 and various profiles such as Foundation 1.0 and 1.1, PersonalJava
1.1 and 1.2, and so on. Even the linear evolution of Java SE may begin to
look more complex in the future if Google’s Android[?] or open source forks of
OpenJDK pick up significant market share. Ideally, we would like to be able
to specify exactly which of these environments our bundle runs on.

OSGi offers this functionality in the form of another kind of bundle resolution
constraint. We can specify a list of the “execution environments” supported by
our bundles, and at runtime the current Java VM must either be one of those
environments or strictly upwards compatible with one of them, otherwise the
bundle will fail to resolve. Furthermore OSGi tools will tell us clearly why
the bundle cannot be resolved. In return we must ensure that our bundles
only use packages, classes and methods that are available in all of the listed
environments.

There is no fixed list of execution environments, since it is subject to change
as the JCP creates new versions and editions of Java. However, the following
set is currently supported by all three open source OSGi implementations:

o CDC-1.0/Foundation-1.0
o CDC-1.1/Foundation-1.1
o JRE-1.1

DRAFT PREVIEW prepared for Christopher Brind

3.10 Execution Environments 71

o J2SE-1.2
e J2SE-1.3
e J2SE-14
o J2SE-1.5
o J2SE-1.6
o OSGi/Minimum-1.0
o OSGi/Minimum-1.1

For example to specify that our bundle requires Java 5, we can add the fol-
lowing line to the bnd descriptor:

Bundle—RequiredExecutionEnvironment: J2SE —1.5

This entry will simply be copied verbatim to the MANIFEST.MF and recognised
by the framework.

The first eight environments should need little explanation — they simply
correspond directly with major releases of the Java specification. However
the last two, OSGi/Minimum-1.0 and 1.1, are artificial environments that
represent a subset of both Java SE and CDC 1.0 or 1.1. By choosing to
target the Minimum-1.0 environment we can make our bundle run essentially
everywhere, or at least everywhere that OSGi itself can run.

It’s a good idea to add an execution environment declaration to every bundle
you build. However this is only half the problem. Having declared that our
bundle requires a particular environment we need to have processes in place
to ensure our code really does only use features from that environment.

It is a common misconception that the -source and -target flags of the
compiler can be used to produce, say, Java 1.4-compatible code using a Java
5 compiler. However these are not sufficient on their own. The -source
flag controls only language features, so setting it to 1.4 turns off generics,
annotations, for-each loops, and so on. The -target flag controls the class
file version, so setting this to 1.4 makes the class file readable by a 1.4 VM.
Neither of these flags do anything to restrict the APIs used from code, so we
can still quite easily produce code that calls String.contains() or any other
Java 5-only APIs.

The most practical and reliable way to produce 1.4-compatible code is to build
it with version 1.4 of the JDK. Likewise for 1.3-compatible code, 5-compatible
code, etc. The key is the rt.jar which contains the JRE library for that
version of the JDK: only by compiling with the correct rt. jar in the classpath
can we ensure API compatibility with the desired version. Since rt. jar is not
available as a separate download, we must obtain the whole JDK.

DRAFT PREVIEW prepared for Christopher Brind

72 Chapter 3. Bundle Dependencies

3.11. Fragment Bundles

In Release 4, OSGi introduced the concept of Fragment bundles. A fragment,
as its name suggests, is a kind of incomplete bundle. It cannot do anything
on its own: it must attach to a host bundle, which must itself be a full, non-
fragment bundle. When attached, the fragment can add classes or resources to
the host bundle. At runtime, its classes are merged into the internal classpath
of the host bundle.

What are fragments useful for? Here is one possibility: imagine you have a li-
brary which requires some platform-specific code. That is, the implementation
of the library differs slightly when on Windows versus Mac OS X or Linux. A
good example of this is the SWT library for building graphical user interfaces,
which uses the “native” widget toolkit supplied by the operating system.

We don’t want to create entirely separate bundles for each platform, because
much of the code is platform independent, and thus would have to be dupli-
cated. So what about isolating the platform independent code into its own
bundle (let’s call this bundle A), and making separate bundles for the platform-
specific portion (which we will call Pyn, Paracos, etc.)? Unfortunately this
separation is not always easy to achieve, because the platform-specific bundles
P, may have lots of dependencies on the platform independent bundle, A, and
in order to import those dependencies into P,, they would have to be exported
by A. However, those exports are really internal features of the library; we
don’t want any other bundles except P, to access them. But once exported,
they are available to anybody — in OSGi, there is no way to export packages
only to specific importers.

The solution to this problem is to make P, into fragments hosted by A rather
than fully fledged bundles. Suppose we are running on Windows. In this case,
the fragment Py, will be merged at runtime into the internal classpath of
A. Now Py, has full visibility of all packages in A, including non-exported
packages, and likewise A has full visibility of all packages in Py ;.

Another use case is providing resources that differ depending on the locale
of the user. Typically GUI applications need to provide resource bundles —
usually properties files — containing all of the natural-language strings in the
GUI. By separating these resources into fragments of the host bundle, we can
save disk space and download time by delivering only the language fragment
that the user wants.

We can even deliver different functionality for different locales. For example,
written sentences in Japanese contain no spaces, yet still have discrete words
which must not be split by a line break. The challenge for a word processor
is to know where it is valid to insert a line break: special heuristic algorithms
must be used. English may seem simpler, but even here we need to work
out where long words can sensibly be split by a hyphen. Using fragments,

DRAFT PREVIEW prepared for Christopher Brind

3.12 Class Space Consistency and “Uses” Constraints 73

we can separate this functionality from the base language-independent word
processing functionality, and deliver only the most appropriate set of fragments
for the language the user wishes to use.

3.12. Class Space Consistency and “Uses”
Constraints

TODO

DRAFT PREVIEW prepared for Christopher Brind

4. Services

OSGi provides one of the most powerful module systems in any language or
platform, and we saw just a small amount of its power in the previous section.
However what we have seen so far only addresses the management of static,
compiled-in dependencies between modules.

This alone is not enough. A module system that only supports static depen-
dencies is fragile and fails to offer extensibility. Fragility means that we cannot
remove any single module without breaking almost the entire graph. Lack of
extensibility means we cannot add to the functionality of a system without
recompiling parts of the existing system to make it aware of new components.

To build a module system that is both robust and extensible, we need the
ability to perform late binding.

4.1. Late Binding in Java

One of the most important goals of the Object Oriented Programming move-
ment is to increase the flexibility and reuse of code by reducing the coupling
between the providers of functionality (objects) and the consumers of that
functionality (clients).

In Java, we approach this goal through the use of interfaces. An interface
is a purely abstract class which provides no functionality itself, but allows
any class to implement it by providing a defined list of methods. By coding
against interfaces rather than concrete types, we can write code that isolates
itself almost entirely from any specific implementation.

For example, suppose we wish to write a mailbox scanner component, which
periodically scans a mailbox for new messages. If we design our Mailbox
interface carefully then we can write a scanner that neither knows nor cares
which specific type of mailbox it is scanning — whether it be an IMAP mailbox,
an RSS/ATOM “mailbox”, an SMS mailbox, etc. Therefore we can reuse the
same scanner component for all of these mailbox types without changing its
code at all. Because of these benefits, so-called “interface based” programming
is now widely recognised as good Java programming practice.

However, there is a catch: we cannot create new objects unless we know their
specific type. Interfaces and abstract classes can be used to refer to an object

DRAFT PREVIEW prepared for Christopher Brind

© 0w N U AW N

76 Chapter 4. Services

after it is created, but they cannot be used to instantiate new ones, because
we need to know exactly what type of thing to create. This would cause a
problem if our scanner component expects to create the mailbox object itself.
A naive solution might be to put some kind of switch in the constructor of
the scanner to make it decide at runtime what kind of mailbox to create, as
shown in Listing 4.1.

Listing 4.1 Naive Solution to Instantiating an Interface

public class MailboxScanner {
private final Mailbox mailbox;
public MailboxScanner (String mailboxType) {
if ("imap".equals(mailboxType)) {
mailbox = new IMAPMailbox ();
} else if("rss".equals(mailboxType)) {
mailbox = new RSSMailbox ();
} else {

/o

Most programmers would recognise this as a terrible idea, and in OSGi it’s
even worse, because it will only work if the bundle containing the scanner
imports every package that might contain a mailbox implementation class. ..
including ones that might be written in the future!

The normal solution to this quandary is for the scanner not to try to instantiate
the mailbox itself, but to allow a mailbox to be supplied to it by something else.
This is the essence of late binding: the consumer of functionality is not bound
to a specific provider until runtime. But who or what should this “something
else” be?

There are many possible answers. A large application may have hundreds of
classes like MailboxScanner which all need to be supplied with implementa-
tions of the interfaces they depend on, so a common theme in many solutions
is to centralise object creation into an “Assembler” class. That central class
may even support some form of scripting, to allow the network of objects to
be rewired without recompilation.

4.1.1. Dependency Injection Frameworks

After writing a few examples of the “Assembler” class in different projects,
it’s easy to see that it is a common pattern that can be extracted out into
a framework. And indeed several open source frameworks have emerged that
do exactly this: popular examples in Java are the Spring Framework|[?] and
Google Guice][?].

Such a framework is often called a “Dependency Injection” (DI) framework’.
Unfortunately both these and the manually-created Assembler pattern have

IThey have also previously been called “Inversion of Control” (IoC) frameworks, but this

DRAFT PREVIEW prepared for Christopher Brind

4.1 Late Binding in Java 77

traditionally suffered from being mostly static: the wiring together of “beans”
(i.e., plain Java objects, such as the mailbox implementation) with their con-
sumers (other beans, such as the mailbox scanner) tends to happen once, at
start-up of the application, and remains in force until the application is shut-
down.

Static wiring results in many problems. The first is fragility due to a sensitive
dependence on start-up ordering. For example if object B depends on object
A, then A must be created before B. When we scale up to thousands of objects
and their interdependencies, the dependency graph becomes brittle and far too
complex for any human to understand. We must avoid circular dependencies
between objects, at all costs.

Another problem is the impossibility of on-the-fly updates. Most production
systems need to be patched occasionally as bugs are fixed or requirements
change. In a statically wired dependency graph, we usually need to shut down
the entire system even when updating only the tiniest corner of it.

4.1.2. Dynamic Services

OSGi solves these problems with dynamic services.

A service, like a bean in a DI framework, is a plain Java object. It is published
in the OSGi Service Registry under the name of one or more Java interfaces,
and consumers who wish to use it may look it up using any of those interfaces
names. Services may consume other services, but rather than being wired into
a fixed graph, services can be registered or unregistered dynamically at any
time, so they form only temporary associations with each other.

Start ordering problems can now be solved easily: services start in any order.
Suppose we start the bundle containing service B before starting the bundle
containing service A. In this case, B simply waits for A to become available.
Also we can update individual components without restarting the system.
When taking away service A and replacing it with A’, OSGi sends events to
service B to keep it informed of the situation.

Services offer an interface-based programming model. The only requirement
on a service is that it implements an interface; any interface will do, even
ones from the base JRE or third-party libraries. The chosen interface — or
interfaces, since a Java object can implement many interfaces — forms the
primary addressing mechanism for a service. For example, a service publisher
declares “I have this object available which is Mailbox.” The consumers declare
“I am looking for a Mailbox.” The Service Registry provides a venue for

term has largely fallen out of use thanks to Martin Fowler, who popularised the term
“Dependency Injection” in his 2004 article “Inversion of Control Containers and the
Dependency Injection pattern”[?].

DRAFT PREVIEW prepared for Christopher Brind

78 Chapter 4. Services

Service
Broker

Find
Register
Service N
Contract
. Service
Service Provider
Consumer

Client |- Bind P Service

Figure 4.1.: Service Oriented Architecture

publishers and consumers to find each other. The consumer does not need
to know the implementation class of the published service, just the interface
through which it interacts?.

OSGi’s Service Registry has been called a form of Service Oriented Architec-
ture, or SOA. Many people think of SOA as being associated with distributed
computing, Web Services, SOAP and so on, but that is just one example of
SOA, which is really just a pattern or style of architecture. OSGi services are
limited in scope to a single JVM — they are not distributed® — yet they map
very cleanly to the concepts of SOA. Figure 4.1 is adapted from a diagram
used by the World-Wide Web Consortium to explain SOA, and we will see
shortly how each of the abstract concepts in that diagram maps to a concrete
entity in OSGi.

Sadly, there is some complexity cost involved in handling dynamic services
versus static objects. It is obviously easier to make use of something if we
know that it is always available! However, the real world is not static, and
therefore we need to write systems that are robust enough to handle entities
that come and go. The good news is that several high-level abstractions have
been built on top of the OSGi Service Registry that greatly simplify the code
you need to write while still taking advantage of dynamic behaviour. In fact,
the Dependency Injection frameworks have started to support dynamic be-
haviour, and in the case of the Spring Framework that support is achieved

2In fact we can publish services under the names of abstract or concrete classes also, but
this defeats object of using the Registry to decouple consumers from implementations.

3 Although of course some people have sought to build distributed systems on top of OSGi
services

DRAFT PREVIEW prepared for Christopher Brind

~ow

o

10
11
12

14
15

16

4.2 Registering a Service 79

through direct usage of the OSGi Service Registry.

In this chapter though, we look at the nuts and bolts of services, in order to
gain a firm foundation when advancing to higher-level abstractions.

4.2. Registering a Service

Recall that in Section 3.4 we created an implementation of the Mailbox in-
terface. However, as its package was not exported, there was no way for any
other bundle to actually use that implementation! By registering an instance
of the FixedMailbox class as a service, other bundles can access the object
without needing to have a dependency on its class.

Registering a service is an example of interaction with the OSGi framework,
and as always we need to have a BundleContext in order to do that. Therefore
we need to write an implementation of BundleActivator as shown in Listing
4.2.

Listing 4.2 Welcome Mailbox Activator

package org.osgi.book.reader.fixedmailbox;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class WelcomeMailboxActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {
Mailbox mbox = new FixedMailbox ();
context.registerService(Mailbox.class.getName (), mbox, null); //1

}

public void stop(BundleContext context) throws Exception {

}
}

The first two lines of code simply create a mailbox with some hard-coded
messages in it. The line marked //1 is the one that calls the framework to
register the mailbox as a service, by calling the registerService method with
three parameters:

1. The interface name under which the service is to be registered. This
should be the name of a Java interface class, and will be the primary
means by which clients will find the service.

2. The service object itself, i.e. the mailbox object that was instantiated in
the previous lines. This object must implement the interface named in
the previous parameter.

DRAFT PREVIEW prepared for Christopher Brind

80 Chapter 4. Services

3. A set of service properties, which here has been left blank by passing
null. We will look at service properties shortly.

We say that a service object is registered “under” an interface name, because
for consumers the most important fact about our service is the interface it
implements. In fact, just as Java objects can be implementations of multiple
interfaces, we can register a service under multiple interface names, by calling
a variant of the registerService method that takes an array of Strings as
its first parameter. When we do this, consumers can find the service using any
one of those interface names. There is still just one service object registered:
the additional entries can be considered aliases.

Note that we could have passed a literal String for the interface name i.e.,
context.registerService("org.osgi.book.reader.api.Mailbox", mbox, null). However this is
not good practice, because the class or package name might change in the
future, for example when the code is refactored. It is better to use Mail-
box.class.getName () because most IDEs can automatically update the im-
port statement — and even if we are not using an IDE, we will get a helpful
compilation error if we change the package name that Mailbox lives in without
updating this source file.

Listing 4.3 Bnd Descriptor for the Welcome Mailbox Bundle

welcome_mailbox.bnd

Private—Package: org.osgi.book.reader.fixedmailbox

Bundle—Activator: \
org.osgi.book.reader.fixedmailbox.WelcomeMailboxActivator

Let’s build this bundle and see what effect it has. The bnd descriptor should
look like the one in Listing 4.3. After building, installing and starting the
bundle, try typing services. You will see a long list of results, but somewhere
within it you should see this:

osgi> services

{org.osgi.book.reader.api.Mailbox}={service.id=24}
Registered by bundle: welcome_mailbox_0.0.0 [2]
No bundles using service.

This shows we have successfully registered a service under the Mailbox inter-
face, and it has been assigned a service ID of 24 — again, you will probably
get a different ID when you run this for yourself. Incidentally you can try the
services command on its own, without a bundle ID parameter, which will
give you a list of all registered services by all bundles, although showing less
detail.

DRAFT PREVIEW prepared for Christopher Brind

4.3 Unregistering a Service 81

4.3. Unregistering a Service

In the code listing in Section 4.2, we did not do anything in the stop () method
of the activator, which may seem oddly asymmetrical. Usually we have to undo
in the stop() method whatever we did in the start() method, so shouldn’t
we have to unregister the service?

Actually this is not necessary because the OSGi framework automatically un-
registers any services registered by our bundle when it is deactivated. We don’t
need to explicitly clean it up ourselves, so long as we are happy for the service’s
lifecycle — the period of time during which it was registered and available to
clients — to coincide with the lifecycle of the bundle itself. Sometimes though
we need a different lifecycle for the service. We may only want to offer the
service when some other conditions are met, and in that case we will have to
control both registering and unregistering ourselves.

Suppose, for example, we only want our service to be available while a par-
ticular file exists on the filesystem. Perhaps that file contains some messages
which we want to offer as a mailbox: clearly we can only offer the service if
the file actually exists. To achieve this we would create a polling thread using
the same pattern we saw in Section 2.11. The code is shown in Listing 4.4.

Here we see, at marker I, that the registerService() method returns an
object of type ServiceRegistration, and we can use that object to unreg-
ister the service later. Each pass through the loop we check whether the file
messages.txt exists in your home directory*. If it does, and the service is
not currently registered, then we register it. If the file does not exist, and the
service is currently registered, then we unregister it.

For the purposes of this example, the actual implementation of FileMailbox
is not particularly interesting. If you simply wish to get this code working and
watch the service register and unregister, then you will need to create a simple
stub implementation. The code in Listing 4.5 will suffice, assuming we never
actually call the methods of the FileMailbox object.

The bnd descriptor should be as in Listing 4.6.

By creating and deleting the messages.txt file, you should be able to see the
service appear and disappear, albeit with up to five seconds’ delay. Incidentally
if we were to provide a real implementation of FileMailbox, this delay would
be one of the things we would have to take into account in order to make the
service robust: we should be able to handle the situation where a client request
arrives during the period between the file being deleted and the service being

40n Windows XP, this is usually C:\Documents and Settings\YourName and on Windows
Vista it is C:\Users\YourName. Users of non-Windows operating systems tend to know
how to find their home directory already.

DRAFT PREVIEW prepared for Christopher Brind

82 Chapter 4. Services

Listing 4.4 File Mailbox Activator

1 package org.osgi.book.reader.filemailbox;

3 import java.io.File;

4 import java.util.Properties;

6 import org.osgi.book.reader.api.Mailbox;

7 import org.osgi.framework.BundleActivator;

8 import org.osgi.framework.BundleContext;

9 import org.osgi.framework.ServiceRegistration;

11 public class FileMailboxActivator implements BundleActivator {

13 private Thread thread;

15 public void start(BundleContext context) throws Exception {
16 File file = new File(System.getProperty("user.home")

17 + System.getProperty("file.separator") 4+ "messages.txt");
18 RegistrationRunnable runnable = new RegistrationRunnable (
19 context , file, null);

20 thread = new Thread(runnable);

21 thread.start ();

22 }

24 public void stop(BundleContext context) throws Exception {
25 thread.interrupt ();

26

27 }

29 class RegistrationRunnable implements Runnable {

31 private final BundleContext context;

32 private final File file;

33 private final Properties props;

35 public RegistrationRunnable (BundleContext context, File file,
36 Properties props) {

37 this.context = context;

38 this.file = file;

39 this.props = props;

40 }

42 public void run() {

43 ServiceRegistration registration = null;

44 try {

45 while (!Thread.currentThread ().isInterrupted()) {
46 if (file.exists()) {

47 if (registration == null) {

48 registration = context.registerService(// 1
49 Mailbox.class.getName (),

50 new FileMailbox(file), props);

51

52 } else {

53 if (registration != null) {

54 registration.unregister ();

55 registration = null;

56 }
57 }

58 Thread.sleep (5000);

59

60 } catch (InterruptedException e) {
61 // Allow thread to ezmit

62

63 }

64 }

DRAFT PREVIEW prepared for Christopher Brind

10
11

13

16
17
18
19
20
21
22

4.3 Unregistering a Service

83

Listing 4.5 File Mailbox (Stub Implementation)

package org.osgi.book.reader.filemailbox;
import java.io.File;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.book.reader.api.Message;

JHx

* Warning: Empty stub implementation
*/

public class FileMailbox implements Mailbox {
private static final long][] EMPTY = new long[0];

public FileMailbox(File file) {}

public long|[] getAllMessages () { return EMPTY; }

public Message[] getMessages (long[] ids) {
return new Message [0];

public long|[] getMessagesSince(long id) { return EMPTY;
public void markRead(boolean read, long|[] ids) { }

}

Listing 4.6 Bnd Descriptor for File Mailbox Bundle

file_mailbox.bnd
Private—Package: org.osgi.book.reader.filemailbox

Bundle—Activator: org.osgi.book.reader.filemailbox.FileMailboxActivator

DRAFT PREVIEW prepared for Christopher Brind

84 Chapter 4. Services

unregistered. In that case we would have to return an error message to the
client.

4.4. Looking up a Service

Having seen how to register and unregister services, the next logical step is to
look at how to look up and call methods on those services.

Perhaps surprising, this can be a little tricky. The problem is that services,
as we have seen, can come and go at any time. If we look for a service at a
particular instant, we might not find it, but we would find it if we looked two
seconds later. Alternatively we could access a service twice in a row, but get a
different service the second time because the one we got first time is no longer
around.

Fortunately there is lots of support, both in the OSGi specifications themselves
and in external third-party libraries, to help us to abstract away this complex-
ity. In fact programming with dynamic services in OSGi need be hardly any
more complex than with static dependency injection, yet it is far more power-
ful. However, in this section we will look at the most low-level way of accessing
services. This is partially to provide a firm base of understanding for when
we get onto the more convenient approaches, and partially to drive home the
truly dynamic nature of OSGi services.

Suppose we wish to write a bundle that accesses one of the Mailbox services
and prints the current total number of messages in that mailbox. To keep
things as simple as possible we will do this in the start() method of an
activator, for example MessageCountActivator in Listing 4.7.

At marker 1, we ask the framework to find a ServiceReference for a named
Java interface. As before, we avoid encoding the interface name as a literal
string.

After checking that the service reference is not null, meaning the mailbox
service is currently available, we proceed to request the actual service object
at marker 2. Again we have to check if the framework returned null — this
is because although the service was available at marker 1, it may have become
unavailable in the time it took us to reach marker 2.

At marker & we actually call the service. Because our mbox variable holds the
actual service object rather than any kind of proxy, we can call the methods
on it just like any normal Java object.

Finally at marker 4 we “un-get” the service — in other words we let the
framework know that we are no longer using it. This is necessary because
the framework maintains a count of how many bundles are using a particular

DRAFT PREVIEW prepared for Christopher Brind

4.4 Looking up a Service 85

Listing 4.7 Message Count Activator

1 package org.osgi.tutorial;

S I N

import org.osgi.book.reader.api.Mailboxj;

import org.osgi.book.reader.api.MailboxException;
import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

9 public class MessageCountActivator implements BundleActivator {

11

13
14
15
16

18
19

21
22
23

25
26
27
28
29
30
31
32
33
34
35
36

private BundleContext context;

public void start(BundleContext context) throws Exception {
this.context = context;
printMessageCount ();

}

public void stop(BundleContext context) throws Exception {

private void printMessageCount () throws MailboxException {
ServiceReference ref = context J// 1
.getServiceReference (Mailbox.class.getName ());

if (ref != null) {
Mailbox mbox = (Mailbox) context.getService(ref); // 2
if (mbox != null) {
try {
int count = mbox.getAllMessages ().length; // 8
System.out.println("There are " 4+ count + "messages");
} finally {
context.ungetService (ref); /) 4

}

DRAFT PREVIEW prepared for Christopher Brind

86 Chapter 4. Services

service: when that count is zero, it knows that the service can safely be re-
moved when the bundle providing it is deactivated. We have placed the call
to ungetService() inside a finally block to ensure that it is always called
on exit from our method, even if an uncaught exception occurs.

Listing 4.8 shows the Bnd descriptor.

Listing 4.8 Bnd Descriptor for the Message Counter Bundle

message_count .bnd
Private—Package: org.osgi.tutorial
Bundle—Activator: org.osgi.tutorial.MessageCountActivator

Stepping back from the code, you may wonder why accessing a service requires
a two-stage process of first obtaining a reference and then obtaining the actual
service object. We will look at the reasons for this in the next section.

The main problem with this code is that it’s just too long! Simply to make a
single call to a service, we have to write two separate null checks and a try /
finally block, along with several noisy method calls to the OSGi framework.
We certainly don’t want to repeat all of this each time we access a service.
Also, the code does not behave particularly well when the Mailbox service is
unavailable: it simply gives up and prints nothing. We could at least print an
error message, but even that is unsatifactory: what if we really need to know
how many messages are in the mailbox? The information will be available as
soon as the mailbox service is registered, but it’s just bad luck that the above
bundle activator has been called first.

4.5. Service Properties

In addition to the interface name, we may wish to associate additional meta-
data with our services. For example, in this chapter we have registered several
instances of the Mailbox service, each with different characteristics. It would
be nice to tell clients something about each mailbox so that they can, if they
wish, obtain only one specific mailbox, or at least report something to the user
about what kind of mailbox they have obtained. This is done with service
properties.

Recall that when registering the service in Section 4.2, we left the final param-
eter null. Instead we can pass in a java.util.Properties object containing
the properties that we want to set on the service®.

5Actually the type of this parameter is java.util.Dictionary, of which
java.util.Properties is a sub-class. Why not use the java.util.Map interface,
which the Properties class also implements? Simply because Map has “only” existed
since Java 1.2, so it cannot be used on all platforms supported by OSGil!

DRAFT PREVIEW prepared for Christopher Brind

M)

N o o s

4.5 Service Properties 87

Let’s modify WelcomeMailboxActivator to add a “mailbox name” property
to the service. The new start method is shown in Listing 4.9.

Listing 4.9 Adding Service Properties to the Welcome Mailbox

public void start(BundleContext context) throws Exception {

Mailbox mbox = new FixedMailbox ();
Properties props = new Properties ();
props.put (Mailbox . NAME_PROPERTY, "welcome");

context.registerService(Mailbox.class.getName (), mbox, props);

}

Note that we avoid hard-coding the property name everywhere we use it, as
this can be error prone and difficult to change later. Instead we use a constant
that was defined in the Mailbox interface itself. This is a suitable place to put
the constant because it is guaranteed to be visible to both service implementers
and service consumers.

Try rebuilding this bundle and updating it in Equinox. If we now re-run the
services command we should see the property has been added to the service:
osgi> services

{org.osgi.book.reader.api.Mailbox}={mailboxName=welcome ,service.id=27}

Registered by bundle: welcome_mailbox_0.0.0 [2]
No bundles using service.

The other entry we see here, service.id, is a built-in property that has
been added by the framework. Another built-in property, objectClass, is
also added: this indicates the interface name that the service is published
under. It is a property like mailboxName and service.id, but because it is
such an important property Equinox chooses to bring its value to the front
of the entry. There are other standard property names defined in the OSGi
specification, but only service.id and objectClass are mandatory, so they
appear on every service. These two, and the rest, can be found in the class
org.osgi.framework.Constants.

To query the properties on a service, we simply call the getProperty method
of the ServiceReference to get a single property value. If we need to know
about all of the properties on the service we can call getPropertyKeys method
to list them.

Service properties provide a clue as to why we need a two-stage process for
looking up a service, i.e. first obtaining a ServiceReference before obtaining
the actual service. One reason for this is sometimes we don’t need the service
object (or at least not yet) but only its properties. When we obtain the service
object, the OSGi framework must keep track of the fact we are using it, creating
a very small amount of overhead. It is sensible to avoid that overhead when
it is not needed.

DRAFT PREVIEW prepared for Christopher Brind

1

3
4
5
6
7

9

11

13
14
15
16
17
18

20
21
22

24
25
26
27
28
29
30
31

88 Chapter 4. Services

Also, service references are small, lightweight objects that can be passed
around, copied or discarded at will. The framework does not track the service
reference objects it hands out. Also service reference objects can be passed
easily between bundles, whereas it can cause problems to pass an actual service
instance to another bundle: that would prevent the framework from being able
to track which bundles are using each service. In situations where we want
to ask another bundle to do something with a service, we should pass the
reference and let the other bundle call getService and ungetService itself.

4.6. Introduction to Service Trackers

To address the excess verbosity of the code in Section 4.4, we can refactor it
to use a utility class provided by OSGi called ServiceTracker

In fact ServiceTracker is one of the most important classes you will use as
an OSGi programmer, and it has many more uses than just the one we will be
taking advantage of in this code. But for now, the code in Listing 4.10 simply
does the same thing as before, and in particular it is no better at dealing with
a missing Mailbox service:

Listing 4.10 Message Count Activator — ServiceTracker version

package org.osgi.tutorial;

import org.osgi.book.reader.api.Mailboxj;

import org.osgi.book.reader.api.MailboxException;
import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

public class MessageCountActivator2 implements BundleActivator {
private ServiceTracker mboxTracker;
public void start(BundleContext context) throws Exception {

mboxTracker = new ServiceTracker (context, Mailbox.class //
.getName (), null);

~

mboxTracker .open (); // 2
printMessageCount ();
}
public void stop(BundleContext context) throws Exception {
mboxTracker.close (); // 3
}
private void printMessageCount () throws MailboxException {
Mailbox mbox = (Mailbox) mboxTracker.getService (); // 4
if (mbox != null) {
int count = mbox.getAllMessages (). length; // 5
System.out.println("There are " 4 count + "messages");
}
}

DRAFT PREVIEW prepared for Christopher Brind

0 N U AW N

4.6 Introduction to Service Trackers 89

At first glance this code is barely any shorter than the previous example!
Nevertheless we have achieved something important: in exchange for a little
extra initial effort, it is now much easier to call the service, as we can see in
the method printMessageCount. In real code, we would probably make many
separate calls to the service, so it is far better to repeat the four lines of code
in this printMessageCount than the nine lines of code in the previous version.

The first difference, which we can see at marker 7 of the start method, is that
instead of saving the bundle context directly into a field, we instead construct
a new ServiceTracker field, passing it the bundle context and the name of
the service that we are using it to track. Next at marker 2, we “open” the
tracker, and at marker & in the stop() method we “close” it. We will look
later at what is really going on under the covers when we open and close a
service tracker, but for now just remember that the tracker will not work until
it is opened.

The next difference is at marker 4, where we call getService on the tracker.
Refreshingly, this immediately gives us the actual service object (if available)
rather than a ServiceReference. So we simply go ahead and call the service
at marker 5, bearing in mind that we still need to check if the service was
found. Also, we don’t need to clean up after ourselves with a finally block:
we simply let the variable go out of scope, as the tracker will take care of
releasing the service.

Here’s another interesting thing we can do with ServiceTracker. In the
version of printMessageCount shown in Listing 4.11 we don’t want to fail
immediately if the service is unavailable; instead we would like to wait up to
five seconds for the service to become available.

Listing 4.11 Waiting for a Service

private void printMessageCount (String message)
throws InterruptedException, MailboxException {

Mailbox mbox = (Mailbox) mboxTracker.waitForService (5000);
if (mbox != null) {
int count = mbox.getAllMessages ().length;
System.out.println("There are " 4 count + "messages");
}

}

When the mailbox service is available, waitForService works exactly the
same as getService: it will immediately return the service instance. However
if the service is not currently available, the call will block until either the service
becomes available or 5000 milliseconds has passed, whichever is sooner. Only
after 5000 milliseconds has passed without the service becoming available will
it return null.

However, waitForService needs to be used with caution, and in particular it
should not be called from the start or stop methods of a BundleActivator,

DRAFT PREVIEW prepared for Christopher Brind

90 Chapter 4. Services

because those methods are supposed to return control quickly to the frame-
work. This topic is discussed in more depth in Section ?7?.

4.7. Listening to Services

In both versions of the “message counting” bundle above, we failed to handle
a missing mailbox service gracefully. If the mailbox wasn’t there, we simply
gave up.

Sometimes giving up is exactly the right thing to do. For example there is a
standard log service in OSGi which clients can use to send logging messages
to an application-wide log. Suppose a component wants to write a message to
the log, but it discovers that the log service is not currently available — what
should it do? Usually it should give up, i.e. not write the message to the log,
but carry on with its main task. Logs are nice if we can have them, but should
not get in the way of actually running the application.

However at other times, we need to do better. Some components are essentially
useless without the services that they consume: a component that counts
messages in a mailbox is pointless when there are no mailboxes. We might say
that it has a dependency on the mailbox service.

Services often depend on other services. For example, suppose we have a
relational database that is exposed to our application as a service under the
javax.sql.DataSource interface — we might then wish to offer a mailbox
service that obtains its messages from the database. In that case, the “database
mailbox” service would have a dependency on the DataSource service, and it
would be useless when the DataSource is not available. This is very similar to
the FileMailbox that was discussed in Section 4.3, in which we registered the
service only when the backing file was available, and unregistered the service
when it was not. In the case of the database mailbox, we can register the
service when the DataSource service is available, and unregister when it is
not.

In the file example, we had to write a thread to poll for the existence of the
backing file. Polling is not ideal because it wastes CPU time, and there is
inevitably a delay between the state of the file changing and our program
detecting that change. But there is currently no way in Java — short of
using platform-specific native code — to “watch” or “listen” to the state of
a file%, so polling is our only choice. Not so with services. By listening to
the service registry, we can be notified immediately when the DataSource
service is registered or unregistered, and react immediately by registering or
unregistering the corresponding mailbox.

6JSR 203[?] (also known as “NI0O.2”) seeks to address this limitation for Java 7.

DRAFT PREVIEW prepared for Christopher Brind

4.7 Listening to Services 91

™ register
REGISTERED Service()

DataSource DbMailbox

18UBISI780INISS

UNREGISTERIﬁ‘ | unregister()

Figure 4.2.: Updating a Service Registration in Response to Another Service

To achieve this, we listen to events published by the service registry. When-
ever a service is either registered or unregistered, the framework publishes
a ServiceEvent to all registered ServicelListeners. Any bundle can reg-
ister a ServicelListener through its BundleContext. Therefore we could
write a simple listener that, when it receives an event of type REGISTER-
ING, registers a new DbMailbox service, and when it receives an event of type
UNREGISTERING, unregisters that service.

Unfortunately, this will not work.

The problem is that service listeners are only told about state changes, not
about pre-existing state. If the DataSource is already registered as a service
before we start our listener, then we will never receive the REGISTERING
event, but nevertheless we need to register the DbMailbox service. Therefore
we really need to do two things:

e Scan the service registry for a pre-existing service under the DataSource
interface; if such exists, then register a DbMailbox for it.

e Hook up a service listener which will register a DbMailbox when a DataSource
service is registered, and unregister it when the DataSource service is
unregistered

But if we do those two things in the stated order, it will still not work! There
will be a window of time between scanning the pre-existing services and start-
ing the service listener, and if a service is registered during that window, we
will miss it completely. Therefore we need to reverse the two steps: first hook
up the listener, then scan the pre-existing services. Now there is the potential
for overlap: if a service registers between the two steps it will be handled both
by the scanning code and also by the listener, so we need to be careful to guard
against duplication.

All this sounds nightmarishly complex, and indeed the code needed to get all
of this right is very unpleasant. We are not even going to look at an example

DRAFT PREVIEW prepared for Christopher Brind

92 Chapter 4. Services

because you should never have to write any code like this. Instead you should
be using ServiceTracker.

4.8. Tracking Services

Although we saw ServiceTracker in Section 4.6, we only used it in a very
limited way. In this section we will see the main purpose for ServiceTracker:
hiding the complexities of listening to and consuming dynamic services. Rather
than simply “listening”, which is passive, we wish to actively “track” the ser-
vices we depend on.

Before proceeding to the example code, we will need to have an implementation
of the DbMailbox class but, like FileMailbox, the actual implementation is
not interesting as part of this exposition. Therefore we will use another stub
class — the full definition of which is left as an exercise.

Let’s write a bundle activator using ServiceTracker: this is shown in Listing
4.12. The start and stop methods of this activator look very similar to our
first example of using a tracker in Section 4.6: we simply create and open the
tracker on start-up (markers 1 and 2), and close it on shutdown (marker &).
However this time the third parameter to the constructor of ServiceTracker is
not null. Instead, we pass in an instance of the ServiceTrackerCustomizer
interface, which tells the tracker what to do when services are added, removed
or modified.

Our customizer simply registers a DbMailbox service whenever a DataSource
service is added, and unregisters it when the DataSource service is removed.

Why does this not suffer from the same limitations as the ServicelListener-
based approach described Section 4.77 Simply because, unlike a listener, the
adding and removed methods of ServiceTracker are called not only when
the state of a service changes but also when the tracker is opened, to notify
us of pre-existing services. The addingService() method is called multiple
times when the tracker is opened, once for each service currently registered,
and it is also called whenever a new service is registered at any time later for
as long as the tracker is open. Furthermore the removedService() is called
any time a service that we have been previously been notified of goes away,
and it is also called for each service when the tracker closes. Therefore we can
deal with services in a uniform fashion without needing to distinguish between
pre-existing services and ones that are registered while our listener is active.
This greatly simplifies the code we need to write.

Incidentally the ServiceTracker class does not use any special hooks into the
framework, it builds on the existing facilities that we have already seen. When
we call open() on a service tracker, it hooks up a ServiceListener and then

DRAFT PREVIEW prepared for Christopher Brind

=
= O ®© oo

—
w

15
16

18
19

21
22
23
24

26
27
28

30

32
33

35
36
37

39
40

42
43
44

46
47
48

4.8 Tracking Services

93

Listing 4.12 Database Mailbox Activator

package org.osgi.book.reader.dbmailbox;
import javax.sql.DataSource;

import org.osgi.book.reader.api.Mailboxj;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import org.osgi.framework.ServiceRegistration;

import org.osgi.util.tracker.ServiceTracker;

import org.osgi.util.tracker.ServiceTrackerCustomizer;

public class DbMailboxActivator implements BundleActivator {

private BundleContext context;
private ServiceTracker tracker;

public void start(BundleContext context) throws Exception {

this.context = context;

tracker = new ServiceTracker (context, DataSource.class
.getName (), new DSCustomizer ()); //

tracker .open (); //

}

public void stop(BundleContext context) throws Exception {
tracker.close (); //
}

private class DSCustomizer implements ServiceTrackerCustomizer {

public Object addingService(ServiceReference ref) {
DataSource ds = (DataSource) context.getService(ref); //

DbMailbox mbox = new DbMailbox(ds);
ServiceRegistration registration = context.registerService(
Mailbox.class.getName (), mbox, null);

return registration; //

}

public void modifiedService(ServiceReference ref,
Object service) {
}

© ~

o

public void removedService(ServiceReference ref, Object service)

ServiceRegistration registration =

(ServiceRegistration) service; //
registration.unregister (); //
context.ungetService (ref); //

7

8
9

DRAFT PREVIEW prepared for Christopher Brind

94 Chapter 4. Services

scans the pre-existing services, eliminates duplicates etc. The internal code is
still complex, but it has been written for us (and exhaustively tested) to save
us from having to do it ourselves.

Let’s look at the customizer class in a little more detail. At marker 4 we receive
a ServiceReference from the tracker that points at the newly registered
service, and we ask the framework to de-reference it to produce the actual
service object. We use the result to create a new instance of DbMailbox and
at marker 5 we register it as a new mailbox service. At marker 6 we return
the registration object back to the tracker.

Why return the registration object? The signature of addingService () simply
has a return type of Object; the tracker does not care what type of object we
return, and we can return anything we like. However the tracker promises to
remember the object (unless we return null, see below) and give it back to us
in the following situations:

e When we call getService, the tracker will return whatever object we
returned from addingService.

e When the underlying service is modified or unregistered, the tracker will
call modifiedService or removedService respectively, passing both the
service reference and the object that we returned from addingService.

Because of the first one of these promises, it’s conventional to return the actual
service object from addingService — which in the code above would be the
ds variable. But that is not a requirement’. In general we should return
whatever will be most useful for us to find the information or data structure
that might need to be updated later. In the above code we want to “update”
the registration of the mailbox service, so we return the registration object.
Other times we might be storing information into a Map, so we return one of
the keys from the Map.

An exception to this rule is when we return null from addingService, which
the tracker takes to mean that we don’t care about this particular service refer-
ence. That is, if we return null from addingService, the tracker will “forget”
that particular service reference and will not call either modifiedService or
removedService later if it is modified or removed. Thus returning null can
be used as a kind of filter, but in the next section we will see a more convenient
way to apply filters declaratively.

Looking back at our example, since we know that the second parameter of
removedService will be of type ServiceRegistration, we are able to cast it
back to that type at marker 7. Then we can simply unregister it (marker 8)
and “unget” the DataSource service (marker 9). The final step is necessary
as the mirror image of calling getService in the adding method.

"The API documentation for ServiceTrackerCustomizer states that we “should” return the
service object, but I believe that to be slightly incorrect, or not completely satisfactory.

DRAFT PREVIEW prepared for Christopher Brind

4.9 Filtering on Properties 95

4.9. Filtering on Properties

Section 4.5 described how properties can be added to services when they
are registered, and how the properties on a ServiceReference can be in-
trospected. Now let’s look at another important use for properties: filtering
service look-ups.

Both of the look-up code samples we saw, in Sections 4.4 and 4.6, obtained
a single instance of the mailbox service. Yet it should be clear by now that
there can be an arbitrary number of service instances for each particular type,
because any bundle can register a new service under that type. Therefore it
is sometimes necessary to further restrict the set of services obtained by a
look-up. This is done with filters, which are applied to the properties of the
service. A filter is a simple string, using a format which is easy to construct
either manually or programmatically.

For example, suppose we wish to find the “welcome” mailbox service, and not
any other kind of mailbox. Recall that that mailbox service has a property
named mailboxName with the value “welcome”. The filter string required to
find this service is simply:

(mailboxName=welcome)

Suppose we added a further property to the welcome mailbox indicating the
language. To find the English version, which should have the lang property
set to “en”, we construct the following composite filter:

(&(mailboxName=welcome) (lang=en))

Some languages have variants, such as en_UK and en_US for British and Amer-
ican English respectively. Suppose we want to match any kind of English:

(&(mailboxName=welcome) (lang=enx))

Finally, suppose we want either German (“de”) or any form of English ezcept
Canadian:

(& (mailboxName=welcome) (|(lang=de)(lang=en=x)) (!(lang=en_CA)))

This syntax is borrowed directly from LDAP search filters, as defined in [?].
A filter is either a simple operation, or a composite. Here are some examples
of simple operations:

(foo=+) | Property foo is present
(foo=bar) | Value of property foo is equal to “bar”
(count>=1) | Value of property count is 1 or greater
(count<=10) | Value of property count is 10 or less
(foo=barx) | Value of property foo is a string starting “bar”...

DRAFT PREVIEW prepared for Christopher Brind

96 Chapter 4. Services

Composite filters can be built up from simple filters, or they might compose
filters which are themselves composites. Here are the composition operations:

(' (filter)) | Boolean “NOT”: filter is false
(&(filterl)...(filterN)) | Boolean “AND”: all filters are true
(I (filter1)...(filterN)) | Boolean “OR”: any one filter is true

So how do we use these filters? It depends how we are doing the service look-
up. If we are using the low-level approach from Section 4.4 then we simply
use an alternative signature for the getServiceReference method that takes
a filter in addition to a service interface name:

context.getServiceReference (Mailbox.class.getName (),
“(&(mailboxName=welcome)(lang=en))“);

If we are using a service tracker as in Sections 4.6 or 4.8, we need to use an
alternative constructor for the ServiceTracker class which takes a Filter
object instead of a service interface name. Filter objects can be constructed
by a call to a static utility method, FrameworkUtil.createFilter:

Filter filter = FrameworkUtil.createFilter (
"(&(objectClass=" + Mailbox.class.getName () + ")" +
"(mailboxName=welcome) (lang=en))");

tracker = new ServiceTracker(context, filter , null);

The filter object replaces the service interface name parameter because we can
track instances of multiple service types with the same tracker. However when
we do wish to restrict the tracker to a single service type, we need to include
that constraint in the filter using the built-in property name objectClass. In
fact, the constructor we were using previously is simply a convenience wrapper
for the filter-based constructor.

While we can construct filters easily using string concatenation as above, it
can be somewhat error prone — it is all too easy to miss closing a parenthesis.
Therefore it’s a good idea to use the String.format method which was intro-
duced in Java 5. This method uses a string pattern in the style of the standard
printf function in the C programming language, so we can construct a filter
as shown in Listing 4.13. Each %s in the format string is a format specifier
which is replaced by one argument from the argument list. The resulting code
is slightly longer, but it is much harder to make a mistake in the syntax, and
it is easier to refer to constants defined elsewhere.

Listing 4.13 Building Filter Strings using String.format

context.createFilter (String.format (" (&(%s=%s) (%s=%s) (%s=%s))",
Constants.0OBJECTCLASS , Mailbox.class.getName(),
Mailbox . NAME_PROPERTY, "welcome",
"lang", "en*"));

Unfortunately the createFilter method of FrameworkUtil can throw an
InvalidSyntaxException, which is a checked exception, so we must always

DRAFT PREVIEW prepared for Christopher Brind

4.10 Cardinality and Selection Rules 97

handle it even when our filter expression is hard-coded and we know that the
exception cannot possibly occur. But this is a general problem with checked
exceptions in Java.

4.10. Cardinality and Selection Rules

Sometimes, no matter how much filtering we apply when looking up a service,
we cannot avoid matching against multiple services. Since any bundle is free
to register services with any set of properties, there is no way to force each
service to have a unique set of properties. An exception is the service ID
property, which is supplied by the framework and guaranteed to be unique,
but since we cannot know in advance what the ID of a service will be, it is not
generally useful to filter on it.

Therefore the cardinality of all service look-ups in OSGi is implicitly “zero to
many”. So what do we do if we prefer to simply have one?

Here’s an example: OSGi provides a standard service for sending logging mes-
sages to the system-wide log. To write messages to the log, a component can
obtain an instance of the LogService service and call the log method therein.
However, we would prefer to write to just one log. What do we do when there
are many?

Looking back at the examples from Sections 4.4 and 4.6, it seems we don’t
have to worry about this after all. The getServiceReference method on
BundleContext and the getService method on ServiceTracker both re-
turn either a single service, or null if no matching services are available.
They do this by applying two simple rules. The first is to look at a spe-
cial service.ranking property on the services, which can be referenced in
code as Constants.SERVICE_RANKING. The value of the property is an integer
between Integer .MIN_VALUE (i.e. -2,147,483,648) and Integer.MAX_VALUE
(2,147,483,647). The service with the highest ranking is selected — services
that do not have an explicit ranking property take the implicit value of zero. If
this rule produces a tie, then the service with the lowest service ID is selected.
The second rule is somewhat arbitrary, but it tends to result in the “oldest”
service being selected, since in most framework implementation service IDs are
allocated from an incrementing counter (although this behaviour is not part
of the specification and cannot be relied upon).

Concerns about cardinality are generally separated into the minimum number
of instances required and the mazimum instances required. If the minimum is
zero then the service cardinality is optional; if the minimum is one then the
service cardinality is mandatory. If the maximum is one then the cardinality is
unary; if the maximum is many (i.e. there is no maximum) then the cardinality
is multiple. We can refer to any of the four possible combinations as follows:

DRAFT PREVIEW prepared for Christopher Brind

98 Chapter 4. Services

Optional and unary
Optional and multiple
Mandatory and unary
..n | Mandatory and multiple

» =, O O
~B

Let’s look at some typical usage patterns.

4.10.1. Optional, Unary

This is the simplest case: we wish to use a particular service if it is available,
but don’t mind if it is not available. Also, if there are many instances, we
don’t mind which one is used. A typical example of this is the standard log
service mentioned above.

The normal pattern for this is the code from Section 4.6: calling getService
against a simple (un-customized) service tracker when needed.

Another useful pattern is to sub-class ServiceTracker and implement the
service interface directly. Listing 4.14 shows an example of this idea. Here we
have an implementation of LogService that calls an underlying service in the
registry each time a log method is called, if such a service exists; otherwise
the log message is silently thrown away. This pattern can be useful when we
want let an object use the service interface without making it aware of the the
details of service management. Listing 4.15 shows a simple example, where
the DatababaseConnection class simply requires an instance of LogService
and does not know anything about service tracking.

4.10.2. Optional, Multiple

In this case we wish to use all instances of a service if any are available, but
don’t mind if none are available. This style is commonly used for notifications
or event handlers: all of the handlers should be notified of an event, but the
originator of the event doesn’t care if there are no handlers. We sometimes
refer to this the Whiteboard Pattern and we will discuss it at length in Chapter
7.

The normal implementation pattern is almost the same as for optional-unary,
simply replacing the call to the getService method on ServiceTracker with
a call to getServices. This returns an array containing all of the matching
services that are currently registered. Beware that, as in other parts of the
OSGi API, getServices returns null to signify no matches rather than an
empty array, so we must always perform a null-check before using the result.

Listing 4.16 shows a variant of the LogTracker from the previous section. This
MultiLogTracker will pass on logging messages to all available log services. . .
as before, messages will be silently thrown away if there are no logs.

DRAFT PREVIEW prepared for Christopher Brind

SIS N

10
11
12

14
15
16

18
19
20

22
23
24

4.10 Cardinality and Selection Rules

99

Listing 4.14 Log Tracker

package org.osgi.book.utils;

import
import
import
import

public

org.
org.
org.
org .

osgi.framework.BundleContext;
osgi.framework.ServiceReference;
osgi.service.log.LogService;
osgi.util.tracker.ServiceTracker;

class LogTracker extends ServiceTracker implements LogService

public LogTracker (BundleContext context) {
super (context , LogService.class.getName (), null);

public void log(int level, String message) {
log(null, level, message, null);

}

public void log(int level, String message, Throwable exception) {
log(null, level , message, exception);

public void log(ServiceReference sr, int level, String message) {
log(sr, level, message, null);

public void log(ServiceReference sr, int level, String message,
Throwable exception) {

LogService log = (LogService) getService ();

if (log != null) {
log.log(sr, level, message, exception);

{

DRAFT PREVIEW prepared for Christopher Brind

10
11
12
13

15
16
17
18
19

oW

o

12
13
14

16
17

19
20
21
22
23

100 Chapter 4. Services

Listing 4.15 Sample Usage of Log Tracker

package org.osgi.book.utils.sample;
import org.osgi.service.log.LogService;
public class DbConnection {

private final LogService log;

public DbConnection(LogService log) {
this.log = log;
log.log(LogService.LOG_INFO, "Opening connection");
/)

}

public void disconnect () {
log.log(LogService.LOG_INFO, "Disconnecting");

/) ..

package org.osgi.book.utils.sample;

import org.osgi.book.utils.LogTracker;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class DbConnectionActivator implements BundleActivator {

private LogTracker 1log;
private DbConnection dbconn;

public void start(BundleContext context) throws Exception {

log = new LogTracker (context);
log.open();
dbconn = new DbConnection(log);

}

public void stop(BundleContext context) throws Exception {
dbconn.disconnect ();
log.close ();

DRAFT PREVIEW prepared for Christopher Brind

o oA w

©

11
12
13

15
16
17

19
20
21

23
24
25

27
28
29
30
31
32
33
34
35
36

4.10 Cardinality and Selection Rules 101

Listing 4.16 Multi Log Tracker

package org.osgi.book.utils;

import
import
import
import

public

implements

org.
org.
org .
org.

osgi.
osgi.
osgi.
osgi.

framework .BundleContext;
framework .ServiceReference;
service.log.LogService;
util.tracker.ServiceTracker;

class MultiLogTracker extends ServiceTracker

LogService {

public MultiLogTracker (BundleContext context) {

super (context , LogService.class.getName (), null);

public void log(int level, String message) {

log(null,

level , message, null);

public void log(int level, String message, Throwable exception) {

log(null,

level , message, exception);

public void log(ServiceReference sr, int level, String message) {

}

log(sr,

level , message, null);

public void log(ServiceReference sr, int level, String message,
Throwable exception) {

Object []
if (logs
for

logs = getServices ();
= null) {
(Object log : logs) {

((LogService) log).log(sr, level, message, exception);

DRAFT PREVIEW prepared for Christopher Brind

102 Chapter 4. Services

4.10.3. Mandatory, Unary

TODO

4.10.4. Mandatory, Multiple

TODO

4.11. Service Factories

Sometimes a service needs to know something about who its consumer is. A
good example is a logging service: when a bundle sends a message to the
logging service, then one useful piece of information to include in the recorded
log is the identity of the bundle that generated the message. We could add
a parameter to the methods of the logging service which allowed the caller to
state its identity, but it would be very inconvenient for the caller to supply
this information every time. Also, callers could supply incorrect information
— either accidentally or maliciously — which would make the log unreliable.
It would be useful if we would get the service registry to provide us this
information. After all, it always knows which services are being accessed by
which bundles.

The service registry does indeed provide a way to access this information:
service factories.

When we register a new service, we usually provide the service object itself in
our call to BundleContext.registerService. However we can choose instead
to register a factory object. The factory does not itself implement the service
interface, but it knows how to create an object that does. The service registry
will call the factory’s creation method when some bundle requests an instance
of the service.

A service factory must implement the interface ServiceFactory from the core
OSGi APIs, which has the interface shown in Listing 4.17.

We implement the getService method to provide the instance of the real
service object. The service registry gives us two useful pieces of information:
the identity of the calling bundle, and a reference to the ServiceRegistra-
tion object that was created when the service was registered. We can also
implement the ungetService method to clean up when a particular bundle
is no longer using the service (although other bundles may still be using it).
In ungetService we receive the same information, and also a reference to the
service object that we returned from getService.

DRAFT PREVIEW prepared for Christopher Brind

4.11 Service Factories 103

Listing 4.17 Summary of the ServiceFactory interface

public interface ServiceFactory {

public Object getService(Bundle bundle,
ServiceRegistration registration);

public void ungetService(Bundle bundle,
ServiceRegistration registration, Object service);

Listing 4.18 shows an example of a service factory that makes use of the
reference to the calling bundle. The LogImpl class implements a Log interface
and takes a Bundle object in its constructor. When a message is sent to
the log, it is prefixed with the symbolic name of the calling bundle and then
printed to the console. The service factory implementation creates a new
instance of this class for each calling bundle; the ungetService method is
empty because no special clean-up is required, we can simply allow the LogImpl
instance to be garbage-collected. The activator registers an instance of the
LogServiceFactory class in the normal way, as if it were an instance of the
“real” Log class.

In this example we did not use the ServiceRegistration reference, and it
is not so common to do so. It can be useful though when a single factory
object instance is used to create instances for multiple services. In that case
the ServiceRegistration reference can be checked to work out which specific
service object to create.

Note that from the consumer bundle’s point of view, the use of a service
factory by the provider is completely transparent. It is in fact impossible for a
consumer bundle to find out whether a service is implemented as a “normal”
service or using a service factory.

Another interesting use of service factories, beyond customising services to
their consumers, is they allow us to delay the creation of service objects until
they are actually needed. Suppose that we have a service object which is, for
whatever reason, expensive or slow to create: if we register it in the normal
way then we must pay the price of creating the service even if no consumer
ever uses it. If we use a factory then we can defer creation until some consumer
actually requests the service.

DRAFT PREVIEW prepared for Christopher Brind

22
23
24

27

28

30
31

10
11

13

15

104

Chapter 4. Services

Listing 4.18 A Service Factory and Activator

public interface Log {
void log(String message);

}

package org.osgi.book.log;

import org.osgi.framework.Bundle;
import org.osgi.framework.ServiceFactory;
import org.osgi.framework.ServiceRegistration;

class LogImpl implements Log {

private String sourceBundleName;

public LogImpl (Bundle bundle) {
this.sourceBundleName = bundle.getSymbolicName ();

}

public void log(String message) {

System.out.println(sourceBundleName -+

}
}

": " 4 message);

public class LogServiceFactory implements ServiceFactory {

public

Object getService (Bundle bundle,
ServiceRegistration registration) {

return new LogImpl (bundle);

}

public

void ungetService (Bundle bundle,
ServiceRegistration registration, Object service) {

// No special clean—up required

package org.osgi.book.log;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class LogServiceFactoryActivator implements BundleActivator {

public

void start(BundleContext context) throws Exception {

context.registerService(Log.class.getName (),

}

public

}

new LogServiceFactory (), null);

void stop(BundleContext context) throws Exception {

DRAFT PREVIEW prepared for Christopher Brind

5. Example: Mailbox Reader GUI

We now have the equipment we need to embark on our task to build a GUI
mailbox reader application, as first described in Section 3.1. Let’s first think
about the design.

The GUI should be simple and built on Java Swing. The central component
will be split vertically: in the top part there will be a tabbed pane showing
one tab per mailbox, and the bottom part will show the content of the selected
message. Each mailbox will be displayed as a table with one row per message.

5.1. The Mailbox Table Model and Panel

We will approach the implementation of this application by building from
the bottom up. First, we consider the table of messages that represents an
individual mailbox. If we use the Swing JTable class then we need a “model”
for the content of the table. The easiest way to provide this is to override the
AbstractTableModel class and provide the few remaining abstract methods
as shown in Listing 5.1. Note that this class is pure Swing code and does not
illustrate any OSGi concepts, so it can be briefly skimmed if you prefer.

Given the table model class, we can now create a “panel” class that encapsu-
lates the creation of the model, the table and a “scroll pane” to contain the
table and provide it with scroll bars. This is shown in Listing 5.2.

5.2. The Mailbox Tracker

Next we will build the tracker that tracks the mailbox services and creates
tables to display them. As this tracker class will be a little complex, we will
build it up incrementally over the course of this section. In Listing 5.3 we
simply define the class and its constructor.

Here we pass the BundleContext to the superclass’s constructor, along with
the fixed name of the service that we will be tracking, i.e. Mailbox. In the con-
structor of this tracker we also expect to receive an instance of JTabbedPane,
which is the Swing class representing tab panels. We need this because we will

DRAFT PREVIEW prepared for Christopher Brind

106 Chapter 5. Example: Mailbox Reader GUI

Listing 5.1 The Mailbox Table Model

1 package org.osgi.book.reader.guij;

3 import java.util.ArrayLlist;
4 import java.util.List;

6 import javax.swing.table.AbstractTableModel;
8 import org.osgi.book.reader.api.Mailbox;
9 import org.osgi.book.reader.api.MailboxException;

10 import org.osgi.book.reader.api.Message;

12 public class MailboxTableModel extends AbstractTableModel {

14 private static final String ERROR = "ERROR";

16 private final Mailbox mailbox;

17 private final List<Message> messages;

19 public MailboxTableModel (Mailbox mailbox) throws MailboxException {
20 this.mailbox = mailbox;

21 long [|] messagelds = mailbox.getAllMessages ();

22 messages = new ArrayList<Message >(messagelds.length);

23 Message [] messageArray = mailbox.getMessages (messagelds);

24 for (Message message : messageArray) {

25 messages .add (message);

26 }
27 }

29 public synchronized int getRowCount () {
30 return messages.size ();

31 }

33 public int getColumnCount () {

34 return 2;

35 }

37 @0verride

38 public String getColumnName (int column) {
39 switch (column) {

40 case O0:

41 return "ID";

42 case 1:

43 return "Subject";

44 }

45 return ERROR;

46 }

48 public synchronized Object getValueAt (int row, int column) {
49 Message message = messages.get (row);
50 switch (column) {

51 case O0:

52 return Long.toString(message.getId())
53 case 1:

54 return message.getSummary ();

55 }

56 return ERROR;

DRAFT PREVIEW prepared for Christopher Brind

oW

o

o =

10

12

14
15
16
17

19
20
21

w

© N o o

11

5.2 The Mailbox Tracker 107

Listing 5.2 Mailbox Panel

package org.osgi.book.reader.gui;

import
import
import

import
import

public

pri

javax.swing. JPanel;
javax.swing.JScrollPane;
javax.swing.JTable;

org.osgi.book.reader.api.Mailbox;
org.osgi.book.reader.api.MailboxException;

class MailboxPanel extends JPanel {

vate final MailboxTableModel tableModel;

public MailboxPanel (Mailbox mbox) throws MailboxException {

tableModel = new MailboxTableModel (mbox);
JTable table = new JTable(tableModel);
JScrollPane scrollPane = new JScrollPane(table);

add(scrollPane);

Listing 5.3 The Mailbox Tracker, Step One: Constructor

package org.osgi.book.reader.guij;

/7

public

import statements omitted

class ScannerMailboxTracker extends ServiceTracker {

private final JTabbedPane tabbedPane;

public ScannerMailboxTracker (BundleContext ctx,

7/

JTabbedPane tabbedPane) {

super (ctx, Mailbox.class.getName (), null);
this.tabbedPane = tabbedPane;

DRAFT PREVIEW prepared for Christopher Brind

108 Chapter 5. Example: Mailbox Reader GUI

dynamically add tabs when each mailbox is registered and remove them when
the corresponding mailbox is unregistered.

Now consider the addingService method. What we want to do is create a
MailboxPanel from the mailbox, and add it to the tabbed panel. This will
create a new tab. Finally, we would like to return the mailbox panel from
addingService so that the tracker will give it back to us in removedService,
because we will need it in order to remove the corresponding tab.

Sadly, things are not quite that simple. Like most modern GUI libraries,
Swing is single-threaded, meaning we must always call its methods from a
specific thread. But in OSGi, we cannot be sure which thread we are in when
addingService is called. So instead of calling Swing directly, we must create
a Runnable and pass it to the Swing API via SwingUtilities.invokeLater.
This will cause the code block to be run on the correct thread, but it will
happen at some unknown time in the future. Probably it will run after we have
returned from our addingService method, so we cannot return the mailbox
panel object directly since it may not exist yet.

One solution is to wrap the panel object in a future. This is a kind of
“suspension”: a future represents the result of an asynchronous computation
that may or may not have completed yet. In Java it is represented by the
java.util.concurrent.Future interface, which is part of the new concur-
rency API introduced in Java 5. The FutureTask class (in the same package)
is an implementation of Future, and it also implements Runnable, allowing it
to be executed by a call to the Swing invokeLater utility method. Therefore
we can write the addingService method as shown in Listing 5.4, returning an
object of type Future<MailboxPanel> instead of the MailboxPanel directly.

Let’s examine how this method works step-by-step. The first two lines simply
retrieve the mailbox object and its name. The bulk of the method constructs
a Callable object that implements the computation we wish to perform in
the GUI thread. This computation creates the mailbox panel, adds it to the
tabbed panel (using the mailbox name as the tab title), and finally returns it.
Returning a result from the Callable sets the value of the Future. Finally, we
wrap the computation in a FutureTask and pass it to the Swing invokeLater
method for execution by the GUI thread.

The removedService method is now quite easy: see Listing 5.5. Again we use
an invokeLater call to update the GUI by pulling the panel out of its Future
wrapper and removing it from the tabbed panel.

5.3. The Main Window

Now let’s look at the class that defines the main window frame, creates the

tabbed panel, and uses the mailbox tracker. See Listing 5.6

DRAFT PREVIEW prepared for Christopher Brind

5.3 The Main Window 109

Listing 5.4 The Mailbox Tracker, Step Two: addingService method

1 @0verride

2 public Object addingService(ServiceReference reference) {

3 final String mboxName =

4 (String) reference.getProperty(Mailbox.NAME_PROPERTY);

5 final Mailbox mbox = (Mailbox) context.getService(reference);
7 Callable<MailboxPanel> callable = new Callable<MailboxPanel >() {
8 public MailboxPanel call() {

9 MailboxPanel panel;

10 try {

11 panel = new MailboxPanel (mbox);

12 String title = (mboxName != null) 7

13 mboxName : "<unknown>";

14 tabbedPane.addTab(title, panel);

15 } catch (MailboxException e) {

16 JOptionPane.showMessageDialog (tabbedPane, e.getMessage (),
17 "Error", JOptionPane‘ERROR_MESSAGE);

18 panel = null;

19 }

20 return panel;

21 }

22 }s

23 FutureTask<MailboxPanel> future =

24 new FutureTask<MailboxPanel >(callable);

25 SwingUtilities.invokeLater (future);

27 return future;

28 }

Listing 5.5 The Mailbox Tracker, Step Three: removedService method

@0verride

2 public void removedService(ServiceReference reference, Object svc) {
4 @SuppressWarnings ("unchecked")

5 final Future<MailboxPanel> panelRef = (Future<MailboxPanel >) svc;
7 SwingUtilities.invokelater (new Runnable () {

8 public void run() {

9 try

10 MailboxPanel panel = panelRef.get ();

11 if (panel != null)

12 tabbedPane .remove (panel);

13

14 } catch (ExecutionException e) {

15 // The MailbozxPanel was not successfully created
16 } catch (InterruptedException e) {

17 // Restore interruption status

18 Thread.currentThread (). interrupt ();

19 }

20 }

21)

23 context.ungetService (reference);

24

25 }

DRAFT PREVIEW prepared for Christopher Brind

10

12

14

16
17

19
20

22
23
24

26
27

30
31
32
33
34

37
38
39
40

42
43
44

110

Chapter 5. Example: Mailbox Reader GUI

Listing 5.6 The Mailbox Reader Main Window

package org.

import
import
import

import
import
import
import

import

public

java.
java.
java.

osgi.book.reader.gui;

awt .BorderLayout;
awt .Component ;
awt .Dimension;

javax.swing.JFrame;
javax.swing. JLabel;
javax.swing.JTabbedPane;
javax.swing.SwingConstants;

org.osgi.framework.BundleContext;

class ScannerFrame extends JFrame {

private
private ScannerMailboxTracker tracker;

public

JTabbedPane tabbedPane;

)

ScannerFrame () {
super ("Mailbox Scanner");

tabbedPane = new JTabbedPane ();
tabbedPane.addTab("Mailboxes", createIlntroPanel ())
tabbedPane.setPreferredSize (new Dimension (400, 400));

3

getContentPane ().add(tabbedPane , BorderLayout.CENTER);

private Component createIntroPanel () {

JLabel label = new JLabel("Select a Mailbox");
label.setHorizontalAlignment (SwingConstants.CENTER);
return label;

protected void openTracking(BundleContext context) {

tracker = new ScannerMailboxTracker (context, tabbedPane);
tracker.open ();

protected void closeTracking() {

}

tracker.close ();

DRAFT PREVIEW prepared for Christopher Brind

5.4 The Bundle Activator 111

This class is also simple. In the usual way when working with Swing we
subclass the JFrame class, which defines top-level “shell” windows. In the
constructor we create the contents of the window, which at this stage is just
the tabbed panel. Unfortunately tabbed panels can look a little strange when
they have zero tabs, so we add a single fixed tab containing a hard-coded
instruction label. In a more sophisticated version, we might wish to hide this
placeholder tab when there is at least one mailbox tab showing, and re-show
it if the number of mailboxes subsequently drops back to zero.

In addition to the constructor and the createIntroPanel utility method, we
define two protected methods for managing the mailbox service tracker: open-
Tracking, which creates and opens the tracker; and closeTracking which
closes it. These methods are protected because they will only be called from
the same package — specifically, they will be called by the bundle activator,
which we will look at next.

5.4. The Bundle Activator

To actually execute the above code in a conventional Java Swing application,
we would create a “Main” class with a public static void main method,
as shown in Listing 5.7, and launch it by naming that class on the command
line. Notice the window listener, which we need add to make sure that the
Java runtime shuts down when the window is closed by the user. If this were
not supplied, then the JVM would continue running even with no windows
visible.

Listing 5.7 Conventional Java Approach to Launching a Swing Application

1 package org.osgi.book.reader.guij;

3 import java.awt.event.WindowAdapter;
4 import java.awt.event.WindowEvent;

6 public class ScannerMain {

8 public static void main(String|[] args) {
ScannerFrame frame = new ScannerFrame ();

10 frame.pack ();

12 frame.addWindowListener (new WindowAdapter () {

13 public void windowClosing(WindowEvent e) {

14 System.exit (0);

16 1)

18 frame.setVisible (true);

19 }

21 }

DRAFT PREVIEW prepared for Christopher Brind

10

12

16
17
18
19
20

22
23
24
25
26
27
28
29
30

32

34

37

38

40
41

43

112 Chapter 5. Example: Mailbox Reader GUI

However in OSGi, we don’t need to start and stop the whole JVM. We can
use the lifecycle of a bundle to create and destroy the GUI, possibly many
times during the life of a single JVM. Naturally we do this by implementing a
bundle activator, and the code in Listing 5.8 demonstrates this idea.

Listing 5.8 Using Bundle Lifecycle to Launch a Swing Application

package org.osgi.book.reader.guij;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.UIManager;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;

public class ScannerFrameActivator implements BundleActivator {
private ScannerFrame frame;

public void start(final BundleContext context) throws Exception {
UIManager.setLookAndFeel (
UIManager.getSystemLookAndFeelClassName ());
frame = new ScannerFrame ();
frame.pack ();

frame.addWindowListener (new WindowAdapter ()
public void windowClosing(WindowEvent e)
try {
context.getBundle ().stop ();
} catch (BundleException el) {

// Ignore

-

}
s

frame.openTracking (context);

frame.setVisible (true);

}

public void stop(BundleContext context) throws Exception {
frame.setVisible(false);

frame.closeTracking ();

}

When the bundle is started, we create a frame and open it by making it
visible. We also tell the frame to start tracking mailbox services, passing in
our bundle context. When the bundle is stopped, we hide the frame and turn
off the tracker.

Notice that we again registered a window listener. This time, the listener just
stops the bundle rather than stopping the entire Java runtime. The getBun-—
dle method on BundleContext returns the bundle’s own handle object, and

DRAFT PREVIEW prepared for Christopher Brind

5.5 Putting it Together 113

bundles are free to manipulate themselves via the methods of this handle in
the same way that they can manipulate other bundles. This time it is not
really essential to register the listener, as it was with the standalone program,
but to do so creates a pleasingly symmetry. If stopping the bundle closes the
window, shouldn’t closing the window stop the bundle? The lifecycles of the
two are thus linked. If the user closes the window, then we can see that later
by looking at the bundle state, and reopen the window by starting the bundle
again.

5.5. Putting it Together

We're ready to build and run the application. Let’s look at the bnd de-
scriptor for the GUI application, as shown in Listing 5.9. This descriptor
simple instructs bnd to bundle together all of the classes in the package
org.osgi.book.reader.gui — in other words, all the classes we have seen in
this chapter — and it also specifies the activator in the normal way.

Listing 5.9 Bnd Descriptor for the Mailbox Scanner

mailbox_gui.bnd
Private—Package: org.osgi.book.reader.gui
Bundle—Activator: org.osgi.book.reader.gui.ScannerFrameActivator

We can build this bundle by running;:

java —jar path/to/bnd.jar mailbox_gui.bnd

And then we can install it into Equinox and start it as follows:

osgi> install file:mailbox_gui.jar
Bundle id is 6

osgi> start 6

osgi>

The mailbox_api bundle must also be installed, otherwise mailbox_gui will
not resolve, and will therefore return an error when you attempt to start it.
However assuming the bundle starts successfully, a Swing window should open,
which looks like Figure 5.1.

Note that there are no mailboxes displayed; this is because there are no Mail-
box services present. To view a mailbox we can install the welcome_mailbox
bundle from Chapter 4:

osgi> install file:welcome_mailbox. jar
Bundle id is 7

osgi> start 7

DRAFT PREVIEW prepared for Christopher Brind

114 Chapter 5. Example: Mailbox Reader GUI

£ Mailbox Scanner 800 Mailbox Scanner
 Mailbozes ||
Select a Mailbox Select a Mailbox
3
A

Figure 5.1.: The Mailbox GUI (Windows XP and Mac OS X)

Now a tab should appear with the label “welcome”. If we select that tab, the
list of messages in the mailbox will be displayed as in Figure 5.2 (from now
on, only the Windows XP screenshot will be shown).

It’s worth stopping at this point to check that the application behaves as we
expect it to. Specifically:

1. If we stop the fixed_mailbox bundle, the “welcome” tab will disappear;
and if we start it again, the tab will come back.

2. If we stop the mailbox_gui bundle, the window will close. Starting again
will re-open the window with the same set of tabs as before.

3. If we close the window, the mailbox_gui bundle will return to RE-
SOLVED state (use the ps command to check). Again, restarting the
bundle will open the window in its prior state.

DRAFT PREVIEW prepared for Christopher Brind

5.5 Putting it Together 115

£ Mailbox Scanner

| Mailbaxes |; welcame |

D Subject
] Hello
1 iaetting started

Figure 5.2.: The Mailbox GUI with a Mailbox Selected

DRAFT PREVIEW prepared for Christopher Brind

6. Concurrency and OSGi

We have touched lightly on some of the issues involved with concurrency and
multi-threading in OSGi. Now it’s time to look at them seriously.

Unlike heavyweight frameworks such as J2EE, OSGi does not attempt to take
control of all the resources of the Java Virtual Machine, and that includes
threads: whereas J2EE forbids you from writing code that creates threads or
uses explicit synchronization, offering instead a cumbersome and limited “work
management” framework, OSGi simply allows you to control the creation and
scheduling of threads in your application yourself, as you would in any ordinary
application. To support this the OSGi libraries are thread safe and can be
called from any thread.

However, this freedom comes at a price. Just as we are free to create threads in
our bundles, any other bundle has that freedom also. We can never assume our
bundle lives in a single-threaded environment, even if we avoid using threads
ourselves: OSGi is implicitly multi-threaded. Therefore we must ensure that
our code is appropriately thread-safe, particularly when receiving events or
callbacks from the framework or from other bundles.

This chapter is an introduction to the concepts of concurrency in Java as ap-
plied to OSGi. For a more thorough treatment of Java concurrency, “Java
Concurrency in Practice” by Brian Goetz et al [?] is invaluable and, in the
author’s opinion, should be kept close at hand by all professional Java pro-
grammers.

6.1. The Price of Freedom

Let’s follow through a simple scenario involving the imaginary bundles A, B
and C, which is illustrated in the style of a UML sequence diagram in Figure
6.1. Suppose bundle A starts a thread and at some point it obtains a handle
to bundle B and calls the start method from that thread. This will cause
bundle B to activate, and the start method of B’s activator will be invoked
in the thread created by A. Furthermore, suppose that B registers a service
during its start method and C happens to be listening with a service tracker
for instances of that service type. The addingService method of C’s tracker
will be called, also from the thread created by A. Finally, suppose C creates

DRAFT PREVIEW prepared for Christopher Brind

118 Chapter 6. Concurrency and OSGi

&][] [5]

start(B)

start(

T e
| |
| |
| |
| |
| |

Figure 6.1.: Framework Calls and Callbacks in OSGi

a polling thread which periodically calls the service registered by B. The
methods of B’s service will be executed in a thread created by C.

When a client gets a service from the service registry, it sees the real service
object, not any kind of proxy or wrapper. Therefore when the client invokes
methods on the service, those invocations are standard synchronous method
calls, which means that the service method executes on a thread which is
“owned” by the client bundle.

Furthermore, many notifications in OSGi (but not all) happen synchronously.
That is, when the framework is called with a method that generates callbacks
— such as sending a ServiceEvent to registered service listeners, or calling a
bundle activator’s start or stop methods — those callbacks are executed in
the same thread, and must complete before control is returned to the caller of
the framework method.

The above has three major implications:

« Callbacks and service methods can and will be invoked from any arbitrary
thread, perhaps even from many threads at the same time. Our code will
fail in unpredictable ways unless we are conscious of this and allow for
it.

o The thread that our callbacks and service methods are invoked from does
not “belong” to us. If we execute long-running operations or blocking I/O
calls directly from these callbacks then we can delay the entire system.

e When we call an OSGi API method we can’t predict the set of callbacks
and listeners that will be called by the framework as a result, and there-
fore what locks those callbacks will attempt to take. If we hold other

DRAFT PREVIEW prepared for Christopher Brind

6.2 Shared Mutable State 119

locks while calling such methods, we risk causing a deadlock.

The only solution to these problems is to use good concurrent programming
practices. However, safe concurrency is really not that difficult, at least in the
sense of being intellectually challenging, like quantum physics or a game of
Go. One does not need to be a genius to do it correctly. The key is discipline
— something that many geniuses lack! As long as we consistently apply a few
simple rules, we can easily handle most situations we encounter.

1. Immutable objects are automatically thread-safe, and objects that are
not shared across threads do not need to be thread-safe. Therefore share
as little as possible and favour immutability wherever possible.

2. When objects really must be shared and mutable, guard all accesses
(both read and write) to shared fields with a lock on the same object,
or make appropriate use of volatile variables.

3. Avoid acquiring new locks when holding an existing lock. As a direct
consequence of this rule, we must avoid holding any locks when calling
unknown or “foreign” code that might attempt to acquire a lock. This
includes calls to services or to OSGi APIs, many of which can result in
callbacks to other bundles that execute in our thread.

6.2. Shared Mutable State

We can substantially reduce the size of the concurrency problem simply by
sharing as few objects as possible, and making as many shared objects as
possible immutable. Unfortunately it’s generally not possible to reduce the
problem size to zero by these methods. In most real-world applications we
cannot completely avoid sharing mutable state, so we need to find a way to
do it safely.

Let’s look at some example code based on services. Suppose we wish to main-
tain a Map of registered mailbox services, keyed by name, and we wish to offer
a public method getMailboxByName which will return the specified mailbox,
or null if none such currently exists. The sample code in Listing 6.1 uses
traditional Java synchronized blocks to achieve thread safety. This class is
well behaved because it follows the rules: all accesses to the map, including
simple read operations, are made from the context of a lock on the same ob-
ject. Although the map field itself is final, the content of the map is mutable,
and it is shared across threads, so it needs to be protected by a lock. Also, the
synchronized blocks are as short as possible, quickly releasing the lock when
it is no longer required.

However, the code in Listing 6.1 does not take any advantage of the new con-
currency features introduced in Java 5. Using those features, we can do slightly

DRAFT PREVIEW prepared for Christopher Brind

sow

© ® N o

12

14
15

17
18
19
20
21
22
23

26
27
28
29

31

33
34
35

37
38
39
40
41
42
43
44
45

47
48
49

51

5
IS

o
&

120 Chapter 6. Concurrency and OSGi

Listing 6.1 Thread Safety using Synchronized Blocks

package org.osgi.book.reader.mailboxmap;

import java.util.HashMap;
import java.util.Map;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.util.tracker.ServiceTracker;

public class MailboxMapActivatorl implements BundleActivator {

private final Map map = new HashMap ();
private ServiceTracker tracker;

public void start(BundleContext context) throws Exception {
tracker = new MapTracker (context);
tracker.open ();

}

public void stop(BundleContext context) throws Exception {
tracker.close ();
}

public Mailbox getMailboxByName (String name) {
synchronized (map) {
return (Mailbox) map.get (name);

}

private class MapTracker extends ServiceTracker {

public MapTracker (BundleContext context) {
super (context , Mailbox.class.getName (), null);

public Object addingService(ServiceReference reference) {

String mboxName = (String) reference
.getProperty(Mailbox.NAME_PROPERTY);
Mailbox mbox = (Mailbox) context.getService(reference);

synchronized (map) {
map . put (mboxName , mbox);

return mboxName ;

}

public void removedService (ServiceReference reference,
Object service) {
String mboxName = (String) service;
synchronized (map) {
map . remove (mboxName);
}

DRAFT PREVIEW prepared for Christopher Brind

6.3 Safe Publication 121

better thanks to the observation that many threads should be able to call the
getMailboxByName method at the same time. Traditional synchronized blocks
cannot distinguish between read operations and write operations: they ensure
all operations inside them have exclusive access to the lock object. However
Java 5 introduced Read/Write locks that do make this distinction. Listing 6.2
uses this feature to allow many threads to read from the map concurrently,
while still preventing concurrent updates to the map:

If Java 5 (or above) is available to you, then it is well worth investigating
whether the new concurrency library therein will be of benefit. However even
if you are limited to Java 1.4 or earlier, you should not fear the synchronized
block. Many developers avoid synchronization because of problems related
to its performance, but it is really not that bad, especially when locks are
un-contended — this can usually be achieved by sticking to fine-grained syn-
chronized blocks. There is no sense in sacrificing correct concurrent behaviour
for a minor performance gain.

6.3. Safe Publication

Safe publication means making an object available to be accessed by other
threads so that those threads do not see the object in an invalid or partially
constructed state.

“Publishing” an object entails placing it in a location from which it can be
read by another thread. The simplest example of such a location is a public
field of an already-published object, but placing the object in a private field
also effectively publishes it if there is a public method accessing that field.
Unfortunately this mechanism is not enough on its own for the publication to
be safe.

Listing 6.3 is quoted from [?] as an example of unsafe publication. Because
of the way modern CPU architectures work, and the way those architectures
are exposed to Java programs through the Java Memory Model, a thread
reading the holder field might see a null value or it might see a partially
constructed version of the Holder object, even if that thread reads the variable
after initialize was called in another thread.

There are four ways to safely publish an object, as listed in [?]:
 Initialise an object reference from a static initialiser.
e Store a reference into a volatile field or AtomicReference.
e Store a reference into a final field of a properly constructed object.

e Store a reference into a field that is properly guarded by a lock, i.e,
making appropriate use of synchronized blocks or methods.

DRAFT PREVIEW prepared for Christopher Brind

Bow

o«

10
11
12

14

16
17
18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37

122 Chapter 6. Concurrency and OSGi

Listing 6.2 Thread Safety using Read/Write Locks

package org.osgi.book.reader.mailboxmap;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.locks.ReadWriteLock;

import java.util.concurrent.locks.ReentrantReadWriteLock;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.util.tracker.ServiceTracker;

public class MailboxMapActivator2 implements BundleActivator {

private final Map<String, Mailbox> map =

new HashMap<String, Mailbox >();
private final ReadWriteLock mapLock = new ReentrantReadWriteLock ();
private volatile ServiceTracker tracker;

public void start(BundleContext context) throws Exception {
tracker = new MapTracker (context);
tracker.open ();

}

public void stop(BundleContext context) throws Exception {
tracker.close ();

public Mailbox getMailboxByName (String name) {

try {
mapLock.readLock ().lock ();

return map.get (name);
} finally {
mapLock.readLock ().unlock ();

}
private class MapTracker extends ServiceTracker {

public MapTracker (BundleContext context) {
super (context , Mailbox.class.getName (), null);

public Object addingService(ServiceReference reference) {

String mboxName = (String) reference
.getProperty (Mailbox .NAME_PROPERTY);

Mailbox mbox = (Mailbox) context.getService(reference);

try {

mapLock.writeLock ().lock ();
map . put (mboxName , mbox);
} finally {
mapLock.writeLock ().unlock ();
}

return mboxName ;

public void removedService(ServiceReference reference,
Object service) {

String mboxName = (String) service;

try {
mapLock.writeLock ().lock ();
map . remove (mboxName);

} finally {
mapLock.writeLock ().unlock ();

DRAFT PREVIEW prepared for Christopher Brind

[N N

10
11

13
14

16
17
18
19

6.3 Safe Publication 123

Listing 6.3 Unsafe Publication

// Unsafe publication
public Holder holder;

public void initialize () {
holder = new Holder (42);
}

6.3.1. Safe Publication in Services

Suppose we have a “dictionary” service that allows us to both look up defi-
nitions of words and add new definitions. The very simple interface for this
service is shown in Listing 6.4 and a trivial (but broken) implementation is in
Listing 6.5.

Listing 6.4 Dictionary Service interface

package org.osgi.book.concurrency;

public interface DictionaryService {
void addDefinition(String word, String definition);
String lookup(String word);

Listing 6.5 Unsafe Publication in a Service

package org.osgi.book.concurrency;

import java.util.HashMap;
import java.util.Map;

public class UnsafeDictionaryService implements DictionaryService {
private Map<String,String> map;

public void addDefinition(String word, String definition) {
if (map == null) map = new HashMap<String, String >();

map .put (word, definition);

public String lookup(String word) {
return map == null ? null : map.get(word);
}

Recall that a service, once registered, can be called from any thread at any
time. The map field is only initialised on first use of the addDefinition
method, but a call to the lookup method could see a partially constructed
HashMap object, with unpredictable results’.

IThere are other concurrency problems here too. For example, two threads could enter

DRAFT PREVIEW prepared for Christopher Brind

10

12
13
14

16
17
18
19

124 Chapter 6. Concurrency and OSGi

The root of the problem here is clearly the late initialisation of the HashMap
object, which appears to be a classic example of “premature optimisation”. It
would be easier and safer to create the map during construction of our ser-
vice object. We could then mark it final to ensure it is safely published.
This is shown in Listing 6.6. Note that we also have to use a thread-safe
Map implementation rather than plain HashMap — we can get one by calling
Collections.synchronizedMap but we could also have used a Concurren-
tHashMap.

Listing 6.6 Safe Publication in a Service

package org.osgi.book.concurrency;
import java.util.Collections;
import java.util.HashMap;

import java.util.Map;

public class SafeDictionaryService implements DictionaryService {

private final Map<String ,String> map =
Collections.synchronizedMap (new HashMap<String,b String >());

public void addDefinition(String word, String definition) {

map.put (word, definition);

public String lookup(String word) {
return map.get(word);
}

Using a final field is the preferred way to safely publish an object, since
it results in code that is easy to reason about, but unfortunately this is not
always possible. We may not be able to create the object we want during the
construction of our service object if it has a dependency on an object passed
by a client of the service. For example, take a look at the service interface
in Listing 6.7 and the unsafe implementation in Listing 6.8. The problem is
now clear but we cannot fix it by moving initialisation of the connection field
to the constructor and making it final, since it depends on the DataSource
object passed by a client?.

A solution to this problem is to simply declare the connection field to be
volatile. This means that any modifications will be automatically visible in

addDefinition at about the same time and both see a null value for the map field, and
so they would both create a new HashMap and put the word definition into it. But only
one HashMap instance would ultimately remain, so one of the definitions would be lost.

2Note that there are more problems with this service. The initialise method is unsafe
because two clients could call it at the same time. In fact the service interface itself
is poorly designed: suppose a client calls initialise and then the service instance it
called goes away and is replaced by an alternative — the client would need to track the
change and call initialise again. For this reason we should avoid designing services
that require conversational state, i.e., a controlled series of method calls and responses.
Services should ideally be stateless.

DRAFT PREVIEW prepared for Christopher Brind

10
11

6

10
12
13

14

16
17

19

6.3 Safe Publication 125

Listing 6.7 Connection Cache interface

package org.osgi.book.concurrency;

import java.sql.Connection;
import java.sql.SQLException;

import javax.sql.DataSource;
public interface ConnectionCache {

void initialise(DataSource dataSource) throws SQLException;
Connection getConnection ();

Listing 6.8 Unsafe Connection Cache

package org.osgi.book.concurrency;

import java.sql.Connection;
import java.sql.SQLException;

import javax.sql.DataSource;

public class UnsafeConnectionCache implements ConnectionCache {
private Connection connection;
public void initialise(DataSource dataSource) throws SQLException {

connection = dataSource.getConnection ();

public Connection getConnection() {
return connection;

DRAFT PREVIEW prepared for Christopher Brind

126 Chapter 6. Concurrency and OSGi

full to any other threads, so we can safely publish an object simply by assigning
it into a volatile field. Note that this behaviour is only guaranteed on Java
5 and above — developers working with older Java versions will need to use a
synchronized block or method.

6.3.2. Safe Publication in Framework Callbacks

Given the warnings above, we might expect that the activator class in Listing
6.9 would not be thread-safe. It appears to have a serious problem with unsafe
publication of the LogTracker object into the log field, which is declared
neither final nor volatile.

Listing 6.9 Is This Bundle Activator Thread-safe?

1 package org.osgi.book.concurrency;

3 import org.osgi.book.utils.LogTracker;

4 import org.osgi.framework.BundleActivator;

5 import org.osgi.framework.BundleContext;

6 import org.osgi.framework.BundleEvent;

7 import org.osgi.framework.SynchronousBundlelListener;
8 import org.osgi.service.log.LogService;

10 public class DubiousBundleActivator implements BundleActivator,

11 SynchronousBundleListener {

13 private LogTracker log;

15 public void start(BundleContext context) throws Exception {
16 log = new LogTracker (context);

17 log.open ();

19 context.addBundlelListener (this);

20

22 public void bundleChanged(BundleEvent event) {

23 if (BundleEvent . INSTALLED == event.getType()) {

24 log.log(LogService.LOG_INFO, "Bundle installed");

25 } else if (BundleEvent.UNINSTALLED == event.getType ()) {
26 log.log(LogService.LOG_INFO, "Bundle removed");

27

28 }

30 public void stop(BundleContext context) throws Exception {
31 context.removeBundleListener (this);

32 log.close ();

33

34 }

If the problem is not yet apparent, consider that all three methods of this
class are technically callbacks. The start callback happens when a bundle
decides to explicitly request the framework to start our bundle, and it runs in
the calling thread of that bundle. The stop callback likewise happens when
a bundle (not necessarily the same one) decides to request the framework to
stop our bundle, and it also runs in the calling thread of that bundle. The

DRAFT PREVIEW prepared for Christopher Brind

6.3 Safe Publication 127

bundleChanged callback is called whenever any bundle changes its state while
we have our activator registered as a listener for bundle events. Therefore
all three methods can be called on different threads, so we should use safe
publication for the LogTracker object accessed from each one.

In fact, it turns out that Listing 6.9 is perfectly thread-safe! But the reasons
why it is thread-safe are subtle and require some understanding of how the
OSGi framework itself is implemented, and for that reason it is this author’s
opinion that developers should use safe publication idioms anyway.

These two statements clearly need some explanation! First, the reason why
Listing 6.9 is thread-safe. One of the ways that we can achieve safe publication,
besides final and volatile, is to use a synchronized block or method.
In the terminology of the Java Memory Model, we need to ensure that the
publication of the LogTracker object into the log field “happens-before” the
read operations on that field, and the Java Memory model also guarantees that
everything that happens on a thread prior to releasing a lock (i.e., exiting from
a synchronized block) “happens-before” anything that happens on another
thread after that thread acquires the same lock. So by synchronising on an
object before setting the log field and before accessing it, we can achieve
safe publication of the LogTracker object it contains. But crucially, it does
not matter which object is used to synchronise, so long as the same one is
consistently used.

Now, the OSGi framework uses a lot of synchronisation internally — it must,
because it is able to offer most of its features safely to multiple threads — and
we can use this knowledge to “piggyback” on existing synchronisation in the
framework, meaning that in many cases we don’t need to add our own safe
publication idioms such as final, volatile or synchronized. The trick is
knowing when we can get away with this and when we cannot.

So for example the framework holds, somewhere in its internal memory, a
list of bundle listeners. When we call BundleContext.addBundlelListener
on line 19, the framework uses a synchronized block to add us to the list.
Later when a bundle state changes, the framework will use another synchro-
nized block to get a snapshot of the currently installed listeners before calling
bundleChanged on those listeners. Therefore everything we did before call-
ing addBundleListener happens-before everything we do after being called in
bundleChanged, and our access of the log field in lines 24 and 26 is safe.

Similarly, the framework holds the state of all bundles. When our start
method completes, the framework changes the state of the bundle from START-
ING to ACTIVE, and it uses a synchronized block to do that. It is illegal
to call stop on a bundle that is not ACTIVE (or rather, such a call will be
ignored), so the framework will check the state of our bundle (using a syn-
chronized block) before allowing our stop method to run. Therefore another
happens-before relationship exists which we can exploit, making our access of

DRAFT PREVIEW prepared for Christopher Brind

128 Chapter 6. Concurrency and OSGi

the log field safe on line 32 also.

We can express these deduced relationships (plus another that happens to
exist) more succinctly as “rules” similar to the built-in rules offered by the
Java Memory Model itself:

Bundle Activator rule. Each action in the start method of a BundleActi-
vator happens-before every action in the stop method.

Listener registration rule. Registering a listener with the framework — in-
cluding ServiceListener, BundleListener, SynchronousBundleLis-
tener or FrameworkListener — happens-before any callback is invoked
on that listener.

Service registration rule. Registering a service happens-before any invocation
of the methods of that service by a client.

Unfortunately there are problems with relying on these “rules”. First, they are
not true rules written down in the OSGi specification such that all conform-
ing implementations must abide by them®. They are merely deduced from
“circumstantial evidence”, i.e., the multi-threadedness of the OSGi framework
and our expectation of how that is handled internally by the framework. This
raises the possibility that a conforming OSGi implementation may perform
locking in a slightly different way, so violating these rules.

But the bigger problem is that piggybacking on the framework’s synchronisa-
tion is a very advanced technique. It just happens that we can write “dumb”
code such as the code in Listing 6.9 and find that it works... but we must be
very aware of when our license runs out and we must start caring about safe
publication again. To do this, we need an intimate understanding of internal
framework issues. It seems it would be easier just to use safe publication id-
ioms everywhere. In this example, that simply means adding the volatile
keyword to the log field.

6.4. Don’t Hold Locks when Calling Foreign Code

Suppose we have a service that implements the MailboxRegistrationService
interface shown in Listing 6.10.

When the registerMailbox method is called, we should register the supplied
mailbox as a service with the specified name. Also we should unregister any
previous mailbox service that we may have registered with that same name.

Listing 6.11 shows a naive implementation of this service interface. This code
has a problem: the whole registerMailbox method is synchronized, including

3Though perhaps they should be!

DRAFT PREVIEW prepared for Christopher Brind

6

12
13
14
15
16

18
19
20
21

23
24
25

6.4 Don’t Hold Locks when Calling Foreign Code 129

Listing 6.10 Mailbox Registration Service Interface

package org.osgi.book.concurrency;
import org.osgi.book.reader.api.Mailboxj;

public interface MailboxRegistrationService {
void registerMailbox(String name, Mailbox mailbox);
}

the calls to OSGi to register and unregister the services. That means we will
enter the OSGi API with a lock held and therefore any callbacks — such as
the addingService method of a tracker — will also be called with that lock
held. If any of those callbacks then try to acquire another lock, we may end
up in deadlock.

Listing 6.11 Holding a lock while calling OSGi APIs

public class BadLockingMailboxRegistrationService implements
MailboxRegistrationService {

private final Map<String, ServiceRegistration> map
= new HashMap<String, ServiceRegistration >();
private final BundleContext context;

public BadLockingMailboxRegistrationService(BundleContext context) {
this.context = context;

// DO NOT DO THIS!
public synchronized void registerMailbox(String name,
Mailbox mailbox) {
ServiceRegistration priorReg = map.get (name);
if (priorReg != null) priorReg.unregister ();

Properties props = new Properties ();

props.put (Mailbox .NAME_PROPERTY , name);

ServiceRegistration reg = context.registerService(
Mailbox.class.getName (), mailbox, props);

map.put (name, reg);

}

The Wikipedia definition of Deadlock[?] refers to a charmingly illogical extract
from an Act of the Kansas State Legislature:

“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone.”[?]

This is a classic deadlock: neither train can make any progress because it is
waiting for the other train to act first.

Another familiar example of deadlock is the so-called “dining philosophers”

DRAFT PREVIEW prepared for Christopher Brind

130 Chapter 6. Concurrency and OSGi

| ©

Figure 6.2.: The Dining Philosophers Problem, Simplified

problem, first described by Edsger Dijkstra in [?]. To reduce this problem to
its bare minimum, imagine two philosophers at a dinner table waiting to eat,
but there is only one knife and one fork (Figure 6.2). A philosopher needs
both utensils in order to eat, but one immediately picks up the knife the other
immediately picks up the fork. They both then wait for the other utensil to
become available. It should be clear that this strategy will eventually result
in both philosophers starving to death.

To translate this unhappy situation to OSGi programming, imagine that a
thread has taken a lock on an object F'. Then it tries to call our register-
Mailbox, which locks object K — but it must wait, perhaps because another
thread is already executing registerMailbox. One of the callbacks resulting
from the service registration then attempts to lock F. The result: two starving
threads and no work done.

The traditional solution to the dining philosophers problem is simply to always
take the knife and fork in the same order. If both philosophers try to get the
fork before the knife, then the first one to pick up the fork will eat first, and
then the second philosopher will eat when the first is finished. This may not be
very fair, but at least nobody starves. Similarly, the safe way to take locks on
multiple objects is to always take them in the same order. The ordering can be
arbitrary but the important thing is to consistently apply whatever ordering
scheme is chosen (the philosophers also get to eat if they both attempt to take
the knife first — it is only when they choose a different first utensil that they
starve).

Unfortunately when calling an OSGi API method that involves callbacks into

DRAFT PREVIEW prepared for Christopher Brind

6.5 GUI Development 131

other bundles, we simply cannot enforce any such ordering, because those
bundles cannot know about our ordering scheme. The only alternative is to
restructure our code to avoid holding any locks when calling the OSGi APIs.
Note that avoiding locks does not just mean avoiding the synchronized key-
word. We could achieve the level of isolation we desire in the registerMail-
box method by using a binary semaphore or an instance of the Lock classes.
However when used in such a way, these constructs have exactly the same se-
mantics as a synchronized method or block, and can result in the same types
of deadlock.

The trick is avoid holding locks during calls to OSGi APIs, but to do this with-
out losing the atomicity guarantees that we require. Sometimes this requires
some re-ordering of the operations. For example, Listing 6.12 shows a version
of the service that uses a lock only to manipulate the map field*. The result of
the operation passes out of the locked region and tells us whether there was a
prior registration of the service which needs to be unregistered. Note that the
put method of Map returns the previous mapping for the key if one existed.

Due to the reordering there is a slight change in the externally observable
behaviour of this method. The previous version (if it worked!) would result
in a short gap between the old service being removed and the new service
being created, during which there would be no service available. The new
version reverses the steps: the new service is created very slightly before the
old service is removed, so there will briefly be two services rather than none. It
turns out this is not such a bad thing: as well as making it possible to reduce
the size of our locked regions, consumers of the service also benefit from having
a replacement service immediately available when the first service goes away.

6.5. GUI Development

Another area where multi-threading causes pain is in programming graphical
user interfaces (GUIs). Almost all GUI libraries — including the most popular
Java ones, Swing and SWT — insist that all calls to those libraries must be
made from a single thread, the “event dispatch thread” or EDT. But as we
have seen, when our callbacks or service methods are executed, we have no
idea whether we are in the EDT or some other, arbitrary thread. Therefore
we have to use utilities supplied by the GUI library to pass blocks of code that
will be executed in the EDT when it gets around to it. In Swing, we need
to pass a Runnable instance to the SwingUtilities.invokeLater method,
but for efficiency, we should first check whether we’re already in the EDT by
calling EventQueue . isDispatchThread

4In this example we use a plain HashMap and wrap the calls to it in a synchronized block in
order to be explicit about the locking. We could have used a ConcurrentHashMap which
performs fine-grained internal locking with no need for a synchronized block.

DRAFT PREVIEW prepared for Christopher Brind

)

11
12

14
15

17

19
20
21

23
24
25
26
27

29
30
31
32

34
35
36
37
38

132

Chapter 6. Concurrency and OSGi

Listing 6.12 Avoiding holding a lock while calling OSGi APIs

packag

import
import
import
import
import

import

public

e org.osgi.book.concurrency;

java.util.HashMap;
java.util.Map;
java.util.Properties;

org.osgi.book.reader.api.Mailbox;
org.osgi.framework.BundleContext;
org.osgi.framework.ServiceRegistration;

class GoodLockingMailboxRegistrationService implements

MailboxRegistrationService {

private final Map<String, ServiceRegistration> map

= new HashMap<String, ServiceRegistration >();

private final BundleContext context;

public

}

public void registerMailbox(String name, Mailbox mailbox) {

this.context = context;

Properties props = new Properties ();

props.put (Mailbox . NAME_PROPERTY , name);

ServiceRegistration reg = context.registerService(
Mailbox.class.getName (), mailbox, props);

ServiceRegistration priorReg;
synchronized (map)

priorReg = map.put(name, reg);
}

if (priorReg != null) {
priorReg.unregister ();
}

GoodLockingMailboxRegistrationService (BundleContext

context)

DRAFT PREVIEW prepared for Christopher Brind

{

6.6 Using Executors 133

The example in Listing 6.13 uses this technique to update the text of a Swing
label object to indicate the current number of mailbox services.

Unfortunately, programming with Swing (or any GUI library) in a multi-
threaded environment can quickly become cumbersome due to the need to
create anonymous inner classes implementing the Runnable interface. We
cannot refactor the complexity out into library methods because the Java lan-
guage does not support closures or “blocks”. This is an area where we can
benefit from using a more powerful programming language, such as Scala or
JRuby. For example, assuming we have defined a Scala library function for
performing actions in the EDT as shown in Listing 6.14, we can then write a
same tracker class in Scala using the code in Listing 6.15.

6.6. Using Executors

Perversely, despite the cumbersome code, working with GUIs can simplify
some aspects of concurrent programming. Since we always have to transfer
work to be run on a single thread, we can take advantage of that thread to
perform mutations to state without needing to take any locks at all — so long
as the variables we mutate are only touched within the GUI thread.

We can exploit this pattern even when not writing GUIs. In Section 6.4 we
saw the need to avoid holding locks when making calls to certain OSGi API
methods, and in the example code we had to slightly reorder the operations
to allow us to safely perform those OSGi calls outside of a lock. This led to a
small change in the behaviour of the method — brief periods of time in which
two Mailbox services are registered.

Suppose we are under some constraint which means we simply cannot have
two Mailbox services registered at the same time. This means we must first
unregister the existing service before registering the new one. Now we have
a problem: without wrapping the two operations in a synchronized block, we
cannot make them atomic, so a race condition could occur in which two threads
both simultaneously unregister the existing service and then both create and
register new services... the very situation we were trying to avoid!

There is a solution which satisfies both the requirement not to lock and the
requirement to update atomically: simply perform all of the updates from a
single thread. We could do this by handing updates to a thread that we create
specifically for the purpose of updating our Mailbox service. In Java 5 this is
easily done with an Executor as shown in Listing 6.16.

Of course, this solution also produces a subtle change to the behaviour of
the service. Now the update to the service doesn’t happen synchronously
during the call to registerMailbox, but asynchronously shortly afterwards.

DRAFT PREVIEW prepared for Christopher Brind

10
11

13

15
16

18
19
20
21
22

24
25
26
27
28
29
30
31
32
33

36
37
38
39
40
41
42
43
44

134 Chapter 6. Concurrency and OSGi

Listing 6.13 Updating a Swing Control in Response to a Service Event

package org.osgi.book.reader.tutorial;
import java.awt.EventQueue;

import javax.swing.JLabel;
import javax.swing.SwingUtilities;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.util.tracker.ServiceTracker;

public class JLabelMailboxCountTracker extends ServiceTracker {

private final JLabel label;
private int count = 0;

public JLabelMailboxCountTracker (JLabel label,
BundleContext context) {
super (context , Mailbox.class.getName (), null);
this.label = label;

}

@0verride
public Object addingService(ServiceReference reference) {
int displayCount;
synchronized (this) {
count++;
displayCount = count;

updateDisplay(displayCount);
return null;

}

@0verride
public void removedService(ServiceReference reference,
Object service) {
int displayCount;
synchronized (this) {
count ——;
displayCount = count;
¥
updateDisplay(displayCount);

}

private void updateDisplay(final int displayCount) {
Runnable action = new Runnable () {
public void run() {
label.setText ("There are " + displayCount + " mailboxes");
}
¥

if (EventQueue.isDispatchThread ()) {
action.run ();

} else {
SwingUtilities.invokeLater (action);

}

DRAFT PREVIEW prepared for Christopher Brind

6.6 Using Executors 135

Listing 6.14 A Scala Utility to Execute a Closure in the Event Thread

def inEDT(action: => Unit) =
if (EventQueue.isDispatchThread())
action
else
SwingUtilities.invokeLater (new Runnable() {def run = action})

Listing 6.15 Updating a Swing Control — Scala Version

class JLabelMailboxCountTracker (ctx: BundleContext , label: JLabel)
extends ServiceTracker (ctx, classOf [Mailbox|.getName, null) {

private var count = 0: int

override

def addingService(ref: ServiceReference): AnyRef = {
var displayCount = 0
synchronized { count += 1; displayCount = count }

inEDT (label.setText ("foo"))
null

}

override

def removedService(ref: ServiceReference, service: AnyRef) = {
var displayCount = 0
synchronized { count —= 1; displayCount = count }

inEDT (label.setText ("foo"))

}
}

DRAFT PREVIEW prepared for Christopher Brind

136 Chapter 6. Concurrency and OSGi

Listing 6.16 Single-threaded execution

1 package org.osgi.book.concurrency;

import java.util.HashMap;

import java.util.Map;

import java.util.Properties;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

ESERCIC N

9 import org.osgi.book.reader.api.Mailbox;
10 import org.osgi.framework.BundleContext;
11 import org.osgi.framework.ServiceRegistration;

13 public class SingleThreadedMailboxRegistrationService implements

14 MailboxRegistrationService {

16 private final Map<String, ServiceRegistration> map

17 = new HashMap<String, ServiceRegistration >();

18 private final BundleContext context;

20 private final ExecutorService executor =

21 Executors .newSingleThreadExecutor ();

23 public SingleThreadedMailboxRegistrationService(

24 BundleContext context) {

25 this.context = context;

26 }

28 public void registerMailbox(final String name,

29 final Mailbox mailbox) {
30 Runnable task = new Runnable() {

31 public void run() {

32 ServiceRegistration priorReg = map.get (name);
33 priorReg.unregister ();

35 Properties props = new Properties ();

36 props.put(Mailbox .NAME_PROPERTY , name);

37 ServiceRegistration reg = context.registerService
38 Mailbox.class.getName (), mailbox, props);
39 map . put (name , reg);

40 }

41 s

42 executor.execute (task);

43 }

45 public void cleanup () {

46 executor.shutdown ();

a7

48 }

DRAFT PREVIEW prepared for Christopher Brind

6.6 Using Executors 137

This is essentially a trade-off that we cannot escape — the requirement to
avoid holding a lock forces us to either reorder operations (as in the previous
solution) or execute asynchronously. In most cases the reordering solution is
preferable.

There is another problem with the code in Listing 6.16: it always creates
its own thread irrespective of any application-wide management policies with
respect to thread creation. Threads are somewhat expensive in Java, and if
too many services create their own single-purpose threads then we will have
a problem managing our application. Note also that we need to remember to
cleanup this service to ensure the thread is shutdown when no longer needed.

In this case we can employ a useful form of executor called the SerialExecu-
tor, the code for which appears in Listing 6.17. This executor ensures that
at most one task is running at any time, but it achieves this without creating
a thread or locking anything during the execution of a task. The trick is an
internal work queue. If a call to execute arrives while the executor is idle,
then the thread making that call becomes the “master” and it immediately
executes the task...note that the task is executed synchronously in the calling
thread. However if a call to execute arrives while a master is already running
then we simply add the task to the end of the work queue and immediately
return to the caller. The task will be executed by the master thread, which
ensures that the work queue is emptied before returning to its caller. As soon
as the master thread returns from execute, the executor is idle and the next
thread to call execute will become the new master.

Listing 6.18 shows the Mailbox registration service yet again, using SerialEx-
ecutor. In this version we can get rid of the cleanup method since there is no
thread to shutdown, but we need to switch the map to a thread-safe version
for visibility, since any thread can become the master thread.

The SerialExecutor class is useful, and you should consider keeping it handy
in your OSGi toolbox, but it is also not a panacea. We must still consider
it asynchronous, since non-master threads will return to their callers before
the work is completed by the master thread. Also it is completely unsuitable
when calls to execute are made with too high frequency, since any thread
unlucky enough to be nominated the master will be stuck executing the work
of many other threads before it is finally able to return to its caller. A possible
enhancement would be to allow SerialExecutor to spin off a thread if the
master thread decided that enough was enough.

Another useful pattern is to have a bundle export one or more executors as
services. In doing this we resolve the dilemma of having bundles that wish
to spin off threads to perform work asynchronously versus the desire to man-
age creation of threads at an application level. We can create a single “work
manager” bundle that creates thread pools in various configurations — single
threads, fixed size pools, resizable pools, etc. — and then any bundle wishing

DRAFT PREVIEW prepared for Christopher Brind

138 Chapter 6. Concurrency and OSGi

Listing 6.17 The SerialExecutor class

1 package org.osgi.book.utilsj;

import java.util.Arraylist;
import java.util.List;
import java.util.concurrent.Executor;

Bow

o

7 import org.osgi.service.log.LogService;

9 public class SerialExecutor implements Executor {

10 private final List<Runnable> queue = new ArrayList<Runnable >();
11 private final ThreadLocal<Integer> taskCount;
12 private final LogService 1log;

14 public SerialExecutor () {

15 this (null);

16 }

18 public SerialExecutor (LogService log) {

19 this.log = log;

20 taskCount = new ThreadLocal<Integer >() {
21 protected Integer initialValue() {

22 return O;

23

24 s

25 }

27 public void execute (Runnable command) {

28 Runnable next = null;

29 int worked = O0;

31 // If the queue is empty, I am the master and my nezt task is to
32 // exzecute my own work. If the queue is non—empty, then I simply
33 // add my task to the queue and return.

34 synchronized (this) {

35 next = queue.isEmpty () ? command : null;

36 queue . add (command);

37

39 while (mnext != null) {

40 // Do the work!

41 try {

42 next.run ();

43 worked—+4-+;

44 } catch (Exception e) {

45 logError ("Error processing task", e);

46

48 // Get more work if it exzists on the queue

49 synchronized (this) {

50 queue .remove (0); // Head element is the one just processed
51 next = queue.isEmpty () 7 null : queue.get (0);

52

54 taskCount .set (worked);

55 }
56 }

DRAFT PREVIEW prepared for Christopher Brind

N oA w N

N o oA w

10
11
12

14
15

17
18
19

21

23
24
25

27
28
29
30
31
32

34
35
36
37

39
40
41
42
43

6.6 Using Executors

139

Listing 6.17 (continued)

JHx

* Returns the number of tasks executed by the last call to
* <code>execute </code> from the calling thread.

*/
pub

lic int getLastTaskCount () {
return taskCount.get ();

private void logError (String message, Exception e) {

if (1

og != null) {

log.log(LogService.LOG_ERROR, message, e);

Listing 6.18 The Mailbox registration service using SerialExecutor

package org

import
import
import
import
import

import
import
import
import

public

java.
java.
java.
java.
java.

org.
org.
org.
org.

.osgi.book.concurrency;

util.HashMap;

util.Map;

util.Properties;
util.concurrent.ConcurrentHashMap;
util.concurrent.Executor;

osgi.book.reader.api.Mailbox;
osgi.book.utils.SerialExecutor;
osgi.framework.BundleContext;
osgi.framework.ServiceRegistration;

class SerialMailboxRegistrationService implements
MailboxRegistrationService {

private final Map<String, ServiceRegistration> map =
new ConcurrentHashMap<String, ServiceRegistration >();
private final BundleContext context;

private final Executor executor = new SerialExecutor ();

public SerialMailboxRegistrationService (BundleContext context) {

}

this.

context = context;

public void registerMailbox(final String name,

final Mailbox mailbox) {

Runnable task = new Runnable() {
public void run()
ServiceRegistration priorReg = map.get (name);
if (priorReg != null) priorReg.unregister ();
Properties props = new Properties ();
props.put (Mailbox .NAME_PROPERTY , name);
ServiceRegistration reg = context.registerService(

}
};

Mailbox.class.getName (), mailbox, props);

map.put (name, reg);

executor.execute (task);

DRAFT PREVIEW prepared for Christopher Brind

o oA w

© ®

10

12

14

16
17

19
20

22
23
24
25
26

28
29
30
31
32
33

36
37
38

140 Chapter 6. Concurrency and OSGi

to execute tasks can submit them via the service interface. Listing 6.19 shows
an example of registering such an executor; note that we register a wrapper ob-
ject around the thread pool rather than registering the thread pool directly, as
this prevents clients from casting the service to its ExecutorService interface
and calling methods such as shutdown on it.

Listing 6.19 Registering a Thread Pool as an Executor Service

package org.osgi.book.concurrency;

import java.util.Properties;

import java.util.concurrent.Executor;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

public class ExecutorServiceActivator implements BundleActivator {
private static final int POOL_SIZE = 20;

private volatile ExecutorService threadPool;
private volatile ServiceRegistration svcReg;

public void start(BundleContext context) {
threadPool = Executors.newFixedThreadPool (POOL_SIZE);

Executor wrapper = new Executor () {
public void execute (Runnable command) {
threadPool.execute (command);
}

s

Properties props = new Properties ();

props.put ("kind", "fixed");

props.put ("poolSize", POOL_SIZE);

svcReg = context.registerService(Executor.class.getName (),
wrapper , props);

}

public void stop(BundleContext context) {
svcReg.unregister ();
threadPool.shutdown ();

6.7. Interrupting Threads

As we discussed in Chapter 2, there is no general way to force a thread to stop
in Java, except by shutting down the whole Java Virtual Machine. This is by
design: if such a mechanism existed then threads could be terminated while
mutating data structures, and would be likely to leave them in an inconsistent
state. Instead, Java offers a co-operative mechanism whereby we ask a thread

DRAFT PREVIEW prepared for Christopher Brind

6.7 Interrupting Threads 141

to stop. The implementation code for a thread must be able to respond to
such a request and perform the appropriate clean-up.

Unfortunately, in traditional (non-OSGi) Java development, these issues are
rarely considered. Often threads are simply allowed to run to completion, or in
some cases a thread is created during start-up of the application and assumed
to run for as long as the Java process itself is running. For example a web
server application would create a thread for accepting socket connections, and
that thread would run until the server is shutdown. In these scenarios, there
is no need to handle termination requests: the thread will be automatically
stopped when Java stops.

In OSGi we don’t have this luxury. Our bundle can be shutdown by a call to
the stop method of its activator, and when that happens we must cleanup all
artefacts that have been created on behalf of our bundle, including threads,
sockets and so on. We cannot rely on our threads being forcibly ended by the
termination of the JVM.

So how do we ask a thread to stop? Sadly Java doesn’t even have a single
consistent way to do this. There are a number of techniques, but we must
choose the correct one based on what the thread is doing when we wish it
to stop. Therefore in most cases we must tailor the termination code to the
thread implementation code.

The code we saw in Chapter 2 (Listing 2.7) used the interruption mechanism,
which is a simple booolean status that can be set on a thread by calling the
interrupt method. It is possible for a thread to explicitly check its interrup-
tion status by calling Thread.interrupted, and also certain library methods
(like Thread.sleep and Object.wait) are aware of their calling thread’s in-
terruption status and will exit immediately with an InterruptedException
if the thread is interrupted while they are running.

Unfortunately, not all blocking library methods respond to interruption. For
example most blocking I/O methods in java.io package simply ignore the
interruption status; these methods continue to block, sometimes indefinitely,
even after the thread has been interrupted. To wake them up we need some
knowledge of what is blocking and why.

Listing 6.20 shows a server thread that accepts client connections. When a
client connects, the server immediately sends the message “Hello, World!” to
the client and then closes the connection to that client.

The activator here looks identical to HeartbeatActivator from Chapter 2: to
stop the thread, we call its interrupt method. However in this case we have
overridden the normal interrupt method with our own implementation that
closes the server socket in addition to setting the interruption status. If the
thread is currently blocking in the ServerSocket.accept method, closing the
socket will cause it to exit immediately with an I0Exception. This pattern

DRAFT PREVIEW prepared for Christopher Brind

[N N

)

23

25

27

29

31
32
33
34
35
36
37
38
39
40

42
43
44

46
47
48
49
50
51
52

142

Chapter 6. Concurrency and OSGi

Listing 6.20 Server Activator

package org.

osgi.book.concurrency;

import java.io.IOException;

import java.io.PrintStream;

import java.net.ServerSocket;

import java.net.Socket;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class ServerActivator implements BundleActivator {
private HelloServer serverThread = new HelloServer ();
public void start(BundleContext context) throws Exception {

}

public

}
}

serverThread.start ();

void stop(BundleContext context) throws Exception {

serverThread.interrupt ();

class HelloServer extends Thread {

private static final int PORT = 9876;
private volatile ServerSocket socket = null;
public void interrupt () {
super.interrupt ();
try
if (socket != null) {

}

socket .close ();

} catch (IOException e) {
// Ignore

public void run() {
try {
socket = new ServerSocket (PORT);

while (!Thread.currentThread ().isInterrupted()) {
)

System.out.println("Accepting connections..."

3

Socket clientSock = socket.accept ();
System.out.println("Client connected.");
PrintStream out = new PrintStream(clientSock

.getOutputStream());
out.println("Hello, World!");
out.flush ();
out.close ();

} catch (IOException e)
System.out.println("Server thread terminated.");

DRAFT PREVIEW prepared for Christopher Brind

6.8 Exercises 143

works for most of the java.io library: to interrupt a blocked I/O method, we
can close the underlying socket or stream that it is blocking on.

As a rule of thumb, when you see a blocking library method that does not
declare InterruptedException in its throws clause, it generally means it
does not respond to interruption, and you must find another way to force it
awake.

Much more discussion of these issues can be read in [?].

6.8. Exercises

1. Write a ServiceTracker that tracks a Mailbox services and stores them
in a Map<String, List<Mailbox». The map should be keyed on the
location of the publishing bundle (available from ServiceReference-
.getBundle() .getLocation()) and the values should be the list of all
Mailbox services published by that bundle. Also provide a getMail-
boxes (String) method that returns a snapshot of the services for a
given bundle location. Ensure that any synchronized blocks used are
as short as possible.

2. See the service interface in Listing 6.21. Write an implementation of
this service which creates a thread pool of the size specified in the size
field and registers it as an Executor service. The first time this method
is called it should simply create and register the thread pool. On sub-
sequent calls it should create and register a new thread pool, and also
unregister and shutdown the old thread pool. Assume that your service
class takes a BundleContext in its constructor.

Listing 6.21 Exercise 2: Thread Pool Manager Interface

1 package org.osgi.book.concurrency;

3 public interface ThreadPoolManager {
4 void updateThreadPool (int size);

5)

DRAFT PREVIEW prepared for Christopher Brind

7. The Whiteboard Pattern and
Event Admin

So far our Mailbox Reader application is extremely simple; we can only display
the headers of messages that were available in a mailbox at the time that the
table was displayed. To be even remotely useful, the reader would also need
to notify us when new messages arrive... otherwise we would have to restart
the application to check for new messages!

The mechanism for new message notification variable across different types of
mailboxes. With some communication protocols — such as POP3 email or
RSS over HTTP — we must poll the server occasionally to ask if there are any
new messages. Under other protocols such as SMS and IMAP, the server is
able to “push” messages to our client as soon as they are available. Naturally
the details of the notification mechanism need to be hidden inside the mailbox
service implementation rather than exposed to clients of the service, such as
our Reader GUI.

7.1. The Classic Observer Pattern

Most Java programmers will recognise the above as a problem that can be
solved with the Observer pattern, also sometimes called the Listener pattern.
And they would be correct, however OSGi adds a twist to the standard Java
approach.

The classic pattern as defined by the “Gang of Four” [10] involves two entities:
an Observable, which is the source of events; and a Listener, which consumes
those events. The listener must be registered with an observable in order to
receive events from it. Then the observable would notify all registered listeners
of each event as it occurred. This is shown in Figure 7.1.

To use this pattern in our Mailbox Reader application, we could define a
listener interface named MailboxListener. We would also need to extend
the Mailbox interface to make it act as an observable, by adding methods to
register and unregister listeners. These two interfaces are shown together in
Listing 7.1.

DRAFT PREVIEW prepared for Christopher Brind

oW

o«

146 Chapter 7. The Whiteboard Pattern and Event Admin

<«—— register
Observable Listener
notify >

Figure 7.1.: The Classic Observer Pattern

Listing 7.1 Mailbox Listener and Observable Mailbox Interfaces

package org.osgi.book.reader.api;

public interface MailboxListener {
void messagesArrived(String mailboxName, Mailbox mailbox, long[] ids);
}

package org.osgi.book.reader.api;

public interface ObservableMailbox extends Mailbox {
void addMailboxListener (MailboxListener listener);
void removeMailboxListener (MailboxListener listener);
¥

7.2. Problems with the Observer Pattern

The observer pattern is very familiar, especially in GUI programming, but it
has a number of problems. Most of these problems are general but they are
particularly bad when we translate the pattern into an OSGi context.

The first problem is keeping track of dynamic observable objects. In our
example, the source of events is a service that — like all services — has a
life-cycle and can come and go many times during the life of the application.
But when a new mailbox service appears, no listeners will be registered with
it. Therefore any listener needs to hold open a ServiceTracker so it can
be notified when new mailbox services appear and register itself, and likewise
unregister itself when the service is going away. We must also find a way to
deal with “lost updates”, i.e. events that occur between the mailbox appearing
and the listener(s) registering themselves with it. If there are many listeners
then they will not all register at the same time, so some listeners may see
events that others do not see.

A second problem is that, just as the mailboxes can come and go, so can
the listeners. Each observable therefore needs to manage a changing set of
listeners, and make sure it does not attempt to deliver events to listeners that
have disappeared. Since the registering and unregistering of listeners can occur
in a different thread from the firing of an event, proper synchronization must

DRAFT PREVIEW prepared for Christopher Brind

7.3 Fixing the Observer Pattern 147

be used to avoid concurrency bugs.

There is a memory management problem here also: the observer pattern is
one of the principal causes of memory leaks in Java applications. When a
listener is registered with an observable, the internal implementation of the
observable will typically add that listener to collection field. But now there
is a strong reference to the listener object merely because it exists inside the
collection, preventing it from being cleaned up by the garbage collector. Even
if the listener is not useful any more in its original context, it will live on in
memory until the observer dies.

Therefore it is very important to clean up listeners when they are no longer
required. But this is very difficult to verify, and is often not done correctly.
The problem is that it is very easy to detect a problem with the set-up phase
— if done incorrectly, the application simply does not work — but problems
with cleaning up do not directly break the application, instead causing “out
of memory” conditions much later on.

7.3. Fixing the Observer Pattern

None of the problems above are insurmountable, of course. By writing both
our listeners and observers carefully and correctly we can avoid all concurrency
bugs and memory leaks. The remaining problem, however, is that there is quite
a lot of complex code to write each time we want to use the observer pattern,
and it is not good practice to repeat such code many times. Therefore we
need to look for a way to centralise that code in a single reusable component
or library, so that we can go back to writing “dumb” observers and listeners.

One possible solution is to create some kind of event broker that sits between
the event sources and the event listeners. The listeners could register them-
selves against the broker rather than directly with each observable, and the
event sources would simply publish events to the broker and allow it to deliver
those events to all registered listeners. Figure 7.2 shows the general idea.

How does this simplify matters for the listeners? Instead of having to track
each observer and register and unregister themselves each time an observer
appears and disappears, the listeners would simply need to register themselves
once with the broker and unregister once when no longer needed. We can
assume the broker will have a much longer life than the individual observers
or listeners, so we will not have to worry about the broker itself going away.

And for the event sources? They now have a much easier job. Rather than
managing a variable size collection of listeners, they can simply publish their
events to a single place. In fact we no longer need special observable interfaces
such as ObservableMailbox from Listing 7.1. Now, any object can publish

DRAFT PREVIEW prepared for Christopher Brind

148 Chapter 7. The Whiteboard Pattern and Event Admin

le— register —
Listener
—— notify —»
g
Event S [e— register —
— publish —»{ Q@ Listener
Source P = .
o notify —»
it
[<¢— register ——
Listener
notify —

Figure 7.2.: An Event Broker

events to all of the current listeners for that event type simply by calling the
event broker. So, both event sources and listeners can now be written with
dumb code.

An alternative to the event broker is a “listener directory”, as in Figure 7.3.
This would take responsibility for managing the listeners for a particular kind
of event, but it would not actually deliver the events itself. Instead it would
provide a snapshot of the current set of listeners, enabling the event source to
deliver the events. This is slightly more flexible, since the event source could
choose to follow a custom delivery strategy. For example it may wish to deliver
events to multiple listeners in parallel using a thread pool.

Of course, either the event broker or the listener directory implementations will
be quite complex and must be written with great care, although fortunately
they need only be written once. However, in OSGi we are lucky because
an implementation of both these patterns already exists! In fact the listener
directory is simply the Service Registry that we are already familiar with.

7.4. Using the Whiteboard Pattern

The listener directory pattern we have just described is more poetically known
as the Whiteboard Pattern. We will see why this name fits in a moment, but
let’s look at how we can use the Service Registry as a directory of listeners.

To register a listener, we simply take that listener object and publish it to the

DRAFT PREVIEW prepared for Christopher Brind

1

7.4 Using the Whiteboard Pattern 149

Listener Directory

, r !

get register i
snapshot 9 register
| | |

Event . .
Source Listener Listener
notify
notify

Figure 7.3.: A Listener Directory

service registry under its specific Listener interface. For example, Listing 7.2
shows a bundle activator that registers an implementation of the MailboxLis-
tener interface. This is literally all we have to do on the listener side.

Listing 7.2 Registering a Mailbox Listener

package org.osgi.book.reader.guij;

import org.osgi.book.reader.api.MailboxListener;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class MailboxListenerActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {
MailboxListener listener = new MyMailboxListener ();
context.registerService(MailboxListener.class.getName (),
listener , null);

}

public void stop(BundleContext context) throws Exception {
// No meed to ezplicitly unregister the service

This simplicity explains the name “Whiteboard Pattern”. We do not need to
actively seek out event sources and explicitly register against them, instead we
merely declare the existence of the listener and wait for event sources to find
it. This is similar to writing your name on a whiteboard in order to declare
your interest in joining an activity, rather than finding the organiser of that
activity and registering your interest directly.

DRAFT PREVIEW prepared for Christopher Brind

[N

10
11
12

14
15
16
17
18
19
20
21
22

150 Chapter 7. The Whiteboard Pattern and Event Admin

Then how does an event source interact with the whiteboard pattern? Well,
it must do more than just registering a service, but not a lot more. Typically
it would use a ServiceTracker and call the getServices method to get a
snapshot of all the currently registered listeners, which it can then iterate over.
An example based on the MailboxListener interface is shown in Listing 7.3.
Here we subclass ServiceTracker and offer a fireMessagesArrived method
that performs the work.

Listing 7.3 Mailbox Listener Tracker

package org.osgi.book.reader.asyncmailbox;

import org.osgi.book.reader.api.Mailbox;

import org.osgi.book.reader.api.MailboxListener;
import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

public class MailboxListenerTracker extends ServiceTracker {

public MailboxListenerTracker (BundleContext context) {
super (context , MailboxListener.class.getName (), null);

public void fireMessagesArrived(String mailboxName ,
Mailbox mailbox, long|[] ids) {
Object [] services = getServices ();
for (int i = 0; services != null && i < services.length; i++) {
((MailboxListener) services[i]).messagesArrived(mailboxName ,
mailbox , ids);

This MailboxListenerTracker class is an obvious candidate for reuse: all
mailbox implementations that have the capability to receive messages asyn-
chronously will probably want to use this class or something very similar. So,
we could pull it out into a shared library or even supply it as a helper class in
the base Mailbox API.

However, we can do better than this. There is an even more general pattern at
work in this class, which readers of “Gang of Four” will recognise as the Visitor
pattern. Given this observation we can write a general purpose helper class
that can be reused every time we implement the whiteboard pattern. This is
shown in Listing 7.4, in which we define a WhiteboardHelper class that takes
instances of a Visitor interface. To use the helper in our Mailbox example
we can simply pass in an instance of Visitor<MailboxListener> that makes
a call to the messagesArrived method. Java 5 generics are used to make the
pattern type-safe but it can also work under Java 1.4 using casts.

DRAFT PREVIEW prepared for Christopher Brind

12
13
14
15
16
17

19
20
21
22
23

7.4 Using the Whiteboard Pattern 151

Listing 7.4 Visitor Interface and Whiteboard Helper Class

package org.osgi.book.utils;

public interface Visitor<T> {
void visit (T object);
}

package org.osgi.book.utils;

import org.osgi.framework.BundleContext;
import org.osgi.util.tracker.ServiceTracker;

public class WhiteboardHelper<T> extends ServiceTracker {

public WhiteboardHelper (BundleContext context, Class<T> svcClass) {

super (context , svcClass.getName (), null);
public void accept(Visitor <? super T> visitor) {
Object [] services = getServices ();
if (services != null) {
for (Object serviceObj : services) {
@SuppressWarnings ("unchecked")
T service = (T) serviceObj;
visitor.visit(service);
}
}
}
}

7.4.1. Registering the Listener

Now let’s have a look at how to introduce the whiteboard pattern into our
example Mailbox Reader application, starting with the listener side. In the
Mailbox Reader application, each table displaying the contents of a mailbox
is likely to be interested in receiving notifications of new messages. In a real-
world application, other parts of the GUI are also likely to be interested in
these notifications — for example we might want to show an indicator icon
in the “System Tray” that pops up messages when a new message arrives.
The advantage of the whiteboard approach is that components of the GUI
can independently register MailboxListener services and receive notifications
while remaining oblivious to the existence of other listeners. This enhances
the modularity of the application.

In this example we will implement the functionality to update the mailbox
table display when new messages arrive. We first need to decide which object
will implement the MailboxListener interface: it should be one which is close
to the model and is able to respond to updates to that model and notify the
Swing GUI framework. The obvious choice here is the MailboxTableModel
class, which inherits several such notification methods from its superclass Ab-
stractTableModel. The one we will want to call when new messages arrive

DRAFT PREVIEW prepared for Christopher Brind

1

3

5

6

N oUW N

9
10
11
12
13
14

16
17
18
19
20
21

23
24
25
26
27
28
29

152 Chapter 7. The Whiteboard Pattern and Event Admin

is fireTableRowsInserted. Listing 7.5 shows only the new code we need to
add to the class.

Listing 7.5 Adding the MailboxListener Interface to MailboxTableModel

package org.osgi.book.reader.gui;
// Imports omitted

public class MailboxTableModel extends AbstractTableModel implements
MailboxListener {

// Previously defined methods omitted

public void messagesArrived(String mailboxNam, Mailbox mailbox,
long [] ids) {
if (mailbox != this.mailbox) {
// Ignore events for other mailbozes
return;
}
List<Message> newMessages;
try
newMessages = Arrays.aslList(mailbox.getMessages(ids));
} catch (MailboxException e) {
newMessages = Collections.emptyList ();
}
final int firstNew, lastNew;
synchronized (this) {
firstNew = messages.size (); // Index of the first new row
messages .addAll (newMessages);
lastNew = messages.size() — 1; // Indez of the last new row
}
SwingUtilities.invokeLater (new Runnable () {
public void run() {
fireTableRowsInserted(firstNew, lastNew);
}
1)
}
}

The next problem is how we register the table model as a service under the
MailboxListener interface. It makes sense to do this inside MailboxPanel
because that is the class in which the table model is created and held. We sim-
ply add registerListener and unregisterListener methods to the class.
The former needs to take the BundleContext as a paramater, but the latter
takes no parameter; it simply calls unregister on the ServiceRegistration
object that was created in the registerListener method.

The final modification we must make is to include calls to registerLis-
tener and unregisterListener from the addingService and removedSer-
vice methods of ScannerMailboxTracker. We will not repeat the entire code
of the tracker here, since we must only insert two lines:

e In addingService, after construction of the new MailboxPanel object

DRAFT PREVIEW prepared for Christopher Brind

[

7.4 Using the Whiteboard Pattern 153

Listing 7.6 Mailbox Panel, with MailboxListener Registration

1 package org.osgi.book.reader.guij;
3 // Imports omitted ...

5 public class MailboxPanel extends JPanel {

7 private final MailboxTableModel tableModel;

8 private volatile ServiceRegistration svcReg;

10 // Ezisting constructor omitted ...

1 public void registerListener (BundleContext context) {

2 svcReg = context.registerService(

3 MailboxListener.class.getName (), tableModel, null);
4 }

6 public void unregisterListener () {

7 if (svcReg == null) throw new IllegalStateException ();
8 svcReg.unregister ();

o }

o}

during the Callable.call method, we insert:

panel.registerListener (context);

e In removedService, before removing the MailboxPanel from the tabbed
pane during the Runnable.run method, we insert:

panel .unregisterListener ();

7.4.2. Sending Events

Now we look at implementing the event source side of the whiteboard pattern:
a mailbox that sends events when new messages arrive.

However, first we need to implement a mailbox which actually does receive new
messages! Our previous sample mailbox was fixed in size, with a hard-coded
list of initial messages, so now we need a mailbox that can grow. A realistic
implementation would involve network sockets and polling and other complex-
ity, so again we will keep things simple and implement a mailbox that grows
by one message every five seconds. To achieve this we drive a timer thread
from our bundle activator, in a very similar way to the HeartbeatActivator
example from Chapter 2.

Listing 7.7 shows the activator with the timer thread. We assume that we have
a mailbox implementation class GrowableMailbox that has an addMessage
method, allowing messages to be added programmatically. GrowableMailbox
also takes a WhiteboardHelper in its constructor, so we create this in the
activator’s start method before constructing the mailbox.

DRAFT PREVIEW prepared for Christopher Brind

sow

© ® N o

11

13

15
16
17
18
19

21
22
23
24

26
27
28

30
31
32
33
34

36
37
38
39
40

42
43
44
45
46
47
48
49
50

51

(SIS
s ow

o
&

154

Chapter 7. The Whiteboard Pattern and Event Admin

Listing 7.7 Growable Mailbox Activator and Timer Thread

package org.osgi.book.reader.asyncmailbox;

import
import

import
import
import
import
import
import

java.util.Date;
java.util.Properties;

org.
org.
org.
org.
org.
org.

osgi.book.reader.api.Mailbox;
osgi.book.reader.api.MailboxListener;
osgi.book.utils.WhiteboardHelper;
osgi.framework.BundleActivator;
osgi.framework.BundleContext;
osgi.framework.ServiceRegistration;

public class GrowableMailboxActivator implements BundleActivator {

private
private
private
private
private

public

}

static final String MAILBOX_NAME = "growing";
WhiteboardHelper <MailboxListener> whiteboard;
GrowableMailbox mailbox;

Thread messageAdderThread;
ServiceRegistration svcReg;

void start(BundleContext context) throws Exception {

whiteboard = new WhiteboardHelper<MailboxListener >(context ,

MailboxListener.class);

whiteboard.open(true);

mailbox = new GrowableMailbox (whiteboard, MAILBOX_NAME);
messageAdderThread = new Thread(new MessageAdder ());
messageAdderThread.start ();

Properties props = new Properties ();
props.put (Mailbox . NAME_PROPERTY , MAILBOX_NAME);
svcReg = context.registerService(Mailbox.class.getName (),

mailbox , props);

public void stop(BundleContext context) throws Exception {

}

svcReg.unregister ();
messageAdderThread. interrupt ();
whiteboard.close ();

private class MessageAdder implements Runnable {

t

}

public void run() {

ry
while (!Thread.currentThread ().isInterrupted()) {
Thread.sleep (5000);
mailbox.addMessage ("Message added at " + new Date(),
"Hello again");

catch (InterruptedException e) {
// Ezit quietly

DRAFT PREVIEW prepared for Christopher Brind

© W N oA W

11

13
14

16
17
18
19
20

22
23

25
26
27
28
29
30

32
33
34
35
36
37
38
39
40

7.4 Using the Whiteboard Pattern 155

To implement the “growable” mailbox itself, we subclass it from FixedMailbox
to inherit the internal storage of messages. We just need to add a protected
addMessage method to be called from the timer thread. This is shown in
Listing 7.8. Note the synchronized block surrounding access to the internal
messages field. The superclass must also synchronise accesses to that field,
which is the reason why all the methods of FixedMailbox were declared syn-
chronized (this was left unexplained when that class was first introduced in
Chapter 3).

Here is where we see the power of the whiteboard pattern at work. Having
added a new message to its internal data structure, GrowableMailbox creates
a visitor object that calls messagesArrived against each listener that it visits.

Listing 7.8 Growable Mailbox

package org.osgi.book.reader.asyncmailbox;

import org.osgi.book.reader.api.Mailbox;

import org.osgi.book.reader.api.MailboxListener;

import org.osgi.book.reader.api.Message;

import org.osgi.book.reader.fixedmailbox.FixedMailbox;
import org.osgi.book.reader.fixedmailbox.StringMessage;
import org.osgi.book.utils.Visitor;

import org.osgi.book.utils.WhiteboardHelper;

public class GrowableMailbox extends FixedMailbox {

private final WhiteboardHelper<MailboxListener> whiteboard;
private final String mailboxName;

public GrowableMailbox (WhiteboardHelper<MailboxListener> wb,
String mailboxName) {
this.whiteboard = wb;
this.mailboxName = mailboxName;

}

protected void addMessage(String subject, String text) {
final int newMessageld;

synchronized (this) {
newMessageld = messages.size ();
Message newMessage = new StringMessage(newMessageld,
subject , text);
messages .add (newMessage);

}
final long[] newMessageIds = new long[] { newMessageId };
final Mailbox source = this;

Visitor<MailboxListener> v = new Visitor<MailboxListener >() {
public void visit(MailboxListener 1) {
l.messagesArrived (mailboxName , source, newMessageIds);
}
};

whiteboard.accept (v);

DRAFT PREVIEW prepared for Christopher Brind

156 Chapter 7. The Whiteboard Pattern and Event Admin

7.5. Event Admin

The whiteboard pattern works well in many situations, such as the one de-
scribed above, however in some cases it can add overhead that is undesirable.

For example, the event sources must implement all of the code to iterate
over the listener services. The WhiteboardHelper is rather simplistic: on
the first error it stops delivering messages to other listeners that might be
registered, and if any listener takes a long time to process an event it will
hold up the execution of the event source (i.e., the addMessage method of
GrowableMailbox will not return until all listeners have processed the newly
added message). Also, the event sources are still somewhat coupled to the
consumers, since they can only deliver events to implementers of a specific
interface. Therefore both the event source and the consumer must depend on
the same version of that interface.

Sometimes we would like to create an event source that sends many fine-grained
events to many different listeners. For example, a financial trading application
may need to deliver quotes (e.g., stock quotes, foreign exchange rates, etc) to
many consumers of that data. The whiteboard pattern does not scale well in
that scenario. Instead we should look at the other pattern described in Section
7.3: the Ewvent Broker. OSGi provides us with an implementation of this
pattern called the Event Admin Service, which is a service specified in the OSGi
Service Compendium. Event Admin implements a form of publish/subscribe,
which is popular in many message-based systems.

The operation of Event Admin is slightly different from the diagram in Figure
7.2. In that diagram, the listeners registered themselves directly with the
event broker, but Event Admin actually uses the whiteboard pattern: listeners
register as services under the EventHandler interface, and the “broker” tracks
them. The diagram for Event Admin is therefore a combination of both Figures
7.2 and 7.3, and is shown in Figure 7.4.

7.5.1. Sending Events

Because it is based on the whiteboard pattern, using Event Admin from the
consumer end looks very similar to what we have already seen. So we will first
look at the event source end, which does look substantially different. Rather
than tracking each listener service and iterating over them each time an event
must be sent, when using Event Admin our sources simply need to make a
single method call to the Event Admin service.

For our example we will model a financial trading application which continually
receives “market data”, i.e., prices of various tradable assets. Again, to avoid
the incidental complexity of doing this for real we will simulate it by generating

DRAFT PREVIEW prepared for Christopher Brind

7.5 Event Admin 157

— send —» s
Even i o
ent Event Admin L 29 »
Source Implementation a o~
[e]
notif
y &
2
Event = 3
Vi =3
> — Z —»
Handler @ =
= Q
=
<
Event 2
ven s
> F— & —p
Handler @
0
T

Figure 7.4.: The Event Admin Service

random data on a timer thread. Listing 7.9 shows the implementation of
a Runnable that does just this: it sends stock quotes for the symbol MSFT
(Microsoft Corporation) with a starting price of 25 and randomly adjusting
upwards or downwards every 100 milliseconds.

This class requires an instance of EventAdmin to be passed in its constructor.
A good way to provide this is by following the pattern used in the LogTracker
class from Chapter 4. That is, we subclass ServiceTracker and implement the
EventAdmin interface with delegating calls to the result of calling getService.
The result is EventAdminTracker shown in Listing 7.10

Listing 7.11 shows the activator which manages the EventAdminTracker and
the timer thread.

7.5.2. The Event Object

The Event object what we pass to the Event Admin service is an immutable
object that consists of a topic and an arbitrary set of properties.

The topic defines the logical type of the event, and its primary purpose is to
act as a filter to determine which handlers should receive which events. It
consists of a sequence of tokens separated by slashes, which serve to form a
hierarchy. This allows consumers to filter out at any level of the hierarchy,
so in the preceding example a consumer could choose to receive: all prices;

DRAFT PREVIEW prepared for Christopher Brind

158 Chapter 7. The Whiteboard Pattern and Event Admin

Listing 7.9 Random Price Generator

package org.osgi.book.trading.feeds;

import java.util.Properties;
import java.util.Random;

import org.osgi.service.event.Event;

import org.osgi.service.event.EventAdmin;

11

13

16
17

19
20
21

23
24
25
26
27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
44

public class RandomPriceFeed implements Runnable {

private static final String TOPIC = "PRICES/STOCKS/NASDAQ/MSFT";

private final EventAdmin eventAdmin;

public RandomPriceFeed(EventAdmin eventAdmin) {
.eventAdmin = eventAdmin;
}
public void run() {
double price = 25;
Random random = new Random ();
while (!Thread.currentThread ().isInterrupted()) {
// Create and send the event
Properties props = new Properties ();
props.put("symbol", "MSFT");
props.put("time", System.currentTimeMillis ());
props.put ("price", price);
eventAdmin.sendEvent (new Event (TOPIC, props));
// Sleep 100ms
Thread.sleep(100);
// Randomly adjust price by upto 1.0, + or —
double nextPrice = random.nextBoolean ()
? price 4+ random.nextDouble ()
: price — random.nextDouble ();
price = Math.max (0, nextPrice);
} catch (InterruptedException e) {
// Ezit quietly
}

DRAFT PREVIEW prepared for Christopher Brind

[3 N

[

11
12
13

15
16
17
18

20
21
22
23
24

12
13
14

16
17
18

20
21
22
23
24

7.5 Event Admin 159

Listing 7.10 Event Admin Tracker

package org.osgi.book.utils;

import org.osgi.framework.BundleContext;
import org.osgi.service.event.Event;

import org.osgi.service.event.EventAdmin;
import org.osgi.util.tracker.ServiceTracker;

public class EventAdminTracker extends ServiceTracker
implements EventAdmin {

public EventAdminTracker (BundleContext context) {
super (context , EventAdmin.class.getName (), null);

public void postEvent (Event event) {
EventAdmin evtAdmin = (EventAdmin) getService ();
if (evtAdmin != null) evtAdmin.postEvent (event);

}

public void sendEvent (Event event) {
EventAdmin evtAdmin = (EventAdmin) getService ();
if (evtAdmin != null) evtAdmin.sendEvent (event);

Listing 7.11 Bundle Activator for the Random Price Generator

package org.osgi.book.trading.feeds;

import org.osgi.book.utils.EventAdminTracker;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class RandomPriceFeedActivator implements BundleActivator {

private EventAdminTracker evtAdmTracker;
private Thread thread;

public void start(BundleContext context) throws Exception {
evtAdmTracker = new EventAdminTracker (context);
evtAdmTracker .open ();

thread = new Thread(new RandomPriceFeed(evtAdmTracker));
thread.start ();

}

public void stop(BundleContext context) throws Exception {
thread.interrupt ();
evtAdmTracker.close ();

DRAFT PREVIEW prepared for Christopher Brind

160 Chapter 7. The Whiteboard Pattern and Event Admin

all stock prices; just prices for stocks traded on NASDAQ); or just prices for
Microsoft Corporation.

Data describing the actual event should appear in the properties, which is
actually an instance of Dictionary. So in this example the time and price of
the quote are included, as well as the stock symbol. Note that in general, data
describing the event should not be added to the topic. However a field that is
likely to be used as a primary filter (such as the stock symbol in this example)
could appear in both the topic and the properties. Only one such field should
be used this way, though.

The immutability of the Event class is a very important feature. If it were
mutable, then any handler could change the content of an event, and therefore
other handlers receiving it subsequently would see the altered content instead
of the original event created by the sender. To support the immutability of
Event, the specification for Event Admin states that only instances of String
and the eight primitive types (i.e., int, float, double etc). or their Object
wrappers (Integer, Float, Double) may be added to the set of properties for
an event.

This may seem rather restrictive, and it is tempting to ignore the rule and
add more complex objects directly to the event’s Dictionary. For example
we may have a Quote class implemented as a standard JavaBean with getters
and setters. There is nothing to stop us adding such an object! but it is not a
good idea to do so. If Quote is mutable then the event itself will be effectively
mutable. More seriously, we would introduce some coupling between the event
sources and consumers: only consumers that import the Quote class (and
furthermore, the same version of it) will be able to conveniently access the
contents of the event. Other consumers could use Java reflection to look at
the quote object but the code to do this is far more cumbersome and less
efficient than simply accessing a Dictionary.

Another reason for using only simple values in the event properties is because
we can then apply a secondary filter to events based on those values. We will
see an example in the next section.

7.5.3. Receiving Events

Since we have already implemented the whiteboard pattern, we already know
how to implement an event handler for use with Event Admin: simply register
services under the EventHandler interface.

However, we must supply at least a topic declaration as a service property along
with the registration. This tells the Event Admin broker which topics we are
interested in, and we can either specify the topic in full or use a wildcard in

1At compile time; some Event Admin implementations may enforce the rule at runtime.

DRAFT PREVIEW prepared for Christopher Brind

7.5 Event Admin 161

order to receive messages on all topics beneath a certain level in the hierarchy.
For example specifying PRICES/STOCKS/* will give us all stock prices and
PRICES/STOCKS/NYSE/* will give us just prices published on the New York
Stock Exchange. We can also specify * alone to receive all events on all
topics. Note that we cannot place a * in the middle of the topic string, i.e.,
PRICES/*/NYSE. .. is not allowed.

The name for the topic property is “event.topics”, but from Java code we
tend to use a static constant, EventConstants.EVENT_TOPIC. This property is
mandatory: EventHandler services that do not specify a topic will not receive
any events.

Another property we can set is “event.filter” or EventConstants.EVENT_-
FILTER. This property is optional but it allows us to apply an additional filter
on the contents of the event properties, using an LDAP-style query.

Listing 7.12 shows an example of registering an EventHandler, which prints
stock quotes to the console. It uses a filter to print only prices greater than or
equal to 20.

7.5.4. Running the Example

As Event Admin is a compendium service, we need to compile against the
compendium API JAR, osgi.cmpn. jar. That JAR also needs to be installed
in Felix as a bundle to provide the API to our bundles at runtime.

To get the example working we will also need to install an implementation
of the Event Admin service. Felix supplies one (as do all the other OSGi
frameworks) but it is not included in the default download. However we can
install and start it directly from the Felix console as follows (NB: do not include
the line break in the middle of the URL):

—> install http://www.apache.org/dist/felix/org.apache.felix
.eventadmin —1.0.0. jar
Bundle ID: 26

—> start 26
=

Now we can verify that the Event Admin service is running by typing the
services commmand. We should see the following somewhere in the output:

Apache Felix EventAdmin (26) provides:

org.osgi.service.event.EventAdmin

To build the sender and receiver bundles, use the two bnd descriptors shown
in Listing 7.13.

After building we can install and start the bundles:

DRAFT PREVIEW prepared for Christopher Brind

162

Listing 7.12 Stock Ticker Activator

1 package org.osgi.tutorial;

3 import java.util.Properties;

© W N o o

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.service.event.Event;

import org.osgi.service.event.EventConstants;
import org.osgi.service.event.EventHandler;

11 public class StockTickerActivator implements BundleActivator {

21
22
23
24

26
27
28
29
30
31

33
34

private static final String STOCKS_TOPIC = "PRICES/STOCKS/*";

public void start(BundleContext context) throws Exception {
EventHandler handler = new EventHandler () {
public void handleEvent (Event event) {
String symbol = (String) event.getProperty("symbol");
Double price = (Double) event.getProperty("price");

System.out.println("The price of " + symbol

4+ " is now " 4 price);
}
¥
Properties props = new Properties ();
props.put (EventConstants .EVENT_TOPIC, STOCKS_TOPIC);
props.put (EventConstants .EVENT_FILTER, "(price>=20)");

context.registerService (EventHandler.class.getName (),
handler , props);

}

public void stop(BundleContext context) throws Exception {

}

Listing 7.13 Bnd Descriptors for the Random Price Feed and Stock Ticker

1 # random_feed.bnd
2 Private—Package: org.osgi.book.trading.feeds ,org.osgi.book.utils

3 Bundle—Activator: org.osgi.book.trading.feeds.RandomPriceFeedActivator

1 # ticker.bnd
2 Private—Package: org.osgi.tutorial
3 Bundle—Activator: org.osgi.tutorial.StockTickerActivator

DRAFT PREVIEW prepared for Christopher Brind

Chapter 7. The Whiteboard Pattern and Event Admin

7.5 Event Admin 163

—> install file:random_feed. jar

Bundle ID:27

—> install file:ticker.jar

Bundle ID: 28

—> start 27

—> start 28

The price of MSFT is now 25.194525474465635
The price of MSFT is now 24.547478302312108
The price of MSFT is now 25.173540992244572
The price of MSFT is now 25.906669217574922
The price of MSFT is now 25.41915022996729
The price of MSFT is now 26.04457130652444
The price of MSFT is now 26.29259735036186
The price of MSFT is now 25.64594680159028
The price of MSFT is now 26.279434082391102
The price of MSFT is now 27.012694572863026

7.5.5. Synchronous versus Asynchronous Delivery

Event Admin includes a much more sophisticated event delivery mechanism
than the simplistic WhiteboardHelper class. One of the most important dif-
ferences is that Event Admin can optionally deliver events to handlers asyn-
chronously.

Most examples of the whiteboard pattern — including our WhiteboardHelper
class — deliver events synchronously, meaning that each listener is called in
turn from the event source thread, and therefore the event source cannot
continue any other processing until all of the listeners have finished processing
the event, one by one.

Event Admin does support synchronous processing, and that is what we used
in the previous example, however it also supports asynchronous processing,
which means that the call to the broker will return immediately, allowing the
event source to continue with other processing. The events will be delivered
to the listeners in one or more threads created by Event Admin for this pur-
pose. To use asynchronous processing we simply call the postEvent method
of EventAdmin rather than sendEvent. Nothing else (in our code) needs to
change.

Using postEvent to request asynchronous delivery makes Event Admin behave
much more like a true event broker, albeit an in-JVM one. For the event source
it is “fire and forget”, allowing us to quickly post an event or message and let
Event Admin worry about delivery to the end consumers. Therefore you should
in general use postEvent as a preference, unless you have a particular need
to wait until an event has been delivered to all consumers, in which case you
should use sendEvent.

Note that using sendEvent does not guarantee that the handleEvent method
of all handlers will actually be called in the same thread that the event source
used to call sendEvent. Event Admin may choose to use several threads to

DRAFT PREVIEW prepared for Christopher Brind

164 Chapter 7. The Whiteboard Pattern and Event Admin

deliver the event to several handlers concurrently, even when we are using
synchronous delivery — the guarantee given by sendEvent is merely that
it will return to the caller only after the event has been fully delivered to all
handlers. As a consequence, we cannot make any assumption about the thread
on which handlers will receive events, even if we believe we know which thread
is sending them.

Another reason to favour postEvent over sendEvent is we can induce dead-
locks if we hold a lock when calling sendEvent, as described at length in
Chapter 6. However it is practically impossible to cause deadlock by holding
a lock when calling postEvent.

7.5.6. Ordered Delivery

Whether we are using synchronous or asynchronous delivery, Event Admin
promises to deliver events to each handler in the same order in which they
arrived at the broker. That is, if a single thread sends or posts events A,
B and C in that order to Event Admin, then each handler will see events
A, B and C arriving in that order. However if multiple threads are sending
or posting events to Event Admin, the order in which those events arrive at
the broker depends on low level timing factors and so the delivery order to
handlers is not guaranteed. That is, if a second thread sends events D, E and
F' in that order, then each handler may see the order ABCDEF or perhaps
DEFABC, ADBECF, DAEBFC or some other interleaving. But they will
not see CABDEF, ADCFBE etc., since these examples violate the internal
ordering of messages within each thread.

7.5.7. Reliable Delivery

Event Admin attempts to make the delivery of events reliable when faced with
misbehaving handlers. If a handler throws an exception then Event Admin
will catch it and log it the OSGi Log Service, if it is available. Then it will
continue delivering the event to other handlers. Note it does not attempt to
catch Errors such as OutOfMemoryError, LinkageError etc. Also because the
EventHandler.handleEvent method does not declare any checked exceptions
in a throws clause, we can only throw subclasses of RuntimeException from
our handlers.

Some implementations of Event Admin may also attempt to detect handlers
that have stalled, for example in an infinite loop or deadlock. They may
choose “blacklist” particular misbehaving handlers so they no longer receive
any events. However, this feature is optional and not all Event Admin imple-
mentations support it.

DRAFT PREVIEW prepared for Christopher Brind

7.6 Exercises 165

7.6. Exercises

1. The notification mechanism shown in Section 7.4 is somewhat inefficient
because all mailbox events are sent to all registered mailbox listeners,
but many of the listeners (e.g., the message tables) are only interested in
the events for a single mailbox. Extend this code to implement filtering
based on mailbox name. Each listener should be able to listen to just
one mailbox or all mailboxes. Hint: WhiteboardHelper will need to be
extended to accept a filter expression.

DRAFT PREVIEW prepared for Christopher Brind

[N

8. The Extender Model

We saw in Chapter 4 how services can be used to extend the functionality of
an application at runtime with new Java classes. Sometimes though we want
extensibility of another sort: the ability to add artifacts other than executable
code.

A good example is the help system of our Mailbox Reader sample application.
We are able to extend the functionality of the application by plugging in new
bundles, such as bundles providing new mailbox types, which are naturally
implemented with services. But we also need to provide documentation for
these new features. Therefore our help system needs to be extensible, too.

Let’s assume that help documents will be in HTML format. Documentation
is usually static, so a plain HTML file will suffice, i.e. the content of the
HTML document does not need to be generated on-the-fly. Now, we could
use a service to register the existence of a file, by declaring an interface as in
Listing 8.1.

Listing 8.1 Help Provider Service Interface

public interface HelpDocumentProvider {
A x
* Return the URL of an HTML file .
*/
URL getHelpDocumentURL ();

}

But this would be a very cumbersome way to accomplish such a simple task.
Any bundle wishing to provide help would have to implement the interface,
and also implement BundleActivator in order to instantiate the class and
register it as a service... all this just to provide a simple URL!

It would be a lot easier if we didn’t need to “register” the document at all,
but instead the help system simply found it inside our bundle and processed
it automatically. Perhaps we could give a hint to the help system about which
HTML files are intended for its use, e.g. by placing those files in a help
subdirectory of the bundle.

It turns out this is quite easy to achieve, because bundles can see the contents
of other bundles. So we can write a bundle that scans other bundles, looking

DRAFT PREVIEW prepared for Christopher Brind

0N O TR W N =

e~ R e
cR W RO ©

-
=N

168 Chapter 8. The Extender Model

for help documentation and adding it to the central index. We call this kind
of bundle an extender.

An extender bundle is one which scans the contents and/or headers of other
bundles and performs some action on their behalf. This is a very useful and
common pattern in OSGi.

8.1. Looking for Bundle Entries

Let’s take a look a the code required to look at the contents of another bun-
dle. We have two tools for doing this, both of them methods on the Bundle
interface. The first is getEntry, which takes a path string such as help/in-
dex.html and returns a URL reference to that entry in the bundle if it exists;
the contents of the entry can be read from the URL by calling openStream on
it. The second is getEntryPaths which takes a prefix string and returns an
enumeration of all the bundle entry paths starting with that prefix.

The method in Listing 8.2 will scan a bundle and return a list of URLs pointing
to the HTML documents we are interested in, i.e. those that have been placed
under the help subdirectory. Notice, again, the necessity of doing a null-
check on the result of the query method: OSGi never returns an empty array
or collection type. However our method does return an empty List of URLs
when no matches are found.

Listing 8.2 Scanning a Bundle for Help Documents

private List<URL> scanForHelpDocs (Bundle bundle) {
List<URL> result;
Enumeration<?> entries = bundle.getEntryPaths("help");
if (entries != null) {
result = new ArrayList<URL >();
while (entries.hasMoreElements ()) {
String entry = (String) entries.nextElement ();
if (entry.endsWith(".html")) {
result.add(bundle.getEntry (entry));
}

} else {
result = Collections.emptylList ();
}

return result;

This code works just fine but is a little limited. The problem is we need to
take the information returned by scanForHelpDocs and use it to create an
index page in our help system, but all we know about each document is its
filename. Therefore all we could show in the help index would be a list of
filenames, which is not likely to be very helpful.

DRAFT PREVIEW prepared for Christopher Brind

N oG A W N

10
11
12
13
14
15
16
17
18

20
21
22
23
24
25
26

28
29
30
31
32

34

8.1 Looking for Bundle Entries 169

We could remedy this by asking help providers to list all the HTML documents
they provide explicitly and supply a title using a simple properties file as shown
in Listing 8.3.

Listing 8.3 A Help Index File, index.properties

introduction=Introduction
first_steps=First Steps in 0SGi
dependencies=Bundle Dependencies
intro_services=Introduction to Services

We can interpret this as follows: the file named help/introduction.html has
the title “Introduction”; the file named help/first_steps.html has the title
“First Steps in OSGi”; and so on.

Let’s assume that this properties file can be found at the location help/in-
dex.properties. The code in Listing 8.4 is an improved version of the scan-
ning method, which now returns not just a list of document URLs but a list
of URLs and titles:

Listing 8.4 Scanning a Bundle for Help Documents with Titles (1)

private List<Pair<URL, String>> scanForHelpDocsWithTitles (
Bundle bundle) throws IOException {
// Find the indexz file entry; exit if not found
URL indexEntry = bundle.getEntry("help/index.properties");
if (indexEntry == null) {
return Collections.emptyList ();
}

// Load the indexz file as a Properties object
Properties indexProps = new Properties ();
InputStream stream = null;
try {

stream = indexEntry.openStream();

indexProps.load(stream);
} finally {

if (stream != null)

stream.close ();

}

// Iterate through the files
List<Pair<URL, String>> result =
new ArraylList<Pair<URL, String>>(indexProps.size ());
Enumeration<?> names = indexProps.propertyNames ();
while (names.hasMoreElements ()) {
String name = (String) names.nextElement ();
String title = indexProps.getProperty(name);

URL entry = bundle.getEntry("help/" + name + ".html");

if (entry != null)
result.add (new Pair<URL, String>(entry, title));
}

}

return result;

DRAFT PREVIEW prepared for Christopher Brind

12
13
14

16
17
18

20
21

170 Chapter 8. The Extender Model

In order to represent a document URL together with a title, we defined a
simple Pair class, shown in Listing 8.5. This uses Java 5 Generics to hold two
objects of arbitrary types, similar to a tuple type found in other languages.

Listing 8.5 The Pair Class

package org.osgi.book.utils;
public class Pair<A, B> {
private final A first;

private final B second;

public Pair(A first, B second) {

this.first = first;
this.second = second;

}

public A getFirst () {
return first;

}

public B getSecond () {
return second;

}

// Omitted: hashCode, equals and toString implementations

}

8.2. Inspecting Headers

The previous example is already very convenient for help providers, but a
little inflexible. What if the help subdirectory of a bundle is already used
for something else, or if we want to give the index file a name other than
index.properties? It would be helpful if we could somehow provide the
path to the index file, so we didn’t have to assume a fixed path. But where
can we put this information? If we put it in another properties file, then we
still need to find that file.

However, there is already one file that must appear in the bundle at a fixed
location, and that is META-INF/MANIFEST.VMF. It is also flexible: we are free
to add new headers to the manifest so long as their name does not clash with
an existing Java or OSGi header. So, we can ask help providers to insert a
reference to their index file using a new header name that we define. The
provider’s manifest might therefore look like something like Listing 8.6.

Fortunately we don’t need to parse the manifest ourselves because just like
the contents of a bundle, manifest headers are accessible through the Bundle
interface. In this case we can call the getHeaders method to get a dictionary
of all the headers. We can then use this to pick out the value of the Help-
Index header — note that all the other headers can also be read using this

DRAFT PREVIEW prepared for Christopher Brind

8.3 Bundle States 171

Listing 8.6 MANIFEST.MF for a Help Provider

Manifest—Version: 1.0

Bundle —ManifestVersion: 2
Bundle—SymbolicName: org.foo.help
Bundle—Version: 1.0.0
Help—Index: docs/help.properties

method, including those defined by OSGi and others.

Listing 8.7 shows yet another version of the scanning method. There is still
one assumption implicit in this code: the HTML documents are expected to
be in the same directory as the index file. However we could remove this
assumption by adding more information to either the index or the value of the
Help-Index header. It might also help to use a more structured file format
for the index, such as XML or JSON.

8.3. Bundle States

Somewhere we need to actually call one of the above scanner methods, and
do something with the results. Since they all take a Bundle object as input,
it seems we need to iterate over the set of current bundles. But we should
know by now that this is not enough: we also need to be informed when a new
bundle appears or when a bundle we were previously looking at goes away.

Consider again the lifecycle of a bundle, which we first saw in Section 2.8
and Figure 2.3. Should we allow a bundle in any state to contribute help
documents, or should we restrict ourselves to a subset of states? This is an
important question, for which all extender bundles need to come up with a
good answer. Bundle states are not really exclusive: some bundle states can be
considered to “include” other states. For example an ACTIVE bundle is also
RESOLVED and INSTALLED. In other words, an extender that is interested
in RESOLVED bundles should be interested in STARTING, ACTIVE and
STOPPING bundles as well. The inclusion relationships of all the states are
illustrated in Figure 8.1.

If we include bundles that are merely INSTALLED then every bundle will
be involved in our scan, so users needn’t do anything at all beyond installing
a bundle in order for it to appear in the index. But this can have negative
consequences. For example, some bundles may not able to resolve because
of missing dependencies or other unsatisfied constraints, but they will still be
picked by an extender that includes the INSTALLED state. This isn’t always
a problem, but in our help system it might be. Merely providing documents
doesn’t need any dependencies, but suppose our documentation is embedded
in a bundle that provides actual functionality as well. If the functionality

DRAFT PREVIEW prepared for Christopher Brind

172 Chapter 8. The Extender Model

Listing 8.7 Scanning a Bundle for Help Documents with Titles (2)

private static final String HELP_INDEX_BUNDLE_HEADER = "Help-Index";

private List<Pair<URL, String>> scanForHelpDocsWithTitle (

oW

o«

10
11
12
13
14

16
17
18
19

21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37

39
40
41
42
43

Bundle bundle) throws IOException, HelpScannerException {
@SuppressWarnings ("unchecked")
Dictionary<String, String> headers = bundle.getHeaders ();

// Find the indexz file entry; exzit if not found
String indexPath = headers.get (HELP_INDEX_BUNDLE_HEADER);
if (indexPath == null)
return Collections.emptyList ();
URL indexEntry = bundle.getEntry(indexPath);
if (indexEntry == null)
throw new HelpScannerException("Entry not found: " 4 indexPath);

// Calculate the directory prefiz

int slashIndex = indexPath.lastIndex0f(’/’);
String prefix = (slashIndex =— —1)
? "" : indexPath.substring (0, slashIndex);

// Load the indexz file as a Properties object

Properties indexProps = new Properties ();
InputStream stream = null;
try {

stream = indexEntry.openStream();

indexProps.load(stream);
} finally {
if (stream != null) stream.close ();

// Iterate through the files
List<Pair<URL, String>> result =
new ArrayList<Pair<URL, String>>(indexProps.size ());
Enumeration<?> names = indexProps.propertyNames ();
while (names.hasMoreElements ()) {
String name = (String) names.nextElement ();
String title = indexProps.getProperty(name);

URL entry = bundle.getEntry(prefix 4+ "/" + name + ".html");

if (entry != null) result.add(new Pair<URL, String>(entry, title));

return result;

DRAFT PREVIEW prepared for Christopher Brind

8.3 Bundle States 173

INSTALLED

RESOLVED

Figure 8.1.: Inclusion Relationships of Bundle States

DRAFT PREVIEW prepared for Christopher Brind

174 Chapter 8. The Extender Model

of the bundle is not available due to a missing dependency, then it could be
confusing to display help for it.

So, as an alternative, we can exclude the INSTALLED state and include only
RESOLVED (along with STARTING, ACTIVE and STOPPING) bundles.
This ensures only bundles with satisfied dependencies are included by our
extender.

But both INSTALLED and RESOLVED have another problem: it is difficult
to exit from those states. Suppose we want the ability for certain bundles
to be explicitly removed from consideration by an extender. If the extender
is looking for INSTALLED bundles, there is obviously only one way to take
a bundle out of consideration: uninstall it. But if the extender is looking
for RESOLVED bundles, we are still required to uninstall the bundle. The
reason for this is there is no explicit “unresolve” method or command in OSGi;
since we cannot ask for the bundle to be moved from RESOLVED back to
INSTALLED, so we have to use the heavy-handed approach of uninstalling it
completely.

The last alternative is to look at ACTIVE bundles only. This has the advantage
that we can easily move bundles in and out of consideration by the extender
simply by starting and stopping them. For this reason most examples of the
extender pattern use the ACTIVE state (with one notable exception, as we
will see in Section 8.6).

8.4. Using a Bundle Tracker

For the Help system example, we choose to look at the ACTIVE state only.
Therefore we need to know about both the bundles already in ACTIVE state
when our extender bundle starts, and also keep track of subsequently acti-
vated/deactivated bundles. Just as ServiceTracker made our lives simpler
for tracking services, the class BundleTracker simplifies the task of tracking
bundles, and by design it closely resembles ServiceTracker in usage. Bundle-
Tracker is a new part of the OSGi Compendium specification since Release
4.2 that explicitly supports the development of extender bundles.

Listing 8.8 shows the full code for the help system extender (with the excep-
tion of the scanning method which was already given in Listing 8.7), and it
illustrates most of the points that need to be made about BundleTracker.

First, we can can create our own tracker customisation either by extending
BundleTracker or by implementing BundleTrackerCustomizer. This is anal-
ogous ServiceTracker and ServiceTrackerCustomizer. In this case we ex-
tend BundleTracker itself because it makes the activator code slightly shorter.

DRAFT PREVIEW prepared for Christopher Brind

N o oA w

10
11
12

14

16
17
18

20
21
22
23

25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

8.4 Using a Bundle Tracker

175

Listing 8.8 The HelpExtender Class

package

import
import
import
import
import

import
import
import
import

public

private final Map<Long,

public HelpExtender (BundleContext

org.

java.
java.
java.
java.
java.

osgi.book.help.extender;

io.IOException;
io.InputStream;
net . URL;
util . *;

org.osgi.book.utils.Pair;
org.osgi.framework.x*;
org.osgi.service.log.LogService;

org.osgi

class HelpExtender extends

= new ConcurrentHashMap<Long,
private final LogService log;

List<Pair<URL,

util.concurrent.ConcurrentHashMap;

.util.tracker.BundleTracker;

BundleTracker {

String>>> documentMap

List<Pair<URL, String>>>();

super (context , Bundle.ACTIVE, null);
this.log = log;

}

public List<Pair<URL,
List<Pair<URL,
for (List<Pair<URL,

}

result.addAll (list);
return result;

@0verride

public Object addingBundle (Bundle bundle,

Bundle result = null;
long id = bundle.getBundleId ();
try {

List<Pair<URL, String>> docs =

if

('docs.isEmpty ()) {
documentMap .put (id, docs);
result = bundle;

} catch (IOException e) {
log.log(LogService.LOG_ERROR,

}

}

+ bundle.getLocation (),

catch (HelpScannerException e)
log.log(LogService.LOG_ERROR,

+ bundle.getLocation (),

return result;

@0verride

public void removedBundle (Bundle bundle,

String>> list

String>> listHelpDocs () {
String>> result = new ArrayList<Pair<URL,
documentMap .values ())

context , LogService 1log)

String >>();

BundleEvent event) {

scanForHelpDocsWithTitle (bundle);

"I0 error in bundle

e);
{

"Error in bundle

e);

documentMap .remove (bundle.getBundleId ());

}

// Omitted :

7/

BundleEvent event,

scanForHelpDocs WithTitle method from previous

Object obj) {

section

DRAFT PREVIEW prepared for Christopher Brind

176 Chapter 8. The Extender Model

The second parameter of BundleTracker’s constructor is a filter in the form
of a bundle state mask. We can select multiple bundle states by performing a
bitwise-OR of all the desired states. Then the tracker will call addingBundle
only for those bundles that are either in one of the specified states or in the
process of moving to one of them. The removedBundle method will be called
when a tracked bundle leaves the desired state(s), and modifiedBundle is
called when a tracked bundle moves from one state to another but still matches
the state mask.

The return type of addingBundle is Object and we can return anything we
like; that object will then be given back to us in the removedBundle and
modifiedBundle methods. Conventionally we return the Bundle object. If we
return null then the bundle will no longer be tracked; we use this effect in our
addingBundle method, which only returns non-null when a bundle actually
has help documents declared in it.

Like ServiceTracker, a BundleTracker needs to be opened by calling the
open method before it will do anything. Forgetting to open the tracker is a
significant source of bugs.

8.4.1. Testing the Help Extender

To test this extender, we will write a shell command that prints a list of the
available help documents; this is shown in Listing 8.9. The corresponding
activator and bnd descriptor are in Listing 8.10.

If we install and start the resulting bundle, we should now be able to call the
helpDocs command:

osgi> helpDocs
0 documents(s) found

Of course, we haven’t built a bundle yet that provides any help documen-
tation! Let’s do that now. If we create a directory in our project called
resources/help_sample, we can put our index file and help HTML there
and include them in a bundle using the Include-Resource instruction to bnd,
as shown in Listing 8.11. Note the assignment-style format of the Include-
Resource header; this tells bnd to copy the contents of the directory on the
right hand side into a directory named docs in the bundle. If we omitted
“docs=" then the files would be copied to the root of the bundle.

Now if we install and start the help_sample bundle and rerun the helpDocs
command, we should see the following output:

osgi> helpDocs

4 document (s) found

Introduction (bundleentry://3.fwk15131397 /docs/introduction.html)

First Steps in 0SGi (bundleentry://3.fwk15131397 /docs/first_steps.html)
Bundle Dependencies (bundleentry://3.fwk15131397 /docs/dependencies.html)

DRAFT PREVIEW prepared for Christopher Brind

10

12

14
15
16

18
19
20

22
23
24
25
26
27
28
29

8.5 Bundle Events and Asynchronous Listeners 177

Listing 8.9 Shell Command for Testing the Help Extender

package org.osgi.book.help.extender;

import java.net.URL;
import java.util.List;

import org.eclipse.osgi.framework.console.CommandInterpreter;
import org.eclipse.osgi.framework.console.CommandProvider;
import org.osgi.book.utils.Pair;

public class HelpListCommand implements CommandProvider {

private final HelpExtender extender;

public HelpListCommand (HelpExtender extender) {

this.extender = extender;
}
public String getHelp () {

return "\t" 4 "helpDocs - List currently available help docs";
}

public void _helpDocs(CommandInterpreter ci) {
List<Pair<URL ,String>> docs = extender.listHelpDocs ();
ci.println(docs.size() + " document(s) found");
for (Pair<URL, String> pair : docs) {
ci.println(pair.getSecond() + " (" + pair.getFirst() + ")");
}

}
}

8.5. Bundle Events and Asynchronous Listeners

The BundleTracker class is how most extender bundles should be imple-
mented. However, there is unfortunately a small risk associated with the
use of BundleTrackers because every tracker is notified of every bundle state
change synchronously, i.e. in the same thread in which the state change is
being made. This means two problems can arise: first, if a tracker performs
its work too slowly in the addingBundle method then this can slow down
the entire system; second, the bundle tracker must be multi-thread safe, since
bundle events can happen on any thread.

Sometimes we wish to know about the state of bundles in the system but we
do not necessarily need to know instantaneously about every change. Also we
may not care about the transitory states STARTING and STOPPING. In that case
we may wish to implement an asynchronous BundleListener that is notified
of the gross changes in state on a separate thread shortly after they happen.

Asynchronous BundleListeners have the advantage that the framework guar-
antees never to call the bundleChanged method concurrently from multiple
threads, so they can be written without worrying about locking fields or per-
forming operations atomically. However it does not guarantee to always call
bundleChanged from the same thread, so we still need to follow safe publi-

DRAFT PREVIEW prepared for Christopher Brind

9
10
11

13
14
15
16
17

19
20
21
22

24
25
26
27
28

30

178 Chapter 8. The Extender Model

Listing 8.10 Activator & Bnd Descriptor for the Help Extender Bundle

package org.osgi.book.help.extender;
import org.eclipse.osgi.framework.console.CommandProvider;
import org.osgi.book.utils.LogTracker;
import org.osgi.framework.x*;
public class HelpExtenderActivator implements BundleActivator {
private volatile LogTracker log;
private volatile HelpExtender extender;

private volatile ServiceRegistration cmdSvcReg;

public void start(BundleContext context) throws Exception {

log = new LogTracker (context);
log.open();
extender = new HelpExtender (context, log);

extender .open ();

HelpListCommand command = new HelpListCommand(extender);
cmdSvcReg = context.registerService(CommandProvider.class.getName (),
command , null);

}

public void stop(BundleContext context) throws Exception {
cmdSvcReg.unregister ();
extender.close ();
log.close ();

}

update 1# helpextender.bnd
Private—Package: org.osgi.book.help.extender, org.osgi.book.utils
Bundle—Activator: org.osgi.book.help.extender.HelpExtenderActivator

Listing 8.11 Bnd Descriptor for a Sample Help Provider

help_sample.bnd
Help—Index: docs/index.properties
Include—Resource: docs=resources/help_sample

DRAFT PREVIEW prepared for Christopher Brind

8.5 Bundle Events and Asynchronous Listeners 179

cation idioms as decribed in Section 6.3. Another advantage is that, since
the callback to a BundleListener is executing in a thread dedicated to that
purpose, we can be a little more liberal about performing blocking operations
and other computations that would be too long-running for execution by a
BundleTracker. We still need to be cautious though, since we could hold up
the delivery of bundle events to other listeners, so truly long-running opera-
tions should be performed in an thread that we explicitly create.

Another listener interface exists, SynchronousBundleListener, which as the
name suggests delivers the bundle events synchronously. The BundleTracker
class is implemented as a SynchronousBundleListener. To illustrate the dif-
ference between synchronous and asychronous event delivery, see Figures 8.2
and 8.3, which show UML-like sequence diagrams for SynchronousBundleLis-
tener and (asynchronous) BundleListener respectively.

A OSGi B's Synchronous
Framework Activator BundleListener
T —

.
start(B)

STARTING

at

start()

1
S?I'ARTED
i >D

-

1

1

- |
]

]

1

1

1

Figure 8.2.: Synchronous Event Delivery when Starting a Bundle

A disadvantage of BundleListeners is that they can lead us to act on stale

DRAFT PREVIEW prepared for Christopher Brind

180 Chapter 8. The Extender Model

A OSGi B's BundleListener
Framework Activator
S —
))))
1 1 1 1
]]]]
]]]]
]]]]
1 1 1 1
1 1 1 1
=l | 1 |
start(B) ' ' '
| |
start() l '
]
1
]
]
]
1
1
]
|
:
)]
§TARTED !
T »l
- !
. .
| Separate |
' thread '
| |
]]
1 1

Figure 8.3.: Asynchronous Event Delivery after Starting a Bundle

information. If we had built our Help extender as a BundleListener rather
than using BundleTracker, we would only hear about a bundle being unin-
stalled sometime after it was uninstalled. Therefore a user might request a
help document from a bundle which no longer exists. This would lead to an
error which we would need to catch and display appopriately to the user.

8.6. The Eclipse Extension Registry

As mentioned in Section 7?7, the Eclipse IDE and platform are based on OSGi.
However, Eclipse currently makes very little use of services, mainly for histor-
ical reasons.

Eclipse did not always use OSGi: in fact it only started using OSGi in ver-
sion 3.0, which was released in 2004, nearly three years after the first release.
Until version 3.0, Eclipse used its own custom-built module system which was
somewhat similar to OSGi, but substantially less powerful and robust. Also
it used it’s own late-binding mechanism called the “extension registry”, which
achieves roughly the same goal as OSGi’s services but in a very different way.
When Eclipse switched to OSGi, it threw out the old module system, but it
did not throw out the extension registry, because to do so would have rendered

DRAFT PREVIEW prepared for Christopher Brind

8.6 The Eclipse Extension Registry 181

almost all existing Eclipse plug-ins useless. By that time there were already
many thousands of plug-ins for Eclipse, and there was no feasible way to offer a
compatibility layer that could commute extension registry based code into ser-
vices code. Therefore the extension registry continues to be the predominant
model for late-binding in Eclipse plug-ins and RCP applications.

Today, the extension registry is implemented as an extender bundle. Bundles
are able to declare both extension points and extensions through the special
file plugin.xml which must appear at the root of a bundle. This file used to
be the central file of Eclipse’s old module system, as it listed the dependencies
and exports of a plug-in, but today its role is limited to the extension registry'

Listing 8.12 An Eclipse plugin.xml File

<7xml version="1.0" encoding="UTF-8"7>
<?eclipse version="3.2"7>
<plugin>

<extension—point id="org.foo.commands"
name="Commands "
schema="schema/org.foo.commands .exsd" />

<extension point="org.foo.commands">
<command id="org.bar.mycommand"
class="org.bar.MyCommand ">
</command>
</extension>

</plugin>

Listing 8.12 shows an example of a plugin.xml file, which in this case declares
both an extension point and an extension in the same bundle. An extension
point is a place where functionality can be contributed, and an ezxtension is
the declaration of that contributed functionality. They are like a socket and a
plug, respectively. In this example the extension contributes functionality into
the org.foo.commands extension point, which is defined in the same bundle:
there is nothing to stop this and it can be useful in certain situations.

Usually one does not directly edit plugin.xml as XML in a text editor. Instead
there are powerful tools in Eclipse PDE to edit the extensions and extension
points graphically. They are shown in Figures 8.4 and 8.5.

We will not go into much detail on how the extension registry is used, as
this subject is well documented in various books and articles about Eclipse.
However we should already be able to guess how the registry bundle works by
scanning bundles for the presence of a plugin.xml file, reading the extension
and extension point declarations therein, and merging them into a global map.
It is not really so different from the help extender that we implemented in the
previous section.

1One still occasionally sees a plugin.xml that includes the old module system declarations;
they are supported by a compatibility layer.

DRAFT PREVIEW prepared for Christopher Brind

182

Chapter 8. The Extender Model

[pluginmi &5

=0

<14 Extension Points

All Extension Points
Edit extension points defined by this plug-in in the

following section.
Add...

=i org.foo.commands

A

0¥ %@

Extension Point Details
Set the properties of the selected extension point.

ID: org.foo.commands

Name: Commands

Schema: ma/org.foo.commands.exsd Browse...

Show extension point description

'E] QOpen extension point schema
ﬁ Find references

Overview|Dependencies |Rumime | Extensions [Extension Points] pIuginJch|

Figure 8.4.: Editing an Extension Point in Eclipse PDE

[pluginami &5

=8

% Extensions

All Extensions laz

Define extensions for this plug-in in the following
section.

type filter text

¥ 4= org.foo.commands
[¥] org.bar.mycommand (co
Remove
Up
Down
e — | Yalrl

0% &®

Extension Details

Set the properties of the selected extension. Required
fields are denoted by ™*".

Show extension point description

'E] Open extension point schema

37 Find declaring extension point

Gverview|Dependencies |RumimelExtensions] Extension Poims| plugin.xml|

Figure 8.5.: Editing an Extension in Eclipse PDE

DRAFT PREVIEW prepared for Christopher Brind

8.7 Impersonating a Bundle 183

However, rather than considering only ACTIVE bundles, the extension registry
considers all RESOLVED bundles. The result — as we would expect from
the discussion in Section ??7 — is that we don’t have a lot of control over
the content of the registry: all extensions in all RESOLVED bundles will
contribute to the running application, and the only way we can remove those
contributed features is by fully uninstalling the bundle.

8.7. Impersonating a Bundle

In Section 2.10 we learned that the only way to obtain a BundleContext
and interact with the framework was by implementing a BundleActivator.
However we also learned in a footnote that that was not strictly true: another
way is to define an extender bundle that interacts with the framework on
behalf of another bundle. By doing this we can define standard patterns of
interaction with the framework.

For example, suppose we have a lot of bundles that register Mailbox services.
The activator code to create the Mailbox instances and register them with
the service registry can be quite repetitive, and it might be useful to use the
extender model to define an alternative based on declarations. Thus we could
offer a Mailbox service simply by adding to our MANIFEST.MF:

Mailbox—ServiceClass: org.example.MyMailbox

But there is a catch: if we register the Mailbox services using the BundleCon-
text of our extender bundle, then they will all appear to be services offered by
that extender, not by the real bundle that contains the Mailbox implementa-
tion. This would be wrong. However, there is a solution: in OSGi Release 4.1
a new method was added to the Bundle interface called getBundleContext.
This method allows our extender to register services as if they were registered
by the target bundle — in other words it allows us to impersonate bundles.

It should be noted that this is an advanced technique. There are many factors
that need to be taken into account when writing an impersonating extender, so
it should not be undertaken lightly. Also note that the example in this section
is simply a limited version of the standard OSGi facility called Declarative
Services (which we will look at in detail Chapter ??) so we would not wish to
do this for real. Nevertheless, it is useful to understand what is going on when
using an impersonating extender.

Listing 8.13 shows the code for the extender. Although it is quite long, the bulk
is taken up with using Java reflection to load the specified Mailbox class by
name, instantiating it, and handling the myriad checked exceptions that Java
gives us whenever we use reflection. Note that we must ask the target bundle
to perform the class load, by calling the Bundle.loadClass method, since in

DRAFT PREVIEW prepared for Christopher Brind

'S

© ®w o

11

13
14
15
16

18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

184

Chapter 8. The Extender Model

Listing 8.13 Mailbox Service Extender

package org.osgi.book.extender.service;

import
import

import
import
import
import

java.util . Map;
java.util.concurrent.ConcurrentHashMap;

org.
org.
org.
org.

osgi.book.reader.api.Mailbox;
osgi.framework.x;
osgi.service.log.LogService;
osgi.util.tracker.BundleTracker;

public class MailboxServiceExtender extends BundleTracker {

private static final String SVC_HEADER = "Mailbox-ServiceClass";
ServiceRegistration> registrations
ServiceRegistration >();

private final Map<String,
= new ConcurrentHashMap<String,

private final LogService log;

public

}

this.

MailboxServiceExtender (BundleContext ctx, LogService log) {
super (ctx, Bundle.ACTIVE, null);

log = 1log;

@0verride
public

}

Bund

Object addingBundle (Bundle bundle, BundleEvent ev)
le result = null;

{

String className = (String) bundle.getHeaders ().get (SVC_HEADER);

it (
t

}
}
}

}

className != null) {
ry {
Class<?> svcClass = bundle.loadClass(className);
if (!Mailbox.class.isAssignableFrom(svcClass)) {
log.log(LogService.LOG_ERROR,

"Declared class is not an instance of Mailbox");

), instance,

} else {
Object instance = svcClass.newlInstance ();
ServiceRegistration reg = bundle.getBundleContext ()
.registerService(Mailbox.class.getName (
null);
registrations.put (bundle.getLocation(), reg);
result = bundle;

catch (ClassNotFoundException e) {

log.log(LogService.LOG_ERROR, "Error creating service"

catch (InstantiationException e) {

log.log(LogService.LOG_ERROR, "Error creating service"

catch (IllegalAccessException e) {

log.log(LogService.LOG_ERROR, "Error creating service"

return result;

@0verride

public void removedBundle (Bundle bundle, BundleEvent ev,
ServiceRegistration reg;
reg = registrations.remove(bundle.getLocation ());
if (reg != null) reg.unregister ();

Object

e);
e);
e);

ebj)

DRAFT PREVIEW prepared for Christopher Brind

{

S) -

0 =

10
11

13
14

17
18
19

21
22
23
24

26

8.7 Impersonating a Bundle 185

general the extender bundle will not know anything about the Mailbox imple-
mentation class. Also we assume that the specified class has a zero-argument
constructor; if that is not the case then we will get an InstantiationExcep-
tion.

The activator and bnd descriptor for this extender is shown in Listing 8.14. In
order to give the extender itself access to an instance of LogService, we use
the LogTracker class from Section 4.10.1.

Listing 8.14 Activator and Bnd Descriptor for the Mailbox Service Extender

package org.osgi.book.extender.service;

import org.osgi.book.utils.LogTracker;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class MailboxServiceExtenderActivator
implements BundleActivator {
private volatile LogTracker logTracker;
private volatile MailboxServiceExtender extender;
public void start(BundleContext context) throws Exception {
logTracker = new LogTracker (context);
logTracker .open ();
extender = new MailboxServiceExtender (context, logTracker);
extender .open ();
public void stop(BundleContext context) throws Exception {
extender.close ();
logTracker.close ();
}

mbox_svc_extender .bnd

Private—Package: org.osgi.book.extender.service,)\
org.osgi.book.utils

Bundle—Activator:)\
org.osgi.book.extender.service.MailboxServiceExtenderActivator

Now we can write a simple bundle that contains a minimal Mailbox imple-
mentation and declares it through a declaration in its MANIFEST.MF. Listing
8.15 shows the mailbox implementation and bnd descriptor we will use.

When we install and start the sample_svc_extender bundle, we should be
able to see the registered mailbox service by typing the services command:
osgi> services

{org.osgi.book.reader.api.Mailbox}={service.id=30}

Registered by bundle: sample_svc_extender_0.0.0 [6]
No bundles using service.

DRAFT PREVIEW prepared for Christopher Brind

186 Chapter 8. The Extender Model

Listing 8.15 Minimal Mailbox Class and Bnd Descriptor

package org.osgi.book.extender.service.sample;
import org.osgi.book.reader.api.x;
public class MyMailbox implements Mailbox {

public long[] getAllMessages () {
return new long[0];

public Message[] getMessages(long[] ids) {
return new Message [0];

public long|[] getMessagesSince(long id) {
return new long[0];
}

public void markRead(boolean read, long|[] ids) {

}

sample_svc_extender . bnd
Private—Package: org.osgi.book.extender.service.sample
Mailbox—ServiceClass: org.osgi.book.extender.service.sample.MyMailbox

Here we see that a Mailbox service has been registered, apparently by the sam-
ple_svc_extender bundle, although it was really registered by the extender
on behalf of that bundle.

To reiterate, impersonating other bundles is an advanced technique that must
be used with care. In come cases it can be used to implement common patterns
in a single location; however the example in this chapter could also have been
implemented with straightforward Java inheritance, i.e. a simple activator
that can be used as a base class.

8.8. Conclusion

The extender model is a very useful technique for allowing an application
to be extended via resources or declarations, rather than via programmatic
services. In some cases extenders can be used to implement common bundle
implementation patterns by acting on behalf of other bundles.

DRAFT PREVIEW prepared for Christopher Brind

9. Configuration and Metadata

In the previous chapter on the Extender Model, we saw one way to extend
an application without writing executable code. There is another major as-
pect to application construction which also does not usually involve writing
programmatic code: configuration. In this chapter we look at how to make
OSGi-based applications configurable.

Why is it necessary to consider this subject in a separate chapter? We could
imagine using the Extender Model to configure our applications: configuration
data would be stored in flat files or XML documents embedded in bundles,
and then read by the bundles that need the data. Unfortunately there are two
significant problems with using such an approach:

1. Many parts of our application will need be configured. Each of the
bundles that contains configurable elements would have to implement
the Extender Model, e.g. by subclassing BundleTracker, which would
be complex and create lots of overhead, and potentially inconsistency if
bundles written by other developers use different file format or

2. Configuration files embedded in bundles are not easily accessible to users
or administrators. Generating bundle JARs is a task best left to devel-
opers; administrators want to modify external resources stored in an
agreed location in the file system, or perhaps in database records etc.

We therefore need to find a solution that makes it easy for many parts of
our application to obtain configuration data, and also allows those configura-
tion data to be stored in arbitrary ways outside of the bundles that comprise
our application. This chapter discusses a standard solution that fulfils both
requirements.

9.1. Configuration Admin

The OSGi Service Compendium specifies a standard service for configuration,
called the Configuration Admin' service. Configuration Admin is often further
abbreviated “CM?” for historical reasons.

IThe OSGi specification uses the abbreviation “admin” throughout, as if it were an actual
word.

DRAFT PREVIEW prepared for Christopher Brind

188 Chapter 9. Configuration and Metadata

CM’s primary task is to make it easy for many parts of an OSGi-based ap-
plication to obtain configuration data. Many conventional approaches to this
problem require each component to actively load its own configuration data,
and though they typically provide an API that abstracts the physical mecha-
nism involved, this still requires each part of the application to repeat largely
the same code. CM reverses these responsibilities: components are required
merely to advertise their interest in receiving configuration data. CM will then
“push” configuration data to them?. This has two benefits: firstly, bundles
need very little code to receive configuration data; and secondly, the physical
loading and saving of data is be done in one place only and can easily be
changed.

How does a bundle “advertise” its interest in receiving configuration data?
Simply by publishing a service under one of two interfaces recognised by the
Configuration Admin implementation. Therefore the design of CM is yet an-
other example of the Whiteboard Pattern in use (Chapter 7). The objects
that are advertised in this way are called configuration targets, and they may
have other roles in the system such as exposing service interfaces or interacting
with the user.

On the other side of the equation, CM needs a way to load and save config-
uration data in many different formats and on many different storage media.
The requirements here are extremely diverse. In an enterprise server setting,
the data is likely to be stored in one or more property files on the local disk
in a system-wide location, but a desktop application may store its data as
XML files in the user’s home directory, or as entries in the Windows Registry.
A mobile phone application might receive configuration data over the air in
a highly compressed format from the cellular service provider. There is no
way for CM to directly support all of these scenarios, so it supports none of
them and instead offers a programmatic API for manipulating abstract config-
uration objects. That API is accessed by a so-called “Management Agent”: a
bundle that is responsible for loading and saving data using the specific format
and storage medium employed by the application.

At its heart, CM is a broker responsible for matching up configuration ob-
jects with configuration targets. The matching is performed on the basis of
a persistent identifier or PID, which uniquely identifies both the object and
the target. When CM detects that a configuration object has the same PID
as a configuration target, it supplies the data therein to the target. This is
illustrated in Figure 9.1.

An important aspect of CM is that it uses persistence to allow the management
agent and the configuration targets to be disconnected across time. An agent
may create a configuration at a certain time and, whether or not a configura-

2This “backwards” approach is sometimes called Inversion of Control (IoC), or more fan-
cifully the Hollywood Principle: “don’t call us, we’ll call you”.

DRAFT PREVIEW prepared for Christopher Brind

9.1 Configuration Admin 189

OSGi Service Registry

X

Lookup Advertise

PID=org

Config-
uration

Configuration
Admin

Configurable
Component

PID=org.foo.xyz

Update

Figure 9.1.: Overview of the Configuration Admin Service

tion target exists at the that time with a matching PID, the configuration will
be saved by CM?. A configuration target may appear much later, potentially
even after the management agent has been uninstalled or the OSGi framework
has been shutdown and restarted, and it will at that time receive the data.

9.1.1. Audiences

There are two audiences for this chapter. The first comprises developers who
wish to write configurable objects, i.e. objects which receive configuration data
from CM. This audience needs to learn how to advertise objects to CM and
how to process the data received.

The second audience comprises those developers who need to supply configu-
ration data to CM using a specific data format and storage medium — in other
words, those who need to develop a management agent. This audience, which
should be far smaller than the first, needs to learn how to create, update and
remove configurations using the programmatic API offered by CM.

Since the first audience is so much bigger, its needs will be discussed first. In
order to test the code we write, we still need a management agent, but we will
use one that is freely available “off-the-shelf”.

3The location to which CM saves this data is an internal detail of the CM implementation
bundle. Most CM implementations simply use the persistent storage area provided by
the OSGi framework via BundleContext.getDataFile.

DRAFT PREVIEW prepared for Christopher Brind

190 Chapter 9. Configuration and Metadata

9.2. Building Configurable Objects

9.2.1. Configured Singletons

Suppose we have a single instance of an object that needs some kind of configu-
ration data, for example a ServerConnection object that opens and manages
a connection to a server. Which server should it connect to, and how? At the
very least we need to know the address and the port of the remote server, and
optionally we may need to know a user name and password, local address and
port, and so on. All of these are configuration data.

As described above, configurable components simply advertise themselves to
Configuration Admin by publishing as a service. The interface they publish
under is called ManagedService and it specifies just one method: updated,
which takes a Dictionary full of properties and is permitted to throw a Con-
figurationException.

The ManagedService interface is used for objects that are logically singletons.
We do not use the term “singleton” in the strict sense of the coding pattern
defined by the Gang of Four [10], whereby a private constructor and static field
are used to ensure that only one instance of a particular class can possibly be
created. Rather we mean that the instances are created and registered one at
a time, under the control of our code. This distinction will be clearer when we
look at “non-singleton” configured objects in a later section.

Our ServerConnection object could be implemented as shown in Listing 9.1,
and registered as a service by the bundle activator as shown in Listing 9.2. We
provide a persistent identifier (PID) by setting the SERVICE_PID property on
the service — the value of the PID is arbitrary but must be globally unique,
so it’s a good idea to use a hierarchical namespace similar to Java package
naming conventions. In this example, since there will only be one instance of
the object, the fully-qualified class name is a good choice for the PID.

9.2.2. Running the Example with Filelnstall

The example from the previous section will do nothing until two other things
are in place: we need an active implementation of the Configuration Admin
runtime, and we need a management agent that will supply the actual data.

Equinox supplies a bundle that implements the Configuration Admin runtime.
It’s name is org.eclipse.equinox.cm and it is included with the archive
downloaded in Chapter 2, or it can be obtained separately from the main
Equinox download site. Before proceeding, ensure this bundle is installed and
ACTIVE. We also need the OSGi compendium bundle present, if it is not
already, to supply the API packages for CM.

DRAFT PREVIEW prepared for Christopher Brind

10
11

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

46
47
48

9.2 Building Configurable Objects

191

Listing 9.1 Configured Server Connection Singleton

package org.osgi.book.configadmin;

import java.util.Dictionary;

import org.
import org.

osgi.service.cm.ConfigurationException;
osgi.service.cm.ManagedService;

public class ServerConnection implements ManagedService {

private
private

private
private

static final String PROP_HOST = "host";
static final String PROP_PORT = "port";

volatile String host;
volatile Integer port;

public void updated(Dictionary properties)
throws ConfigurationException {

System.out.println("ServerConnection.updated:

if (properties == null) {
host = null;
port = null;

System.out.println("Unconfigured server connection");

} else {

host = (String) properties.get (PROP_HOST);
if (host == null) {

}

throw new ConfigurationException (PROP_HOST,
"Mandatory field");

String portStr = (String) properties.get (PROP_PORT);
if (portStr == null) {

}

throw new ConfigurationException(PROP_PORT,
"Mandatory field");

try {

}

}

port = Integer.parselnt (portStr);

catch (NumberFormatException e) {

throw new ConfigurationException (PROP_PORT,
"Invalid number", e);

System.out.println("Configured server connection for host

}

4+ host + ", port " + port);

public void openConnection() {

}

" 4+ properties);

DRAFT PREVIEW prepared for Christopher Brind

0 N o o

10

12
13

15
16
17

19
20
21

23
24

192 Chapter 9. Configuration and Metadata

Listing 9.2 Registering the Server Connection Singleton

package org.osgi.book.configadmin;
import java.util.Properties;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.service.cm.ManagedService;

public class ServerConnectionActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {
ServerConnection svrConn = new ServerConnection ();

Properties props = new Properties ();
props.put (Constants.SERVICE_PID,
ServerConnection.class.getName ());

context.registerService (ManagedService.class.getName (),
svrConn, props);

}

public void stop(BundleContext context) throws Exception {

osgi> install file:osgi.cmpn. jar
Bundle id is 1

osgi> install file:org.eclipse.equinox.cm_1.0.100.v20090520 —1800.jar
Bundle id is 2

osgi> start 2

osgi> install file:serverconn. jar
Bundle id is 3

osgi> start 3
Unconfigured server connection

What happened here is that the CM bundle started but could not find any
configurable objects (that is, objects advertised under the ManagedService in-
terface), and so it did nothing. Then we installed and started our configurable
ServerConnection — CM detected this, but could not find any matching con-
figuration data, so it called the updated method with a null parameter.

In order to test what happens when configuration data exists, we need a man-
agement agent to supply some configuration data. There is a simple yet very
useful management agent available for us to use: Filelnstall, which was orig-
inally developed by Peter Kriens but is now maintained by the Apache Felix
project®. It can be downloaded from the following URL:

4Despite being a Felix project, it is a standard OSGi bundle that can run on any OSGi R4
framework, including Equinox.

DRAFT PREVIEW prepared for Christopher Brind

9.2 Building Configurable Objects 193

http://felix.apache.org/site/downloads.cgi

Once downloaded it can be installed into Equinox and started as follows:

osgi> install file:org.apache.felix.fileinstall —1.0.0.jar
Bundle id is 4

osgi> start 4

osgi> felix.fileinstall.poll (ms) 2000

felix.fileinstall.dir /home /neil /workspace/config/./load
felix.fileinstall.debug —1
felix.fileinstall.bundles.new.start true

Filelnstall reads configuration data from files in the standard Java properties
file format, and it works by polling a directory in the filesystem for files with
a specific pattern in their name. By default, it looks in the load directory
relative to the current working directory, and it polls every 2 seconds. As we
can see it prints the full path of the directory it is polling, along with the
polling interval and some other information, when it starts.

The names of the files that Filelnstall looks for should be of the form some-
thing.cfg, where “something” is the PID with which the configuration data
will be associated. So in order to create a configuration record with a PID of
org.osgi.book.configadmin.ServerConnection — which will cause CM to
provide it to our ServerConnection object — we should create a file named
org.osgi.book.configadmin.ServerConnection.cfg. Checking the code
for the ServerConnection object we see that the property names it expects
are host and port. Therefore to connect to the host example.org on port
1234 we should create a file with the following contents:

host—=example.org
port=1234

As soon as this file is created we should see the following message on our
OSGi console, meaning that the update method has been called with the
configuration data inside the file:

osgi> Configured server connection for host example.org, port 1234

We have to be a little careful how we create this configuration file. If we first
create the file before entering its contents, then FileInstall will read the empty
file and cause CM to pass an empty dictionary to our update method. This
will trigger the error condition on lines 24 to 27:

2009—-06—14 01:43:52.867 Error: host : Mandatory field
org.osgi.service.cm.ConfigurationException: host : Mandatory field
at org.osgi.book.configadmin.ServerConnection.updated (...)

It may be better to create the file outside of the load directory and then

copy it in when completed. But if course it’s also important to code our
configurable objects robustly in the face of bad configuration data: throw

DRAFT PREVIEW prepared for Christopher Brind

http://felix.apache.org/site/downloads.cgi

© W N o o

24
25

26

28
29

194 Chapter 9. Configuration and Metadata

ConfigurationException for missing or invalid mandatory properties, and
use sensible defaults wherever possible.

We can change the file contents and Filelnstall will detect the change and
update our object with the new contents. It checks the “last modified” time
stamp of the file, so the UNIX touch command (which updates th time stamp
of a file without altering its content) can be used to force a configuration to be
reloaded. Finally, deleting the file causes the the configuration to be deleted,
and our updated method will be called again with a null dictionary.

9.2.3. Configured Singleton Services

We can configure any object using the technique shown in the previous sec-
tion, but sometimes the object that needs to be configured is a service. For
example, a mailbox service that connects to a database would need to know
the connection parameters — e.g., host, port, user and password — for the
database server. In this case, we can implement the ManagedService inter-
face in addition to the existing service interface, as shown in Listing 9.3, and
publish to the service registry under both interfaces, as shown in Listing 9.4.

Listing 9.3 A Configured Service

package org.osgi.book.configadmin;
import java.util.Dictionary;
import org.osgi.book.reader.api.Mailbox;
import org.osgi.book.reader.api.MailboxException;
import org.osgi.book.reader.api.Message;
import org.osgi.service.cm.ConfigurationException;
import org.osgi.service.cm.ManagedService;
public class ConfiguredDbMailbox implements Mailbox , ManagedService {
private static final String PROP_JDBC_URL = " jdbcUrl";
public void updated(Dictionary properties)
throws ConfigurationException {
if (properties != null) {

String url = (String) properties.get(PROP_JDBC_URL);
// Configure wusing the supplied properties..

}
public long[] getAllMessages () {

return null;

// Rest of the Mailbox API omitted ...
}

This example shows the simplest approach to creating a configurable service,

DRAFT PREVIEW prepared for Christopher Brind

11

13
14

16
17
18
19

21
22
23
24

26
27
28

9.2 Building Configurable Objects 195

Listing 9.4 Activator for the Configured Service

package org.osgi.book.configadmin;
import java.util.Properties;

import org.osgi.book.reader.api.Mailbox;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.service.cm.ManagedService;

public class ConfiguredDbMailboxActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {
ConfiguredDbMailbox mailbox = new ConfiguredDbMailbox ();

Properties props = new Properties ();

props.put (Mailbox .NAME_PROPERTY, "cfgDbMailbox");

props.put (Constants.SERVICE_PID, ConfiguredDbMailbox.class
.getName ());

String [] interfaces = new String[] { Mailbox.class.getName(),
ManagedService.class.getName () };
context.registerService(interfaces, mailbox, props);

}

public void stop(BundleContext context) throws Exception {

}

but sometimes this approach will not work. There is a problem caused by the
timing of the call to updated by CM.

On line 23 of ConfiguredDbMailboxActivator (Listing 9.4), we register our
service under both the Mailbox and the ManagedService interfaces at the
same instant — this instant marks the start of a race. On the one hand, CM
will notice the new ManagedService instance and try to find a configuration
record with a matching PID; if it finds one, it will call the updated method to
supply the configuration data. On the other hand, a client of the mailbox API
— such as the GUI we developed in Chapter 5 — may see the new Mailbox
service and immediately call a method on it such as getAl1Messages. There is
no way to predict which of these calls will happen first, so we have a problem:
how does a mailbox that reads messages from a database respond to a request
such as getAllMessages before it even knows which database to use?

More generally, the problem is how a configured object should behave in the
absence of configuration data, and sometimes we can dodge the issue by as-
suming sensible default values. A polling component is a good example: the
polling interval may be controlled by configuration, but in the absence of con-
figuration we default to an interval of, say, 5 seconds. Sometimes though, there
is just no sensible default value, and the database-backed mailbox is an exam-
ple — we should not assume any particular address and port and hard-code
them into our service, because any such assumptions are likely to be invalid

DRAFT PREVIEW prepared for Christopher Brind

11
12
13

16

196 Chapter 9. Configuration and Metadata

more often than they are valid.

There are various ways of solving this problem. We could block the thread
that called the Mailbox method until CM calls updated, but this could easily
result in deadlocks, and anyway CM may never call updated if there is no
configuration record matching the PID of our ManagedService. So this option
is dangerous and not recommended. Another issue is that CM might call
updated with a parameter of null, indicating that the configuration data has
been deleted or is no longer valid. In this case the service should be “de-
configured”, but it’s possible that clients may call a mailbox method after the
updated (null) call. Blocking doesn’t help here either.

Another way is to return an error to the client that got in too early (or too late),
e.g, by throwing a MailboxException. This is safer than blocking, but rather
unfriendly: it is not the client’s fault that the mailbox is not configured, and
indeed the client has no way to tell the difference between a configured Mailbox
service and an unconfigured one. As discussed in the section on composed
services in Chapter 4, we should not register services that are “broken” due to
unsatisfied dependencies. In that chapter we were talking about dependencies
on other services; now we are talking about dependencies on configuration
data. The principle is the same. So, a better way to handle this problem is to
register the mailbox under the Mailbox interface after it receives configuration
data from Configuration Admin, and not before. This implies a two-stage
registration: first we register under ManagedService and then later register
under Mailbox.

Listing 9.5 A Simplified Configured Mailbox Service

package org.osgi.book.configadmin;

import org.osgi.book.reader.api.Mailbox;

import org.osgi.book.reader.api.MailboxException;
import org.osgi.book.reader.api.Message;

public class ConfiguredDbMailbox2 implements Mailbox {

private final String jdbcUrl;

public ConfiguredDbMailbox2(String jdbcUrl) {
this. jdbcUrl = jdbcUrl;
}

// Mailbox API methods omitted ...

17 }

Listing 9.5 shows how this can be done. All of the code for handling config-
uration has been removed from the mailbox implementation class, which now
simply receives the configuration data it needs via a constructor parameter
(though in reality it would probably need more parameters than this). The

DRAFT PREVIEW prepared for Christopher Brind

9.2 Building Configurable Objects 197

configuration code has now moved to a separate class, ConfiguredDbMailbox-
Manager, which is shown along with an activator that registers it in Listing

In the manager, we instanqtiate a new mailbox each time the configuration
changes, which means we must re-register with the service registry. The un-
registration of the previous mailbox is done in a finally block as this ensures it
is always unregistered, even when we throw a ConfigurationException due
to bad configuration data. We also use an AtomicReference to save the Ser-
viceRegistration object, which highlights some of the lessons learned about
concurrency in Chapter 6.

Notice another useful aspect of this approach: configuration data can now be
used to control the service properties of the mailbox service registration. In
this example we set the “name” property of using a value loaded from the
configuration.

9.2.4. Multiple Configured Objects

We referred to the above examples as logical “singletons” because they were
created and registered individually. This was possible because we knew in ad-
vance that there should be one ServerConnection, one ConfiguredDbMailbox
and so on. In general we can use the same technique for any number of in-
stances so long as we know in advance how many there should be: if we need
ten server connections, then we create and register ten ServerConnection
instances.

However sometimes we cannot know in advance how many configured objects
to create, because that fact is itself part of the configuration.

Consider for example an HTTP server which is able to listen on many ports,
and each port listener may serve a different set of HTML pages. We might
configure a listener with the port number for it to listen on, and the base
directory of the HTML pages it should serve. But how many listeners should
there be? This is a configuration parameter also. We can ship our server
with a single pre-configured listener for port 80 (the default HTTP port),
but an administrator might add an arbitrary number of additional listeners,
for ports 8080, 8081 and so on. This scenario is difficult to achieve using
the ManagedService interface because we need to know how many configured
objects to create before any of them receive any configuration from CM.

Therefore CM offers an additional interface called ManagedServiceFactory,
which can be used an an alternative to ManagedService. This interface is
designed for creating arbitrarily many configured objects associated with a
single “factory” PID. For our HTTP server example, we would register a single

DRAFT PREVIEW prepared for Christopher Brind

10
11
12
13

15

17
18
19
20
21
22
23
24
25
26
27

29

31
32

34
35
36

59
60
61
62
63
64
65
66

198

Chapter 9. Configuration and Metadata

Listing 9.6 Activator and Manager for the Simplified Configured Service

package org.

import
import
import

import
import
import
import
import
import
import

public

}

java.
java.
java.

org.
org.
org.
org.
org.
org.
org.

osgi.book.configadmin;

util.Dictionary;
util.Properties;
util.concurrent.atomic.AtomicReference;

osgi.book.reader.api.Mailbox;
osgi.framework.BundleActivator;
osgi.framework.BundleContext;
osgi.framework.Constants;
osgi.framework.ServiceRegistration;
osgi.service.cm.ConfigurationException;
osgi.service.cm.ManagedService;

class ConfiguredDbMailboxActivator2 implements BundleActivator {
public v

Confi

oid start(BundleContext context) throws Exception {
guredDbMailboxManager manager =

new ConfiguredDbMailboxManager (context);
Properties props = new Properties ();

props

.put (Constants.SERVICE_PID, ConfiguredDbMailboxManager.class
.getName ());

context.registerService (ManagedService.class.getName (),

public v

}

manager , props);

oid stop(BundleContext context) throws Exception {

class ConfiguredDbMailboxManager implements ManagedService {

private
private

private
private
= new AtomicReference<ServiceRegistration >();

public C

this.

static final String PROP_JDBC_URL = " jdbcUrl";
static final String PROP_MBOX_NAME = "mboxName";

final BundleContext context;

final AtomicReference<ServiceRegistration> registration

onfiguredDbMailboxManager (BundleContext context) {
context = context;

public void updated(Dictionary dict) throws ConfigurationException {

Servi

try {
if

ceRegistration newRegistration = null;

(dict != null) {
String jdbcUrl = (String) dict.get(PROP_JDBC_URL);
if (jdbcUrl == null)
throw new ConfigurationException(PRUP_JDBC_URL,
"Mandatory field");
String mboxName = (String) dict.get (PROP_MBOX_NAME);
if (mboxName == null)
throw new ConfigurationException(PROP_MBOX_NAME,
"Mandatory field");
ConfiguredDbMailbox2 mailbox = new ConfiguredDbMailbox2(

} finally {

Se

if

jdbcUrl);

Properties props = new Properties ();
props.put(Mailbox .NAME_PROPERTY , mboxName);
newRegistration = context.registerService(

Mailbox.class.getName (), mailbox, props);
rviceRegistration oldRegistration =
registration.getAndSet (newRegistration);
(oldRegistration != null) oldRegistration.unregister ();

DRAFT PREVIEW prepared for Christopher Brind

9.2 Building Configurable Objects 199

instance of ManagedServiceFactory with a single factory PID, and it would
create zero or more instances of the port listener objects.

Listing 9.7 The ManagedServiceFactory interface

public interface ManagedServiceFactory {
public String getName ();

public void updated(String pid, Dictionary properties)
throws ConfigurationException;

public void deleted(String pid);

Listing 9.7 shows the methods of ManagedServiceFactory. It is a little more
complex than ManagedService, but still fairly simple. Let’s look at the meth-
ods in turn.

The first method getName is something of an anomaly — it should return a
human-readable name for the factory.

The second method updated is essentially the same as the updated method
of ManagedService in that it provides configuration data to us in the form
of a dictionary. However there is an additional PID parameter, which is a
unique PID for an individual configured object. In our HTTP server example,
there would be one of these PIDs for each port listener. It’s important to
distinguish between this PID and the “factory” PID that we attach to the
ManagedServiceFactory registration: the factory PID is supplied by us, but
the individual PIDs are generated as unique strings by the CM implementation.

The third method deleted also takes an individual PID argument, and CM
uses this method to instruct us to delete any configured objects that we have
been created for the specified PID.

Note that there is no create method on this interface! The updated method
serves for both creating new configured objects and updating existing ones.
Our implementation of ManagedServiceFactory is required to atomically cre-
ate and configure a new object if updated is called with a PID that we have
not previously seen.

All of the above strongly suggests that we need to use some kind of map
with the individual PID as the key. Indeed almost all implementations of
ManagedServiceFactory do exactly that. Listing 9.8 shows a factory that
creates instances of HT'TP port listeners; the HttpPortListener class itself is
omitted as it is not interesting. It is sufficient to know that it has a constructor
taking a port number and base directory as parameters, and it has start and
stop methods. We must be careful to stop the previously configured port
listener for the associated PID, as it is not possible to have two listeners on
the same port simultaneously. Of course another listener with a different PID

DRAFT PREVIEW prepared for Christopher Brind

200 Chapter 9. Configuration and Metadata

may be configured to use the same port, but we do not try to detect this error
here, it will be handled in the start method of HttpPortListener.

On line 27 we check whether the dictionary is null. It is valid for a CM
implementation to pass a null dictionary to the updated method of a factory,
and this has a slightly different meaning from calling the deleted method. In
our example we treat null in the same way as we treat deletion, but we must
always be prepared to receive a null.

The activator for this example is omitted as it is trivial. It is required only
to register an instance of HttpPortListenerFactory under the ManagedSer-
viceFactory interface and supply a service PID. We again use the fully quali-
fied class name, i.e. org.osgi.book.configadmin.HttpPortListenerFactory,
as the PID.

9.2.5. Multiple Configured Objects with Filelnstall

We can now use Filelnstall to test the factory, and again we create a file
named something.cfg in the standard properties file format. Now, each file
corresponds to a single individual configuration record, i.e. the configuration
for one HttpPortListener, with the filename prefixed by the factory PID.
But we must be able to create multiple files for the same factory PID, so we
add a hyphen and a suffix.

This suffix is referred to as the alias, so the name of the filename will be of
the form <factoryPid>-<alias>.cfg. The alias is an identifier that is used
by Filelnstall to associate the file with a particular individual configuration
record®. We supply the alias as an arbitrary string, and it can be something
as simple as a number, but it may be better to use string which helps us to
remember something about what the configuration record is for.

After installing and starting our HT'TP listener bundle, we can create a file in
the load directory with the following contents:

port=80
baseDir=./pages

This can be saved in a file named org.osgi.book.configadmin.HttpPort-
ListenerFactory-main.cfg, because this is configuration for the “main” lis-
tener on port 80. When Filelnstall detect this file it will instruct our factory
to create a new object:

osgi> install file:http_listeners. jar
Bundle id is 5

5The alias is not the same as the PID of the individual configuration record. The PID is
generated by CM and, as we will see shortly, FileInstall has no control over the generated
values.

DRAFT PREVIEW prepared for Christopher Brind

o oA w

o

11

13
14

16
17

19
20
21

23
24
25
26
27
28
29
30
31
32

34
35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52

55
56
57
58

9.2 Building Configurable Objects 201

Listing 9.8 A ManagedServiceFactory for HT'TP Port Listeners

package org.

import java.
import java.
import java.
import java.

osgi.book.configadmin;

io.File;
util.Dictionary;
util.Map;

util.concurrent.ConcurrentHashMap;

import org.osgi.service.cm.ConfigurationException;
import org.osgi.service.cm.ManagedServiceFactory;

public class HttpPortListenerFactory implements ManagedServiceFactory {

private static final String PROP_PORT = "port";
private static final String PROP_DIR = "baseDir";

private final Map<String , HttpPortListener> map

= new

ConcurrentHashMap<String, HttpPortListener >();

public String getName () {
return "HTTP Port Listener Factory";

public void updated(String pid, Dictionary dict)
throws ConfigurationException {

HttpPortListener newlListener = null;
try {
if (dict != null) {

String portStr = (String) dict.get (PROP_PORT);
if (portStr == null)
throw new ConfigurationException (PROP_PORT,
"Mandatory field");
int port = Integer.parselnt (portStr);

String dirStr = (String) dict.get (PROP_DIR);
if (dirStr == null)
throw new ConfigurationException (PROP_DIR,
"Mandatory field");
File dir = new File(dirStr);
if (!dir.isDirectory())
throw new ConfigurationException (PROP_DIR,
"Base directory does not exist: " + dir);

newlListener = new HttpPortListener (port, dir);

} catch(NumberFormatException e) {

throw new ConfigurationException(PROP_PORT, "Invalid port");
} finally {
HttpPortListener oldListener = (newListener == null) 7
map.remove (pid) : map.put(pid, newListener);
if (oldListener != null) oldListener.stop();
if (newListener != null) newlListener.start ();

}

public void deleted(String pid) {
HttpPortListener oldListener = map.remove (pid);
if (oldListener != null) oldListener.stop();

DRAFT PREVIEW prepared for Christopher Brind

202 Chapter 9. Configuration and Metadata

osgi> start 5

osgi> STARTED listener , port=80, directory=./pages

The output on the last line comes from the start method of HttpPortLis-
tener. If we change the value of the baseDir property and save the file, then
we see the following output:

Updating configuration from org.osgi.book.configadmin.HttpPortLis<>
tenerFactory-—main.cfg

STOPPED listener , port=80, directory=./pages

STARTED listener , port=80, directory=/home/www/html

Suppose we create another file named org.osgi.book.configadmin.Http-
PortListenerFactory-secondary.cfg:

STARTED listener , port=8080, directory=./MyWebPages

Finally, suppose we delete the file org.osgi.book.configadmin.HttpPort-
ListenerFactory-main.cfg; the corresponding listener will be stopped but
the “secondary” one will keep going:

STOPPED listener , port=80, directory=/home/www/html

9.2.6. A Common Mistake

When implementing the ManagedServiceFactory interface to create multiple
configured objects, there is a very common misconception that the individual
objects should implement ManagedService and be registered as services under
that interface.

This is a very understandable error, since ManagedService is used for config-
uring objects after they are created so it seems to make sense that the objects
created by a ManagedServiceFactory should implement ManagedService in
order to continue receiving new configuration data after creation... and per-
haps we should use the PID supplied by the factory for the PID of our Man-
agedService?

However this is wrong, and it is important to understand why. When using a
ManagedServiceFactory, configuration changes to existing objects are always
passed via the factory, which is solely responsible for reconfiguring the objects
it previously created. Thus the name “factory” only describes half of what it
is really responsible for!

Here is another way to put it: CM neither knows nor cares what kind of objects
are created by a ManagedServiceFactory, so when one of those objects needs
to be reconfigured, CM does not attempt to do so directly. Instead, it asks
the factory that originally created the object to find and reconfigure it. This
is why the factory needs to store any object it creates in a map.

DRAFT PREVIEW prepared for Christopher Brind

9.2 Building Configurable Objects 203

We assume that a factory always knows how to reconfigure any object that it
has itself created. In some cases the objects cannot be directly reconfigured
— e.g., if they are immutable and take configuration only via constructor
parameters, as in the example of the HttpPortListeners — these must be
destroyed and recreated by the factory. In other cases there may be mutator
methods on the objects that allow the factory to reconfigure them without
destroying and recreating. These are implementation details of the objects
and the factory; CM itself does not care.

What would happen if we ignored this warning and did register each object
created from a factory under the ManagedService interface? In fact this is
forbidden by the Configuration Admin specification because it would force two
configurations to have the same PID. The CM implementation would ignore
the ManagedService registration and log an error.

9.2.7. Multiple Configured Service Objects

On the other hand, it is quite valid and indeed common for the objects we
create from a ManagedServiceFactory to be registered as some other kind of
service.

Let’s return to the database-backed mailbox example. Previously we created
a single instance of this mailbox connected to a single database, but there
may in fact be many databases that we could use as mailboxes. The user
or an administrator could configure one mailbox service for each database,
therefore the number of services is determined by the configuration. We will
use a ManagedServiceFactory that both creates the mailboxes and registers
them under the Mailbox service, as shown in Listings 9.9 and 9.10.

Notice the very strong similarity between this factory code and the code in List-
ing 9.6 for the singleton ConfiguredDbMailboxManager. Both classes manage
instances of the ConfiguredDbMailbox2 class; but the factory version stores
them in a map rather than a reference field. Thus we arrive at essentially the
same idiom for implementing both MangedService and ManagedServiceFac-

tory’!

9.2.8. Configuration Binding

When a configuration object is created by Filelnstall or some other manage-
ment agent, it is usually created “unbound”. This means it is available to be
consumed by any bundle that publishes a configuration target (a Managed-
Service or ManagedServiceFactory) with the correct PID.

6In a sense, a ConcurrentHashMap is just a multi-entry AtomicReference. Or if you prefer,
an AtomicReference is just a single-entry ConcurrentHashMap. ..

DRAFT PREVIEW prepared for Christopher Brind

© N o o

10
11
12
13
14

16
17
18

20
21
22

204 Chapter 9. Configuration and Metadata

Listing 9.9 Activator for Multiple Configured Services

package org.osgi.book.configadmin;
import java.util.Properties;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.Constants;

import org.osgi.service.cm.ManagedServiceFactory;

public class ConfiguredDbMailboxActivator3 implements BundleActivator {
public void start(BundleContext context) throws Exception {
Properties props = new Properties ();
props.put (Constants.SERVICE_PID ,
ConfiguredDbMailboxFactory.class.getName ());

context.registerService (ManagedServiceFactory.class.getName (),
new ConfiguredDbMailboxFactory (context), props);

}

public void stop(BundleContext context) throws Exception {

}

However, as soon as CM matches up the configuration with a consumer bundle
and passes it to the updated method of a configuration target published by that
bundle, the configuration becomes “bound”, meaning it cannot be supplied to
any other bundle, even one that publishes another configuration target with the
same matching PID. Technically the configuration is bound to the location of
the bundle that consumes it, i.e. the URL from which the bundle was installed,
and it cannot subsequently be used by another bundle with a different location.
The location is thus used as a kind of ID for the bundle. The configuration
will remain bound until the consuming bundle is uninstalled — at that point
it will revert to the unbound state and can again be supplied to any bundle
offering a configuration target with the correct PID.

Sometimes configurations are created already in the bound state and never be-
come unbound. However this is less common because unbound configurations
are more generally useful. This topic will be discussed in more detail when we
look at how bundles create and update configurations.

9.3. Describing Configuration Data

We have now seen essentially all of the ways for our application to use configu-
ration data, at least with the lowest level of API available to us. We have also
seen how to use a simple existing management agent to provide configuration
data to the application.

However, there is a missing piece of the puzzle. In order to provide configu-

DRAFT PREVIEW prepared for Christopher Brind

o v oA w

10
11
12

14

16
17

19
20
21

23
24

27
28
29

31
32
33
34

35

55
56
57

60
61
62
63

9.3 Describing Configuration Data 205

Listing 9.10 Factory for Multiple Configured Services

package org.osgi.book.configadmin;

import java.util.Dictionary;

import java.util.Map;

import java.util.Properties;

import java.util.concurrent.ConcurrentHashMap;

import org.osgi.book.reader.api.Mailbox;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;
import org.osgi.service.cm.ConfigurationException;
import org.osgi.service.cm.ManagedServiceFactory;

public class ConfiguredDbMailboxFactory implements ManagedServiceFactory

private static final String PROP_JDBC_URL = " jdbcUrl";
private static final String PROP_MBOX_NAME = "mboxName";

private final BundleContext context;
private final Map<String ,6ServiceRegistration> registrations
= new ConcurrentHashMap<String, ServiceRegistration >();

public ConfiguredDbMailboxFactory(BundleContext context) {

this.context = context;

public String getName () {
return "Database Mailbox Factory";
}

public void updated(String pid, Dictionary dict)
throws ConfigurationException {

ServiceRegistration newRegistration = null;
try {
if (dict != null) {
String jdbcUrl = (String) dict.get(PROP_JDBC_URL);
if (jdbcUrl == null)

throw new ConfigurationException (PROP_JDBC_URL,
"Mandatory field");
String mboxName = (String) dict.get (PROP_MBOX_NAME);
if (mboxName == null)
throw new ConfigurationException(PROP_MBOX_NAME ,
"Mandatory field");
ConfiguredDbMailbox2 mailbox = new ConfiguredDbMailbox2(

jdbcUrl);
Properties props = new Properties ();
props.put (Mailbox .NAME_PROPERTY , mboxName);
newRegistration = context.registerService (

Mailbox.class.getName (), mailbox, props);

} finally {
ServiceRegistration oldRegistration = (newRegistration == null)
? registrations.remove (pid)
registrations.put(pid, newRegistration);
if (oldRegistration != null) oldRegistration.unregister ();

}

public void deleted(String pid) {
ServiceRegistration oldRegistration = registrations.remove(pid);
if (oldRegistration != null) oldRegistration.unregister ();

DRAFT PREVIEW prepared for Christopher Brind

206 Chapter 9. Configuration and Metadata

ration data via Filelnstall, we had to know the PIDs of all the configurable
objects and the names and meanings of all the fields they expected to read
from their configuration, along with knowledge of which fields were optional
and what their default values were. How is a user or administrator supposed
to know all of this?

We could write a thick manual to accompany our program, but this is not a
very satisfactory answer. As all developers know, documentation easily gets
out of date with respect to features of the software. Also it creates a huge
burden on our users, who must thoroughly read a large list of PIDs and field
names before they can make any change. This is not how software should be
configured in the 21st century.

If we could make our configurable object self-describing, then it would be
possible to offer configuration tools to the end user which are far more powerful
and usable than a plain old text editor. Such a tool could tell the user:

e Which objects in the system are configurable.

¢ What fields are supported by each object, and what the meaning of those
fields is.

o What the expected data type of each field is.

e What the range or list of expected values is.

Even better, if we could describe this information in a standard form then
we would not need to build tools specifically for each application, but instead
tools from specialist vendors could be used with multiple applications.

The OSGi Compendium offers just such a standard form for describing the
configuration needs of objects — the Metatype Service Specification.

9.3.1. Metatype Concepts

The Metatype Service Specification defines a way to structure the metadata
about configured objects in such a way that it can be used to automatically
construct a reasonable user interface within a tool. It describes two basic
concepts:

Object Class Definitions (OCDs) cousist of a name, description, a set of At-
tribute Definitions, and optionally an icon.

Attribute Definitions (ADs) consist of a name, description, type, cardinality
(i.e. how many values are permitted) and optionally a list of allowed
values.

DRAFT PREVIEW prepared for Christopher Brind

9.4 Building a Configuration Management Agent 207

The Metatype Service is not in fact tied only to Configuration Admin, it can be
used for publishing metadata about many kinds of artefact, but nevertheless
it maps very neatly onto Configuration Admin concepts. An OCD can be
mapped onto a ManagedService or ManagedServiceFactory object, and an
AD can map onto a dictionary key passed to those objects. So when we create
new configuration objects using CM, we should also create metadata for them
using the Metatype Service.

There are two ways to do this. We can publish a service under the MetaType-
Provider interface, which allows us to dynamically respond to metadata
queries, or we can create an XML file in a well-known location inside our
bundle.

Which way is best? Usually the file-based approach should be preferred, be-
cause except in rare circumstances the service publication approach results
in repetitive boilerplate code. XML also has the advantage that it can be
inspected by tools while our application is offline, whereas the service-based
would allow us only to configure our application while it is running.

Whichever way is chosen to expose metadata, there is an API that can be used
within the OSGi runtime to inspect all available objects and attributes. The
MetaTypeService is published by a special bundle and it provides a convenient
mechanism for looking up metadata in the currently running OSGi framework.
However it cannot offer any help with inspecting metadata while the framework
is offline, nor can it be used to query metadata from another instance of OSGi,
e.g. over a network.

9.3.2. Creating a Metadata File

The metadata XML files must be created in the 0SGI-INF/metatype directory
of a bundle.

TODO

9.4. Building a Configuration Management Agent

Now we turn to the other audience for this chapter: those who wish to write
management agents that will allow an OSGi application to be configured in
a particular way, i.e with a specific format and storage mechanism for the
configuration data.

First let’s discuss the term “management agent”. Recall that we applied this
term to the Filelnstall bundle that we worked with in the the previous section,
but what does it really mean? The idea of a management agent in OSGi is in

DRAFT PREVIEW prepared for Christopher Brind

208 Chapter 9. Configuration and Metadata

fact very general, and the task of managing configuration is only one aspect.
There are many other tasks that a management agent could do, and we will
discuss these tasks in a later chapter, but not all management agents need to
do everything. Therefore, they can vary enormously in size and complexity.
Filelnstall is a very small and simple example.

One area in which Filelnstall is weak is its handling of data types in config-
uration data. Since it works entirely with properties files and does not look
at metadata published by the Metatype Service, it cannot infer the type of
data in each field; therefore it treats everything as a string. This is why in our
HttpPortListener example it was necessary to parse the port number into an
integer. Other file formats exist which offer more information about the type
of the data they contain, for example XML would allow us to add an attribute
to each field element that specified its type, as follows:

<configuration>
<field name="baseDir" type="String" value="./pages"/>
<field name="port"' type="Integer' value="1234"/>
</configuration>

However XML may be considered too verbose. An interesting alternative is
JSON (JavaScript Object Notation) which has a range of built-in primitive
data types — strings, numbers and booleans — where the type of a field is
indicated directly by the syntax. For example the same data could be written
in JSON like this:

"

"baseDir" : "./pages',
"port ' : 1234

}

Here the double quotes around the value for the baseDir field clearly indicate
that it is a string type, whereas the lack of quotes and numeric content for
the port value indicate it is a number. If we built a management agent that
understood JSON data, then it could supply numeric fields — such as the port
number in this example — directly to the configuration targets as Integer
objects rather than encoded in as strings.

So for our example, we will build exactly that. However we will avoid the fiddly
task of polling the filesystem, and instead create some console commands that
allow the user to load, update, view and delete configurations. Creating console
commands was first discussed in Section 7?7, you may wish to refer back to
that section to refresh some of the details.

9.4.1. Listing and Viewing Configurations

First we will write a command for viewing existing configurations. Operations
on the state of configuration must be done by calling methods on the Config-
urationAdmin service, which is published by the CM bundle. The simplest

DRAFT PREVIEW prepared for Christopher Brind

Bow

© w N o

9.4 Building a Configuration Management Agent 209

operation is listing configurations, so we will first build a console command for
viewing existing configurations and use it to look at the configurations that
have been created by Filelnstall.

As ConfigurationAdmin is a service, we need a ServiceTracker to access it.
Listing 9.11 shows the bundle activator for our command bundle, which creates
a tracker, passes it to a new command provider and registers the command
provider.

Listing 9.11 Activator for the JSON Configuration Bundle

public class JsonConfigCommandsActivator implements BundleActivator {

private ServiceTracker cfgAdmTracker;
private ServiceRegistration reg;

public void start(BundleContext context) throws Exception {
cfgAdmTracker = new ServiceTracker (context,
ConfigurationAdmin.class.getName (), null);
cfgAdmTracker .open ();

reg = context.registerService(CommandProvider.class.getName(),
new JsonConfigCommands (cfgAdmTracker), null);

}

public void stop(BundleContext context) throws Exception {
reg.unregister ();
cfgAdmTracker.close ();

The command provider itself will be relatively large when it is completed,
so we will attack it piecemeal. The constructor and getHelp method are
uninteresting and so not shown here. Instead we will look first at two utility
methods to output the contents of a configuration record in either summary or
detailed form. We will use the summary form for printing listings of multiple
configurations, and the detailed form for printing single configurations.

Now we will write the _listConfigs method, as shown in Listing 9.13. This
command takes an optional argument that can be used to narrow the list
of configurations to a specific PID; the argument can contain wildcards, or
omitted entirely in which case all configurations will be listed. It works by
calling the 1istConfigurations method on the ConfigurationAdmin service,
which takes a filter string in the usual format, or null.

Our command can now be used with the existing configurations created by
FileInstall in the previous section:
osgi> listConfigs

PID=org.osgi.book.configadmin.HttpPortListenerFactory —1245012586509 -0+~
,factoryPID=org.osgi.book.configadmin.HttpPortListenerFactory

osgi> listConfigs *HttpPortListenerx

PID=org.osgi.book.configadmin.HttpPortListenerFactory —1245012586509—0
Factory PID=org.osgi.book.configadmin.HttpPortListenerFactory

DRAFT PREVIEW prepared for Christopher Brind

oG A W N e

11

13

15
16
17

19
20

22
23
24
25
26
27
28
29

0 N U A W N

10
11
12
13
14
15
16

18
19
20

22
23
24
25
26
27
28

210 Chapter 9. Configuration and Metadata

Listing 9.12 Utility Methods for Viewing Configurations

void showConfigSummary (Configuration config, StringBuffer buffer) {
buffer.append ("PID=").append(config.getPid ());
String factoryPid = config.getFactoryPid ();
if (factoryPid != null)
buffer.append (", factoryPID=").append(factoryPid);

}

void showConfigDetailed (Configuration config, StringBuffer buffer) {
buffer.append ("PID=").append(config.getPid ()).append(’\n’);

String factoryPid = config.getFactoryPid ();
if (factoryPid != null)
buffer.append("Factory PID=").append(factoryPid).append(’\n’);

String location = config.getBundleLocation ();
location = (location != null) ? location : "<unbound>";

buffer.append ("Bundle Location:").append(location).append(’\n’);

buffer.append ("Contents:\n");

Dictionary dict = config.getProperties ();
if (dict != null) {
Enumeration keys = dict.keys ();

while (keys.hasMoreElements ()) {
Object key = keys.nextElement ();
buffer.append(’\t’).append(key).append(’=’)
.append(dict.get(key)).append(’\n’);

Listing 9.13 Listing Configurations

public void _listConfigs(CommandInterpreter ci) throws IOException,
InvalidSyntaxException {
ConfigurationAdmin cfgAdmin =
(ConfigurationAdmin) cmTracker.getService ();
if (cfgAdmin == null) {
ci.println("ConfigurationAdmin service not available");
return;

}

String filter = null;
String pid = ci.nextArgument ();
if (pid != null)
filter = "(service.pid=" + pid + ")";
Configuration[] configs = cfgAdmin.listConfigurations(filter);
if (configs == null || configs.length = 0)
ci.println("No configurations found");
} else if(configs.length == 1) {
StringBuffer buffer = new StringBuffer ();
showConfigDetailed (configs [0], buffer);
ci.println(buffer);
} else {
for (int i = 0; i < configs.length; i++4) {
StringBuffer buffer = new StringBuffer ();
showConfigSummary (configs[i], buffer);
ci.println(buffer);

DRAFT PREVIEW prepared for Christopher Brind

9.4 Building a Configuration Management Agent 211

Bundle Location:file:http_listeners. jar
baseDir=./load
felix.fileinstall.filename=org.osgi.book.configadmin.HttpPortListe<>
nerFactory —1.cfg
port=38080
service.factoryPid=org.osgi.book.configadmin.HttpPortListenerFactory
service .pid=org.osgi.book.configadmin.HttpPortListenerFactory —1245+
012586509 -0

9.4.2. Creating and Updating Configurations

Now we will add a command to the same command provider class for creating
and updating configurations. Somewhat surprisingly, the principal method on
ConfigurationAdmin that we need to use is named getConfiguration! The
reason for this is the need to avoid race conditions: if there were a createCon-
figuration method and two clients were to call it at around the same time
with the same PID, then there is a risk that we would get two configurations
with the same PID, which is not allowed. So getConfiguration works by
returning an existing Configuration object if one exists with the specified
PID, or creating a new one if not.

On the other hand, creating a configuration for a factory does not suffer from
race conditions: it is permitted to have multiple configurations for the same
factory PID, and in this case the individual PIDs will be generated by the CM
implementation. Therefore we have a createFactoryConfiguration method
which takes the factory PID and always creates a new Configuration object.

Before writing this method we will need to consider how to map JSON struc-
tures to CM configurations. JSON allows for deeply nested structures which
are more complex than CM can represent, so we must limit the complexity of
the files loaded by our command. If a file contains nested objects or arrays
then we will reject it by throwing a ConfigurationException. On the other
hand, we can handle an array of top-level objects if we assume that they map
to individual configurations for a factory. Therefore we employ the following
simple rule: if the input file contains a single top-level object then we assume
it is a singleton configuration, and if the input file contains an array at the
top-level then we assume the members of that array are factory configurations.
Following this assumption means we don’t have to write separate methods for
creating singleton and factory configurations.

To parse the JSON data we can use one of the many open source parser
libraries available, such as Jackson[?]. The code to interface with the parser is
omitted here because it is verbose and not directly relevant to OSGi, but let
us assume that we have a method available named parseJson which takes a
java.io.File as input and returns an array of Dictionary objects.

Given this method, we can write our _loadConfig command as shown in
Listing 9.14.

DRAFT PREVIEW prepared for Christopher Brind

© W N oA W N e

11
12
13
14
15

17
18
19
20
21
22
23
24
25
26
27

212 Chapter 9. Configuration and Metadata

Listing 9.14 Loading JSON Data

public void _loadConfig(CommandInterpreter ci)
throws JsonParseException, IOException, ConfigurationException {

String fileName = ci.nextArgument ();
String pid = ci.nextArgument ();
if (fileName == null || pid == null) {

ci.println("Usage: loadConfig <file> <pid> - load JSON-format" +

" configuration data from file into the specified PID");

return;
¥
ConfigurationAdmin cfgAdmin = (ConfigurationAdmin) cmTracker.getService ();
if (cfgAdmin == null) {
ci.println("ConfigurationAdmin service not available");
return;
¥
Dictionary [] dicts = parseJson(new File(fileName));
if (dicts.length == 1)
System.out.println("--> getting configuration");
Configuration config = cfgAdmin.getConfiguration(pid, null);
System.out.println("--> updating configuration");
config.update(dicts [0]);
} else {
for (Dictionary dict : dicts) {
System.out.println("--> creating factory configuration");
Configuration config = cfgAdmin.createFactoryConfiguration (pid, null
System.out.println("--> updating configuration");

Creating or updating a configuration record is a two-step procedure: first
we obtain a Configuration object via getConfiguration or createFacto-
ryConfiguration; then we call its updated method with the dictionary of
configuration properties. It is on the second step that the ManagedService or
ManagedServiceFactory — if any exist with a matching PID — are called by
the CM runtime.

9.4.3. Creating Bound and Unbound Configurations

As shown in Listing 9.14, the methods used in CM to create configurations are
getConfiguration (for singleton configurations) and createFactoryConfig-
uration. Both of these are shown taking a PID for the first argument and
null for the second.

What is the null second argument? It is the bundle location to which the
new configuration should be bound. As described in Section 9.2.8, configu-
rations can be bound to specific bundles based on location, but Management
Agents should normally create unbound configurations that can be consumed
by any bundle offering a configuration target with the correct PID. To create
an unbound configuration we simply pass a location of null.

Both of these methods also have single-argument versions that only take a PID
as input. These single-argument methods are used to create configuration ob-

DRAFT PREVIEW prepared for Christopher Brind

9.5 Creating a Simple Configuration Entry 213

jects bound to the location of the calling bundle; in other words, configuration
objects that can only be consumed by the same bundle that created them.
However it is not so useful for a bundle to configure itself in this way. The
main purpose of the CM spec is to allow the task of loading and managing
configuration to be decoupled from components which need to receive config-
uration, but if a bundle loads its own configurations then these tasks are not
effectively decoupled.

The reason for having these two versions is to allow administrators to use
security to control which bundles are allowed to act as Management Agents.
The dual-argument versions of getConfiguration and createFactoryCon-
figuration are intended for use by Management Agents, and Java security
can be used to control which bundles are permitted to call these methods.
When security is enabled, only bundles designated as Management Agents are
able to supply configuration to other bundles. On the other hand, any bundle
should be allowed to use CM to configure itself (even if we don’t consider it
useful), so the single-argument methods do not require special permission in
order to call them. However, none of the preceding discussion is relevant if
you are not using Java security to lock down your application, and it is quite
rare to do so. Just remember that for a Management Agent we need to call
the dual-argument methods with null as the second argument.

9.5. Creating a Simple Configuration Entry

We saw in the previous section how to receive configuration data. Now we
will look at how to load configuration data and create configuration entries.
This is done using the ConfigurationAdmin interface. Configuration Admin
is implemented as a service, so we will need to use a ServiceTracker to get
hold of the implementation of the service.

Somewhat counter-intuitively, the method we call to create a configuration is
called getConfiguration! This method either returns an existing configura-
tion with the PID that we specify, or it creates a new configuration with that
PID. There is no “createConfiguration” method for a very good reason: it
guards against race conditions. If there was such a “create” method, then two
threads could call it simultaneously and create two configurations with the
same PID, which is not allowed.

On calling getConfiguration we are returned a Configuration object. We
can now set the properties by calling update on that object and passing a
Dictionary. It is only then that the updated method of any corresponding
ManagedService is called. The properties are also persisted at that point, so
that they can be given to instances of ManagedService that may appear later.

Listing 9.15 shows an example of a bundle activator that loads configuration

DRAFT PREVIEW prepared for Christopher Brind

o

10
11

13

15
16
17

19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41

214 Chapter 9. Configuration and Metadata

data from a file, which is assumed to be in the normal Java property file format.
There is a lot wrong with this simplistic activator: it assumes that it will be
started after the CM bundle, and it uses hard-coded values for the PID and file
name. It is intended only as a minimal example to test the ManagedService
implementations above. In Section 7?7 we will build a more realistic bundle
that manages the link between CM and property files. But before doing that,
we switch back to looking at the consumer aspect of CM.

Listing 9.15 Loading Configuration Data from a File

package org.osgi.book.configadmin;

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Properties;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.service.cm.Configuration;
import org.osgi.service.cm.ConfigurationAdmin;

public class SimpleFileConfigActivator implements BundleActivator {

private static final String PID =
"org.osgi.book.configadmin.ConfiguredDbMailbox";
private static final String FILE = "config.properties";

public void start(BundleContext context) throws Exception {
// Load the properties
Properties props = new Properties ();
FileInputStream in = new FileInputStream(FILE);
props.load(in);

// Set the configuration
ServiceReference ref = context.getServiceReference
ConfigurationAdmin.class.getName ());
if (ref != null) {
ConfigurationAdmin cm =
(ConfigurationAdmin) context.getService(ref);
if (cm != null) {
Configuration config = cm.getConfiguration(PID, null);
config.update (props);
}

context.ungetService (ref);

}

public void stop(BundleContext context) throws Exception {

}
}

DRAFT PREVIEW prepared for Christopher Brind

Part Il.

Component Oriented
Development

DRAFT PREVIEW prepared for Christopher Brind

10. Introduction to Component
Oriented Development

In the introduction to Part I, we discussed the use of modularity techniques in
the general engineering disciplines to manage complexity, and drew parallels
with the need to modularise software.

Another concept that is very important in traditional engineering is the idea
of the component.

In the physical world everybody knows what components are and why they
are useful. They range from the very simple, such as a standard screw, to
the more complex such as an LCD flat panel display. Going back to our
example of the Boeing 747, many of its parts are components and some of
those components were not necessarily designed to be used in an aircraft: they
could equally be used in the construction of a car or even a house. Others will
be more specialised but still not limited to the 747, and could be used in other
aircraft. Still others are specific to the 747, but many copies of the same kind
of component will exist throughout a single aircraft.

This is the point of components: reuse. If every single one of the six million
parts in a 747 had to be individually designed and machined from scratch,
then Boeing would probably still be building the first 747 today. By copying
the design of components many times we can shorten the time to market for
our products.

Some products can even be built entirely out of components. Here the 747
example fails us because aircraft must still be largely custom-designed; a better
example would be a house. So many parts of modern houses are standarised
that it is quite possible to build one entirely out of off-the-shelf components.
The same could be said of a desktop computer. The resulting products can
be just as high quality as their custom-designed equivalents but at a fraction
of the cost.

In software we would like to use components also, and at least in theory soft-
ware components have a huge advantage over physical components like screws
and doors, because the latter still have a unit cost whereas software compo-
nents can be reproduced infinitely many times for free. Unfortunately many
of the useful properties of true components have been difficult to reproduce in
software, as we will soon see.

DRAFT PREVIEW prepared for Christopher Brind

218Chapter 10. Introduction to Component Oriented Development

10.1. What is a Software Component?

The software development world has for more than two decades been dom-
inated by the paradigm known as Object-Oriented Programming, or OOP.
Every mainstream programming language supports this paradigm and it is
universally taught in Computer Science courses around the world.

But first, let’s imagine what could be possible if we had true software com-
ponents. Would this reduce the task of software development to assembling
pre-written components? Probably not. Most software products still require
significant levels of custom development: they are in this respect closer to
aeroplanes than houses. But there are still great potential gains from the use
of components in software.

The differences

DRAFT PREVIEW prepared for Christopher Brind

11. Declarative Services

The OSGi Services model is the lynchpin of OSGi’s component model. How-
ever as we saw in previous chapters, working with services using the basic APIs
available in the OSGi core specification can be fraught with difficulties. It is
difficult firstly to write correct code —i.e. code that handles concurrent events
properly, does not hold on to references longer than it should, avoids deadlocks
and remains responsive — and it is even more difficult to consistently write
such code as we use services over and over again.

This is not really a problem with the services model itself, it is simply a
question of finding the right abstraction level. Dealing with dynamic services
that come and go in multiple threads is not an easy task, so we should rely on
abstractions that handle the low-level details for is. The ServiceTracker class
that we have used extensively is just such an abstraction, and as abstractions
go it is a very good one. But it is still a very low-level one that requires us to
write a lot of boilerplate “glue” code.

11.1. The Goal: Declarative Living

One of the reasons why low-level OSGi code is hard to test is that it mixes
up the desired functionality of the code — its “business logic” — with the boil-
erplate that is necessarily present merely to make the code work. Thus the
functionality cannot be separated from the glue and cannot be tested in iso-
lation.

This is an odd and uncomfortable situation for a technology that aims to
improve the modularity and separation of concerns in our code!

Another problem is that it is difficult to understand the purpose of the glue
code, except by carefully reading and analysing it. For example, suppose wish
to make service A depend on service B, such that if B is not present then
A will not be available either. Although we can achieve this easily with Ser-
viceTracker, our simple intention, i.e. A-depends-on-B, is hidden behind the
mechanics of tracking B, overriding addingService, passing the B instance
to A, etc.

Therefore we require a solution that allows us to first isolate the real func-
tionality from the OSGi-specific glue code. Second, we would like to replace

DRAFT PREVIEW prepared for Christopher Brind

220 Chapter 11. Declarative Services

imperative glue code with simple declarations about our intent.

11.2. Introduction

The Declarative Services specification (“DS”), which is a part of the OSGi
Services Compendium, has exactly these goals. It is an abstraction that allows
us to write straightforward Java objects that do not even refer to the OSGi
APIs, and then declare the linkages between them using a simple XML-based
structure.

DS cannot support absolutely every use-case supported by the low-level APIs,
but that is the nature of an abstraction: by sacrificing a small number of
unusual use-cases, the majority that remain supported are made much easier.
Experience suggests that over 90% of cases are supportable by DS, and for the
rest we can simply drop down to the APIs.

11.2.1. Summary of Declarative Services Features

What does the DS specification offer in terms of features? The following list
is just a summary; don’t worry if some are unclear at this stage, they will all
be explained in detail later on.

Creation and Management of Component Instances

At its simplest, DS can be used to create and manage declared component
instances, which are simply Java objects.

Providing Services

DS components may optionally be published to the service registry under one
or more service interfaces. This occurs under the full control of DS’s runtime,
so that components may be unpublished if they become disabled for any reason,
and then published again when they are re-enabled.

An additional and very compelling feature of DS when it is used to publish
services is its ability to defer creation of the component until its service is
actually used by a client.

DRAFT PREVIEW prepared for Christopher Brind

11.2 Introduction 221

Referring to Services

Components often need to make use of other components, and in DS this is
done by declaring references to the services offered by those components. In
fact DS components can refer to any OSGi service, not just those published by
other DS components, and each component can refer to many different types
of service.

Service references can be customized to be optional or mandatory, unary or
multiple. Each reference is independently handled, so a component can have
a mandatory unary reference on one type of service along with an optional
multiple reference to another type.

Dynamic Lifecycle

DS components can be optionally declared with lifecycle methods, which allow
a component to have an “active” state. They may use this state to perform
some kind of action within the system such as running a thread or thread pool,
opening a socket, or interacting with a user.

Configuration

DS components can be supplied with configuration data in a number of ways.
One of these ways is via the Configuration Admin service, and DS interoper-
ates with Configuration Admin (when it is available) to ease the development
of configurable components. We never need to implement either the Managed-
Service or ManagedServiceFactory interfaces.

POJOs

DS components can be implemented entirely as Plain Old Java Objects, with-
out any reference to the OSGi APIs. This enhances testability and makes them
usable in other non-OSGi containers such as JEE or the Spring Framework.

11.2.2. A Note on Terminology and Versions

A note on terminology will be helpful if you have read about DS elsewhere.
DS is a specification, and a model for wiring together components dynamically
via services. It is implemented as an extender bundle, and this runtime bundle
is referred to as the Service Component Runtime (“SCR”). Unfortunately the
two terms DS and SCR are sometimes incorrectly used as interchangeable

DRAFT PREVIEW prepared for Christopher Brind

ESTRCNERS BN)

(S NIRRT

222 Chapter 11. Declarative Services

terms for the same thing, so this is something to bear in mind when reading
other texts on the subject.

This book principally describes version 1.1 of the DS specification, which is
part of the OSGi Release 4.2. Version 1.1 has a number of important improve-
ments over version 1.0, however it is still relatively new so it is important to
check that the SCR implementation we use is compliant with 1.1.

11.3. Declaring a Minimal Component

Let us first look at a minimal DS example. Listing 11.1 shows the imple-
mentation code for a component, which as we can see does not implement
any special interfaces or call any OSGi API methods; indeed, none of the
org.osgi.* packages are even imported, making this is a true POJO, albeit
a useless one! We have added a constructor that prints a message, so that we
can see when the object is created, but real components would not typically
do this.

Listing 11.1 Java Code for the Minimal DS Component

package org.osgi.book.ds.minimal;

public class HelloComponent {
public HelloComponent () {
System.out.println("HelloComponent created");
}
}

DS uses an XML file to declare components. Listing 11.2 shows the declaration
corresponding to our HelloComponent class. Note first the declaration of an
XML namespace, using the prefix scr. We must include this namespace in
order for SCR to treat our component using the new DS 1.1 features. It is also
useful to include as it allows XML editors to associate the document with a
schema and provide help generating the correct structure for the document.

Listing 11.2 Minimal DS Component Declaration

<?7xml version="1.0" encoding="UTF-8"7>

<!— "minimal.xml" —>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="org.osgi.book.ds.minimal.HelloComponent"/>

</scr:component>

What does the declaration in Listing 11.2 actually say? It simply asks the
runtime to create a new component as an instance of the HelloComponent
class. The class we specify in the class attribute of the implementation
element must be visible to the bundle in which we declare the component,

DRAFT PREVIEW prepared for Christopher Brind

11.4 Running the Example 223

so we can either include it directly in the bundle or import it from another
bundle in the usual way. The class does not need to implement any particular
interfaces but it must have at least an accessible zero-argument constructor.

Our minimal example is complete, but there is a final step before we can build
the bundle. Each bundle may declare any number of components, and the
corresponding XML files can be stored anywhere inside the bundle. Therefore
we need to list all of the declaration files somewhere so that SCR knows about
them; of course, this is done using a manifest header. SCR. looks for a header
named Service-Component containing a list of paths to the XML files. We
can simply add this header to our bnd descriptor as shown in Listing 11.3
because bnd will copy it straight through to the generated manifest. We also
have to tell bnd to include these files in the bundle, which we do with the
Include-Resource instruction’.

Listing 11.3 Bnd Descriptor for the Minimal DS Component

minimal_ds.bnd

Private—Package: org.osgi.book.ds.minimal
Service—Component: minimal.zxml
Include—Resource: minimal.zxml

11.4. Running the Example

To run this example we need to obtain an implementation of SCR. Equinox
supplies this as a bundle named org.eclipse.equinox.ds, but it has a depen-
dency on another bundle org.eclipse.equinox.util. Both of these bundles
are included with the main Equinox SDK archive or downloadable separately
from the Equinox download site?. We also need the OSGi compendium bundle,
but we assume that this is already installed.

Let’s install the minimal example bundle and the SCR bundles at that same
time:

osgi> install file:minimal_ds. jar
Bundle id is 4

osgi> install file:org.eclipse.equinox.ds_1.1.1.R35x_v20090806. jar
Bundle id is 5

osgi> install file:org.eclipse.equinox.util_1.0.100.v20090520 —1800.jar
Bundle id is 6

osgi>

Tt is unfortunate that we must list the same files twice. In fact bnd offers a less cumbersome
way of working with DS declarations, which we will see later. For now we stick to this
approach because it makes the underlying mechanics of using SCR clearer.

2Also if you are using Eclipse 3.5 or above as your IDE then you should find a copy of
these bundles in your ECLIPSE/plugins directory.

DRAFT PREVIEW prepared for Christopher Brind

224 Chapter 11. Declarative Services

Now let’s try starting both our bundle and the org.eclipse.equinox.ds
bundle. The org.eclipse.equinox.util bundle does not need to be started,
it is just a library.

osgi> start 4

osgi> start 5
HelloComponent created

osgi>

Note that nothing happens until we have started both the SCR bundle and our
own bundle. The SCR bundle need to be active for it to do anything, and our
bundle needs to be active because SCR ignores bundles in any other state.

The Equinox SCR implementation provides a pair of commands for inspecting
the state of our DS components. These commands are list, which gives us a
list of all components from all bundles, and component which gives us detailed
information about a specific component. Both commands have shorter aliases:
1s and comp respectively. Let’s try using the 1ist command now:

osgi> ls

All Components:

ID State Component Name Located in bundle
1 Satisfied org.osgi...minimal.HelloComponent minimal_ds (bid=4)

This shows there is just one component and its assigned ID is 1 (the component
name field is elided to fit on the page). Try typing the command component
1 now — it will print extensive information about the component, though most
of it will not yet make any sense.

11.5. Providing a Service

The minimal example above is, of course, utterly useless! There are much
easier ways to merely instantiate a class So we will expand the example by
publishing a component as a service. This requires us to define a new service
interface, so in this and the next few sections we will work with a very basic
logging service interface. Although OSGi does already define a logging service,
ours will be much more simplistic. The Log interface is shown in Listing 11.4 —
this listing also shows the bnd descriptor used to wrap the interface in an API
bundle named logapi that will be used by both the producers and consumers
of the API.

Now we write a bundle that provides an implementation of the log API. Again
keeping things as simple as possible, the ConsoleLog class in Listing 11.5
implements the Log interface and writes messages to the standard output or
standard error streams, depending on the severity level of the message. As
in the HelloComponent example, we add a constructor that prints a message
when the object is created, just so that we can see when the object is created.

DRAFT PREVIEW prepared for Christopher Brind

-

©o N o o

11

10
11

13
14
15
16
17
18
19

21
22
23

11.5 Providing a Service 225

Listing 11.4 A Simplistic Log Service Interface and Bnd descriptor.

package org.osgi.book.logapi;

public interface Log {

public static final int DEBUG = 0;

public static final int INFO = 1;

public static final int WARNING = 2;

public static final int ERROR = 3;

void log(int level, String message, Throwable t);
}

logapi.bnd
Export—Package: org.osgi.book.logapi

Listing 11.5 The Console Log Class

package org.osgi.book.ds.log.console;
import java.io.PrintStream;
import org.osgi.book.logapi.Log;

public class Consolelog implements Log {

public ComnsoleLog() {
System.out.println("ConsolelLog created");
public void log(int level, String message, Throwable t) {
PrintStream dest;
if (level > Log.WARNING) {
dest = System.err;
} else {
dest = System.out;
}
dest .println("L0OG: " + message);
if (t != null) t.printStackTrace(dest);
}
}

DRAFT PREVIEW prepared for Christopher Brind

0 N U A W N e

226 Chapter 11. Declarative Services

This implementation class is no different from what we would have written in
previous chapters. However now, instead of creating and publishing it as a
service by writing a bundle activator, we will ask SCR to do the work. Listing
11.6 shows the XML declaration file and bnd descriptor.

Listing 11.6 DS Declaration & Bnd Descriptor for the Console Logger

<7xml version="1.0" encoding="UTF-8"7>
<!— "consolelog.xml" —>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" configuration—p«

<implementation class="org.osgi.book.ds.log.console.ConsoleLog"/>
<service>
<provide interface="org.osgi.book.logapi.Log"/>
</service>
</scr:component>

consolelog_ds.bnd

Private—Package: org.osgi.book.ds.log.console
Service—Component: consolelog.xml
Include—Resource: comnsolelog.xml

Now we will run the bundle, assuming that the SCR bundle is still active from
the previous section:

osgi> install file:consolelog_ds. jar
Bundle id is 7

osgi> install file:logapi.jar
Bundle id = 8

osgi> start 7
osgi> services

{org.osgi.book.logapi.Log}={component.name=
org.osgi.book.ds.log.console.ConsolelLog, component.id=1,
service.id=31}

Registered by bundle: consolelog_ds_0.0.0 [7]
No bundles using service.

From the output of the services command we can see that the service has
been registered as we expected under the Log interface. But the really inter-
esting thing is what we don’t see: the message “ConsoleLog created” which
should have been printed when the constructor of the ConsoleLog class was
called. Since this message was not printed, the constructor cannot have been
called, and therefore the object must not have been instantiated. Yet we can
see a service registered in the service registry under the expected interface
name. So what is actually going on?

11.5.1. Lazy Service Creation

The explanation for the behaviour seen in the previous example is a useful
feature of Declarative Services called “delayed services”. All services created

DRAFT PREVIEW prepared for Christopher Brind

11.5 Providing a Service 227

by SCR are delayed by default, which simply means that SCR registers the
service with the service registry as soon as our bundle becomes active, but
it does not create an instance of our class until the service is actually used
by a client bundle. In other words the service object is created lazily or “on
demand”.

This largely fixes a weakness in the low-level approach to OSGi services: the
pro-active creation of unneeded services. With the conventional approach to
services expounded in Chapter 4, we may end up creating a large number of
services that are never used by any consumer. This happens because we want
the producers and consumers of services to be decoupled from each other, so
that the producers know nothing about the consumers and wvice versa. We
certainly succeed at this, and perhaps a little too well because the producers
do not know if any consumers even exist! Therefore the producers have to
speculatively create services just in case some consumer needs them, which
can be wasteful.

As an analogy, imagine a fast-food restaurant with a wide range of menu items,
all kept hot and ready to eat at any time. Such items have a limited shelf life:
if no customers order them then they must be thrown away, and the time and
ingredients used to make them are wasted.

How bad is this problem? Well, services are just Java objects which usually
have a very low marginal cost of production®. However if we just create one
instance, then simply loading the Java class becomes a significant part of the
cost. Unfortunately in OSGi we also have to create a class loader for the
bundle, and although class loaders are not very expensive, neither are they
free. So if we activate a bundle merely in order to instantiate a single object
and register it as a service — one that nobody even uses — then it will have is
a small but measurable impact on memory usage and performance. Scale this
up to hundreds of bundles and we see the problem may become acute.

DS’s delayed services feature is therefore very important, since it is able to
register the service without actually creating the service object*. Furthermore,
because the SCR lives in a separate extender bundle, it is not even necessary
for the framework to create class loader for our bundle until the last moment.
Therefore the registration of any number of services becomes essentially free.

There is one condition: we must not have a BundleActivator in our bundle.
Remember that SCR only looks at bundles in the ACTIVE state, so we must
start our bundle; however if the bundle has an activator then starting it will
require creation of a class loader so that the activator class can be loaded.
So to get the full benefit of lazy service creation, we must avoid declaring an

3The marginal cost of producing something is the cost of producing one more, given that
we have already produced many.

4There is no magic involved in this, nor does it involve the use of expensive proxy objects.
SCR simply registers a ServiceFactory as described in Section 4.11 on page 102

DRAFT PREVIEW prepared for Christopher Brind

[

O VWO oA W N

228 Chapter 11. Declarative Services

activator. In fact this is not so much of a problem, since bundles using DS
generally do not need activators, as we will see soon.

Of course, the consumers of the services need not worry about any of the
above. They simply access the service in the normal way and will be oblivious
to the fact that the service object is created lazily.

11.5.2. Forcing Immediate Service Creation

Delayed services are the default in DS, but we can override the default and
request that our service objects be created immediately by setting the imme-
diate attribute to true at the top level of our XML declaration, as shown in
Listing 11.7.

Listing 11.7 Declaration for the Console Logger as an “Immediate” Service

<?7xml version="1.0" encoding="UTF-8"7>
<!— "consolelog_immediate.xml" ——>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
immediate="true ">
<implementation class="org.osgi.book.ds.log.console.ConsoleLog"/>
<service>
<provide interface="org.osgi.book.logapi.Log"/>
</service>
<property name="service.ranking" type="Integer" value="10"/>
</scr:component>

If we wrap this in a bundle and install and start it, then we should see the
expected message to appear on the console immediately:

osgi> install file:consolelog_ds_immediate.jar
Bundle id is 9

osgi> start 9
ConsoleLog created

Delayed creation can only happen for components that are services. In our
first minimal example of a DS component, the object was instantiated imme-
diately because the immediate attribute is implicitly true for non-services. If
a component is not a service then there is no way to receive the signal that
the component is “needed”, so SCR must create it straight away.

11.5.3. Providing Service Properties

When publishing a service we often need to provide additional metadata in the
form of properties, and we saw how to do with with the low-level publishing
API back in Section 4.5. Clearly we will need a way to do the same in DS, and
we would expect it to be done declaratively. Listing 11.8 shows how — in this

DRAFT PREVIEW prepared for Christopher Brind

© W N oA W N

N U AW N

11.5 Providing a Service 229

example we add a property named level with the value DEBUG, to indicate
the minimum level of messages printed by this log instance.

Listing 11.8 Adding a Simple Service Property

<7xml version="1.0" encoding="UTF-8"7>
<!— "consolelog.xml" —>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="org.osgi.book.ds.log.console.ConsoleLog"/>
<property name="level" value="DEBUG"/>
<service>
<provide interface="org.osgi.book.logapi.Log"/>
</service>
</scr:component>

The property element can be repeated many times to set additional proper-
ties. The type of the property is assumed to be String but we can override
that by specifying the type attribute, which must take one of the following
types: String, Long, Double, Float, Integer, Byte, Character, Boolean or
Short. We can also specify arrays of these data types using a slightly odd
syntax in which we omit the value attribute and place the values in separate
lines in the text content of the XML element.

We can ask also SCR to load properties from a file located inside the bundle.
This is done using a different element named properties with an entry at-
tribute pointing to the file, which must be in the standard Java properties file
format. All of the values will be implicitly strings, and there is no support for
arrays. This feature is useful for adding a set of shared “header” properties to
many components in our bundle.

Listing 11.9 Additional Service Properties

<property name="level" value="DEBUG"/>
<properties entry="0SGI-INF/vendor.properties"/>
<property name="languages">
en_US
en_GB
de
</property>
<property name="service.ranking" type="Integer" value="10"/>

Listing 11.9 shows the use of all these options. We can interleave property
elements with properties elements. The order is significant because in the
event that there are name clashes the later setting wins; so we can place default
settings from a properties file at the top of the descriptor, and override those
with individual property elements as needed.

DRAFT PREVIEW prepared for Christopher Brind

10
11
12

14
15
16

18
19
20
21
22
23
24

230 Chapter 11. Declarative Services

11.6. References to Services

We have seen how DS replaces the “glue code” required for publishing a service,
now we look at the task of consuming services. Naturally this is also done
declaratively.

In our first example we will bring together the logging service from this chapter
and the MailboxListener service from Chapter 7 to build a LogMailboxLis—
tener. This class listens for changes in any mailbox — e.g. a new message
arriving — and prints to the log when such a change occurs. The code for the
class is shown in Listing 11.10.

Listing 11.10 A Logging Mailbox Listener

package org.osgi.book.ds.mboxlistener;

import org.osgi.book.logapi.Log;
import org.osgi.book.reader.api.x;

public class LogMailboxListener implements MailboxListener {
private Log log;

public LogMailboxListener () {
System.out.println("LogMailboxListener created");
}

public void setLog(Log log) {
this.log = 1log;
}

// Implements MailboxzListener.messagesArrived (...)
public void messagesArrived(String mboxName, Mailbox mbox,
long [] ids) {
log.log(Log.INFO, ids.length + " message(s) arrived in mailbox "
+ mboxName , null);

The first thing to notice about this class is that, just like the previous two
DS-based examples, it is a POJO. As before we have added a constructor that
prints to the console when an object is created, which helps us to see what
SCR is doing, but the class has no dependency on OSGi and closely follows
the conventional JavaBeans programming model. The log implementation is
supplied through a setter method, meaning this class can be easily unit-tested
outside of OSGi, or used in a non-OSGi runtime such as the Spring Framework
or Java Enterprise Edition (JEE).

When we are running within OSGi we expect SCR to call the setter method
to provide the log service. For this to happen we must declare a new element
in the XML descriptor named reference, which informs SCR that our com-
ponent refers to a service. Additionally we would like to publish our object as

DRAFT PREVIEW prepared for Christopher Brind

o W N e

0 =

©

11
12

11.6 References to Services 231

a service itself under the MailboxListener interface, so we include a service
element also. The complete XML declaration is shown in Listing 11.11.

Listing 11.11 DS Component Declaration for the Logging Mailbox Listener

<?7xml version="1.0" encoding="UTF-8"7>
<!— "logmailboxlistener.xml" —>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.mboxlistener.LogMailboxListener" />

<service>
<provide interface="org.osgi.book.reader.api.MailboxListener"/>
</service>

<reference interface="org.osgi.book.logapi.Log" bind="setLog"/>
</scr:component>

We have seen the implemention and service elements of this XML file be-
fore, so the only new thing is the reference element, which tells SCR that
our component “refers to” the log service. The interface attribute is also
mandatory as it indicates which service type we wish to use in the component.
We also need to supply the bind attribute to indicate the name of the setter
method °.

Consider for a moment how much effort we have saved here. To do this the
low-level way, we would have had to write a ServiceTracker sub-class to track
the Log service, create an instance of the LogMailboxListener, provide it the
log instance, register the LogMailboxListener as a service, and finally clean
up everything when the Log service goes away. All this has been replaced with
just a few lines of purely declarative XML. But before we celebrate, let’s check
that it actually works. Listing 11.12 shows the bnd file we need.

Listing 11.12 Bnd Descriptor for the DS-Based Logging Mailbox Listener

logmailboxlistener.bnd

Private—Package: org.osgi.book.ds.mboxlistener
Service—Component: logmailboxlistener.zxml
Include—Resource: logmailboxlistener.zxml

Now we install and start the bundle. We also need the mailbox_api bundle
from Chapter 3, if it is not already present:

osgi> install file:logmailboxlistener.jar
Bundle id is 10

osgi> install file:mailbox_api. jar
Bundle id is 11

5Names of the form setLog to set the “log” field are conventional, to allow for compatibility
with JavaBeans, but DS does not expect or enforce any particular naming. Also the bind
attribute is not strictly mandatory since there is another way to obtain the service, but
in this example we do need to include it.

DRAFT PREVIEW prepared for Christopher Brind

232 Chapter 11. Declarative Services

osgi> start 10
osgi> services

{org.osgi.book.reader.api.MailboxListener }={component .name=
org.osgi.book.ds.logmailboxlistener.LogMailboxListener ,
component .id=3, service.id=33}

Registered by bundle: logmailboxlistener_0.0.0 [10]
No bundles using service.

As before the new component is delayed, meaning we see the MailboxLis-
tener service in the service registry, but the implementation class has not
been constructed yet because no consumer bundle has attempted to call the
service. We can take a closer look at the state of the component using the
list and component commands:

osgi> list
All Components:

ID State Component Name Located in bundle
1 Satisfied org...HelloComponent minimal_ds (bid=4)
2 Satisfied org...ConsolelLog consolelog_ds_immediate (bid=9)

3 Satisfied org...LogMailboxListener logmailboxlistener (bid=10)

osgi> component 3
Component [

name = org.osgi.book.ds.logmailboxlistener.LogMailboxListener

activate = activate

deactivate — deactivate

modified =

configuration—policy = optional

factory = null

autoenable = true

immediate = false

implementation = org...LogMailboxListener

properties = null

serviceFactory = false

servicelnterface = [org.osgi.book.reader.api.MailboxListener]

references = {

Reference [name = org.osgi.book.logapi.Log,

interface = org.osgi.book.logapi.Log, policy = static,
cardinality = 1..1, target = null, bind = setlog,
unbind = null] }

located in bundle = logmailboxlistener_0.0.0 [10]]

Dynamic information
The component is satisfied
All component references are satisfied
Component configurations
Configuration properties:

component .name = org...LogMailboxListener
component .id = 3
objectClass = Object|[org.osgi.book.reader.api.MailboxListener]

Instances:

osgi>

This command has given us a lot of useful information. In particular it’s
very helpful to see that all the component references are “satisfied”, indicating
that a matching service is available. Because of this the state of the overall
component is “satisfied”, meaning it is ready to be used.

DRAFT PREVIEW prepared for Christopher Brind

11.6 References to Services 233

An interesting point to note is that the ConsoleLog component from the pre-
vious example has still not been instantiated (as long as we are not using the
“immediate” variant from Section 11.5.2). Although it is being used by the
LogMailboxListener component to satisfy its reference to a log service, that
component is also delayed, so neither of them need to be created yet. When a
consumer tries to use the LogMailboxListener, SCR will be finally forced to
create both components.

To test that, we reuse the “growable” mailbox example from Chapter 7. Re-
call that in that example we used a timer thread to add messages into a
mailbox every five seconds, which in turn caused the mailbox to notify all
registered MailboxListener services of the arrival of the new message, using
the whiteboard pattern. Therefore it should automatically find the LogMail-
boxListener service that we have registered using DS; we just need to install
and start the growable mailbox bundle:

osgi> install file:growable_mbox. jar
Bundle id is 12

osgi> start 12
LogMailboxListener created
ConsolelLog created

osgi> LOG: 1 message(s) arrived in mailbox growing
LOG: 1 message(s) arrived in mailbox growing
LOG: 1 message(s) arrived in mailbox growing

At last we see the output from the constructors of both the ConsoleLog and
LogMailboxListener classes. Here’s what happened, in sequence:

1. When the growable mailbox bundle was started, it started tracking in-
stances of MailboxListener. In the addingService method of the
tracker, the actual service object was retrieved using a getService call.

2. As a result, SCR was forced to instantiate the LogMailboxListener
class.

3. In order to provide LogMailboxListener with an instance of the Log
service, SCR instantiated the ConsoleLog class.

4. The timer thread of the growable mailbox bundle calls addMessage on
the GrowableMailbox class.

5. The mailbox calls WhiteboardHelper with a visitor that calls message-
sArrived on each registered MailboxListener, and this included our
LogMailboxListener.

6. The LogMailboxListener receives the call to messagesArrived and for-
mats a new log entry, which it passes to the Log service.

7. ConsoleLog prints the log message to the console.

DRAFT PREVIEW prepared for Christopher Brind

234 Chapter 11. Declarative Services

The output will continue until any part of the chain is broken. Here are some
of the ways that the chain might be broken:

o We could stop the growable mailbox bundle (stop 12), terminating its
thread and cutting off the ultimate source of “message arrival” events.

o We could stop the logmailboxlistener bundle (stop 10), causing the
MailboxListener service to be unregistered. The growable mailbox
would still be trying to deliver events but it would have no listeners
to deliver them to.

o We could stop the consolelog bundle (stop 7), causing the Log service
to be unregistered. This would force SCR to unregister the LogMail-
boxListener service, since its reference to a Log service can no longer be
satisfied. Thus the growable mailbox would have no listeners to deliver
events to.

11.6.1. Optional vs Mandatory References

When composing services together using ServiceTrackers in Chapter 4, we
found there was a big difference in usage patterns between optional service
dependencies and mandatory dependencies. Not only did we have to write
significant amounts of glue code, but that glue code was completely different
when we wanted a mandatory dependency versus an optional one. It certainly
discourages us from changing our minds too often.

As we would hope, DS makes this much easier: we simply need to add a
declaration to switch between optional and mandatory.

First, let’s remind ourselves what “optional” and “mandatory” mean in the
context of service dependencies. An optional dependency means that our
component can continue to function without the target service being present;
in the example above, it would mean our LogMailboxListener should be
created even if there is no Log service available. A mandatory dependency
means that our component cannot operate without the presence of the target
service, so our LogMaiboxListener should not be created when there is no
Log. Also if a component instance is bound to a service and that service goes
away, then that component should be destroyed. Destruction of a component
simply means that any services it registers will be unregistered, so it will no
longer be available to clients. The component object itself will be discarded
by SCR, becoming available for garbage collection some time later. If the
referenced service subsequently comes back, then SCR will not attempt to
resurrect the same object, but will create a brand new component instance.

In DS, references to services are mandatory by default, so if we were to remove
the Log service instance provided by ConsoleLog then the LogMailboxListener

DRAFT PREVIEW prepared for Christopher Brind

o W N e

0 =

11
12

11.6 References to Services 235

would be unregistered also. We can switch the reference to optional by adding
the attribute cardinality="0..1" to the reference element as shown in
Listing 11.13

Listing 11.13 DS Declaration for the Optional Logging Mailbox Listener

<?7xml version="1.0" encoding="UTF-8"7>
<!— "optlogmailboxlistener.xml" —>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.mboxlistener.OptLogMailboxListener"/>

<service>
<provide interface="org.osgi.book.reader.api.MailboxListener"/>
</service>

<reference interface="org.osgi.book.logapi.Log" bind="setLog"
cardinality="0..1"/>
</scr:component>

The value “0..1” simply means that the reference will remain “satisfied” even
when zero instances of the service are available. Mandatory references may
be indicated with a cardinality of “1..1”, but since this is the default it is
not necessary to state it explicitly. The “1” on the right hand side after the
dots does not mean there must be a maximum of only one service available —
it means that if there are many services available, the reference will bind to
only one of them. As you might have already guessed, we can bind to multiple
instances by specifying either “0..n” or “1..n”. Multiple-instance references will
be discussed later, in Section 11.8. For now we will discuss only single-instance
or unary references.

To see this working, we need to make a small fix to the code for the LogMail-
boxListener so that it can handle the log field being null without throwing a
NullPointerException. In the code for the messagesArrived method above,
it was assumed that the log field could not be null, which was a valid as-
sumption as long as the reference was mandatory. Now we need to insert an
if statement to check that the log field is non-null before calling it. For
this reason we use a new class OptLogMailboxListener, which is identical
to LogMailboxListener except for the messagesArrived method, shown in
Listing 11.14. In order to see what is going on, this version of the method
prints a warning if the log field is null, but the warning is printed directly to
the console rather than going via the ConsoleLog component.

We can build a new bundle for the optional variant named optlogmailboxlis-
tener, for which the bnd descriptor is omitted as it is trivially derived log-
mailboxlistener. Next we can stop the mandatory variant and install and
start the optional one. Remember, at this point we still have a Log service
available from the consolelog_ds bundle, and the “growable” mailbox is still
sending out events every five seconds:

osgi> stop 10

DRAFT PREVIEW prepared for Christopher Brind

(o I N A

236 Chapter 11. Declarative Services

Listing 11.14 Logging Mailbox Listener with Optional Log Field

public void messagesArrived(String mboxName, Mailbox mbox,
long [] ids) {
if (log != null) log.log(Log.INFO, ids.length +
" message(s) arrived in mailbox " + mboxName, null);

else System.err.println("No log available!");

}

osgi> install file:optmailboxlistener.jar
Bundle id is 13

osgi> start 13

OptLogMailboxListener created

LOG: 1 message(s) arrived in mailbox growing
LOG: 1 message(s) arrived in mailbox growing

We continue to see the log output from the ConsoleLog component. Now let’s
remove the Log service by stopping the consolelog_ds bundle:

osgi> stop 7
OptLogMailboxListener created

No log available!
No log available!

As expected, the log messages now stop because there is no log, but the warn-
ing messages tell us that the listener’s messageArrived method is still being
called, proving that the OptLogMailboxListener component is still active and
registered.

A very useful aspect of DS is that it easy is to mix and match optional and
mandatory service references. With ServiceTracker it can be difficult to cre-
ate a dependency on multiple service types, and very difficult if we need a
mixture of optional and mandatory dependencies. DS takes away this pain,
allowing us to add as many references as we like with whatever mix of cardi-
nalities we like. Listing 11.15 shows this flexibility. Here we have a Mailbox
implementation that reads messages from a database connection, and sends
messages to a log. In such a component, the database connection would clearly
be mandatory whilst the log would be optional. Listing 11.16 shows an excerpt
of the implementation class for this service.

11.6.2. Static vs Dynamic References

You might have noticed something strange in the output from the previous
example, when the optional log service was removed. As expected, we contin-
ued to see lines of debug output from the messagesArrived method, which

DRAFT PREVIEW prepared for Christopher Brind

[N

0 =

11
12
13

15
16
17
18

10
11

13
14
15

17
18
19

21
22
23
24
25
26
27
28
29
30

32
33
34

36

11.6 References to Services

237

Listing 11.15 DS Declaration for a Database Mailbox

<?7xml version="1.0" encoding="UTF-8"7>
<!— "dbmailbox.xml" —>
<component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.dbmailbox.DbMailbox" />
<service>
<provide interface="org.osgi.book.reader.api.Mailbox"/>
</service>
<reference interface="java.sql.Connection"
bind="setConnection"
cardinality="1..1"/>
<reference interface="org.osgi.book.logapi.Log"
bind="setLog"
cardinality="0..1"/>
</component>

Listing 11.16 The Database Mailbox Class (Excerpt)

package org.osgi.book.ds.dbmailbox;

import

import
import

public

java.sql .x;

org.osgi.book.logapi.Log;
org.osgi.book.reader.api.*;

class DbMailbox implements Mailbox {

private volatile Connection connection;
private volatile Log log;

public void setConnection(Connection connection) {
this.connection = connection;

}

public void setLog(Log log) {
this.log = log;

}

public void markRead(boolean read, long][] ids)

}
//

throws MailboxException {

int count = ids.length;
if (log != null)

log.log(Log.DEBUG, "Marking " 4+ count + " messages read.

null);

try {

}
}

PreparedStatement stmt = connection.prepareStatement (
"UPDATE msgs SET read=1 WHERE ...");

stmt .executeUpdate ();

catch (SQLException e) {

throw new MailboxException(e);

DRAFT PREVIEW prepared for Christopher Brind

238 Chapter 11. Declarative Services

meant that the service was still registered. But we saw one line of output that
we did not expect. Here it is again:

osgi> stop 7
OptLogMailboxListener created

No log available!
No log available!

On the second line we see the output from the constructor of our OptLog-
MailboxListener class! Why has this appeared? Has SCR created a second
instance of our service?

Yes and no. In fact SCR is attempting to protect us from the need to worry
about dynamics and concurrency. We know that services can come and go at
any time and in any thread, so we would normally have to deal with the log
field being changed even while we are using it. At the very least, this would
make the null check in OptLogMailboxListener’s messgesArrived method
unsafe, because the log field could become null immediately after we check
its value. But in fact our code is perfectly safe because SCR by default does
not dynamically change the value of a service reference — instead, it discards
the component instance and creates a new instance. If the component is also
published as a service then the service registration is removed and replaced
when this happens.

This is known as the “static policy” for service references, and you might
worry that it is inefficient. In fact most of the time it is not too so bad: object
creation in Java is cheap, especially when we have already previously created
an instance of the class, and in the examples above our components do not
require any elaborate initialisation. But of course it is not always cheap, so
we need a way to override this default. Fortunately there is indeed a way,
by enabling the “dynamic policy”. But first we will take a look at another
consequence of the static policy.

11.6.3. Minimising Churn

In the previous example we saw that removing the Log service forced SCR to
discard our OptLogMailboxListener component and recreate it with the log
reference unbound. What happens if we then reinstate the log service? Let’s
take a look:

osgi> start 7

No log available!
No log available!

DRAFT PREVIEW prepared for Christopher Brind

11.6 References to Services 239

Absolutely nothing happens! We can verify with the services command that
the Log service is now available, but our component has not picked it up, and
instead it continues to print the warning about there being no log.

This may seem like an error, but it is quite deliberate. As we are using static
policy, SCR would have to discard and recreate our component in order to bind
to the newly available log service. But our dependency on the log is optional
after all, so why go to so much effort? SCR tries to reduce the number of
times it must recreate components, as this generates churn.

Imagine if we had a large application constructed of DS services, all wired
together with references using the static policy, forming an interconnected
network. Recreating a component in this network would require recreating
any components which depend on it, and any components which depend on
them, and so on. Small changes would become amplified into tidal waves of
components being discarded and recreated. This is churn and it is expensive,
so SCR minimises it by never recreating a component unless it is forced to do
S0.

When a service that was previously bound to a component goes away, SCR
has no choice but to recreate the component in order to unbind the service.
But if a component’s optional reference is unbound and then a service comes
along, SCR could choose to either recreate the component in order to bind
the service, or do nothing and leave the reference unbound. SCR will always
choose to do nothing.

An unfortunate consequence of this is that optional static references are likely
to spend much of their life in the unbound state even when services are avail-
able to bind to them. Indeed, the only time such a reference will be bound
is if it is lucky enough to find a service when the component is first started.
Therefore when we want an optional reference it is generally better to use the
dynamic policy, which allows an unbound reference to be bound later on.

11.6.4. Implementing the Dynamic Policy

DS allows us to switch between static and dynamic policies by adding the
policy attribute to the reference element. Setting this to dynamic simply
informs SCR that our component is capable of being updated with chang-
ing references. Naturally, this exposes us to the full horror of services being
changed in multiple threads while we are using them, but DS still makes it
much easier to handle than when we were using the low-level APIs.

Listing 11.17 shows the new XML descriptor. In addition to the new policy
attribute, there is also an unbind attribute that specifies the name of a method
that will be called by SCR to notify us when the service we were bound to

DRAFT PREVIEW prepared for Christopher Brind

(SN I

14

240 Chapter 11. Declarative Services

goes away®.

Listing 11.17 DS Declaration for the Dynamic Logging Mailbox Listener

<?7xml version="1.0" encoding="UTF-8"7>
<!— "dynlogmailboxlistener.xml" ——>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.mboxlistener.DynLogMailboxListener"/>

<service>
<provide interface="org.osgi.book.reader.api.MailboxListener"/>
</service>

<reference interface="org.osgi.book.logapi.Log" bind="setLog"
unbind="unsetLog" policy="dynamic"
cardinality="0..1"/>
</scr:component>

How should we change our mailbox listener class to cope with the dynamics?
There are a few ways we might think of doing this safely... first, let’s look at
the wrong answers, i.e. the approaches that will not make our code thread-safe:

e Make the log field volatile. Unfortunately this is not enough to be
thread-safe. Volatile fields are good for visibility, as any changes to their
value are immediately propagated to other threads. But they cannot
offer atomicity, so the null-check in the messagesArrived method can
still fail if the content of the log field changes in between checking it is
non-null and calling it.

e Wrap all accesses to the log field in synchronized blocks or methods.
For example, we could make the setLog, unsetLog and messagesAr-
rived methods all synchronized. This gives us atomicity but it reduces
the concurrency of the system, as only one thread can call our service at
a time. Also we should not hold a lock while calling a service method
(see Section 6.4 on page 128).

The best approach is to take a copy of the log object into a local variable before
we use it. Then we can test the variable and call the service only if its value is
non-null. Since there is no way for the value of a local variable to be altered
by another thread, there is no need for the call to the service to happen inside
a synchronized block, though we still need the copy itself be synchronized
for visibility purposes, and the setLog and unsetLog methods also need to be
synchronized”. Listing 11.18 shows the messagesArrived method using this
approach.

6The unbind attribute can also be used on references with the static policy but it is generally
not useful to do so, because when this method is called the component is about to be
discarded anyway.

"You may wonder why we don’t use a volatile field instead of synchronized blocks. It’s
true that, for the messagesArrived method, we only need visibility and not atomicity.
However the unsetLog method will need atomicity also, as we will soon see.

DRAFT PREVIEW prepared for Christopher Brind

S

11.6 References to Services 241

Unfortunately it is rather too easy to forget to perform the copy, which must
be done every time the field is accessed. We could omit the first two lines of
the method in Listing 11.18 and the compiler would not complain since the
field is of the same type as the local variable. It would be helpful if we could
get the compiler to help us to stay safe.

Listing 11.18 Handling Dynamics by Copying a Field)

public void messagesArrived(String mboxName, Mailbox mbox,
long [] ids) {

Log 1log;
synchronized(this) { log = this.log; }
if (log != null) log.log(Log.INFO, ids.length +
" message(s) arrived in mailbox " + mboxName, null);

else System.err.println("No log available!");

}

Listing 11.19 shows a safe and lightweight approach using the AtomicRefer-
ence class from Java 5’s concurrency package. Atomic references offer visibility
guarantees like volatile, but they support a few additional atomic operations
that cannot be performed safely on volatiles without synchronization. The
best thing about them though is they are the wrong type for us to accidentally
use without first taking a copy of the contained value into a local variable. That
is, in the messagesArrived method it would be impossible to call logRef .1log
directly because logRef is of type AtomicReference<Log>, and there is no log
method on the AtomicReference class!

11.6.5. Service Replacement

You might be wondering whether the static/dynamic policy decision has any
effect on mandatory references. With an optional reference, it is clear that
the dynamic policy gives us the ability to bind and unbind the service without
recreating the component. But when we have a mandatory reference and the
target services goes away, then the component must be destroyed, irrespective
of whether it is static or dynamic. So does it make sense to specify the dynamic
policy for mandatory references?

The answer is yes, it does. Though both static and dynamic references act the
same when a mandatory reference becomes unsatisfied, the results are different
when a service is replaced.

Suppose that our component is bound to the Log service, but there are cur-
rently two available implementations of the service, published by different
bundles. Let’s call them A and B, and our component is bound to A as shown
on the left hand side of Figure 11.1. Now service A goes away because its
bundle is stopped...what happens next? In this scenario it is not necessary

DRAFT PREVIEW prepared for Christopher Brind

10
11

13
14

17
18
19
20

27
28
29
30

242

Chapter 11. Declarative Services

Listing 11.19 Handling Dynamics with Atomic References (Excerpt)

packag
import

import
import

public

e org.osgi.book.ds.mboxlistener;
java.util.concurrent.atomic.AtomicReference;

org.osgi.book.logapi.Log;
org.osgi.book.reader.api.x*;

class DynLogMailboxListener implements MailboxListener {

private final AtomicReference<Log> logRef

= new AtomicReference<Log>();

public DynLogMailboxListener () {

System.out.println("DynLogMailboxListener created");

public void setLog(Log log) {

}
/7

System.out.println("DynLogMailboxListener.setLog invoked");
logRef .set (log);

Implements MailbozListener. messagesArrived (...)

public void messagesArrived(String mboxName, Mailbox mbox,

long [] ids) {
Log log = logRef.get ();

if (log != null) log.log(Log.INFO, ids.length +
" message(s) arrived in mailbox " 4 mboxName , null);
else System.err.println("No log available!");

DRAFT PREVIEW prepared for Christopher Brind

N

© ® N o

11.6 References to Services 243

Before

After

L e

Figure 11.1.: Service Replacement, Before and After

to disable the component, because there is still a Log service available, namely
B. SCR needs to update our component to bind to B, but under the static
policy the only way to rebind to B is to recreate the component, whereas the
dynamic policy allows SCR to switch to B on the fly.

An interesting “gotcha” here is the order in which the bind and unbind meth-
ods of a dynamic reference will be called. During service replacement, the bind
method will be called first with the new service object, and then unbind will be
called with the old service. The reason SCR calls the methods this way around
is to give our component an opportunity to perform some clean-up operation
with both the old and new service visible at the same time, albeit briefly. Un-
fortunately it means that the “natural” implementations of unsetLog shown
in Listing 11.20 are incorrect and broken.

Listing 11.20 Incorrect Implementation of Unbind Methods

// Synchronized version — wrong!

public synchronized void unsetLog(Log log) {
this.log = null;

}

// AtomicReference version — wrong!

public void unsetLog(Log log) {
logRef .set (null);

}

This is why unsetLog was omitted from the code for DynLogMailboxListener
in Listing 11.19. A correct implementation of an unbind method needs to
handle both of the following cases:

e Unbind is called with the service that is currently bound to the compo-
nent. This means that the service is being unbound, so we null out the
reference.

e Unbind is called with a service other than that currently bound to the
component. This means that the service is being replaced, and the bind

DRAFT PREVIEW prepared for Christopher Brind

(SN R CR

© ® =

244 Chapter 11. Declarative Services

method was already called with the value of the new service. In this case
there is nothing for us to do.

The correct implementation requires us to check that the provided parameter
is the bound service before we set our field to null®. When using sychro-
nized we can do a simple equality check as shown in Listing 11.21. If we are
using an AtomicReference then we can take advantage of one of the special
atomic operations offered by that class: the compareAndSet method takes two
parameters, and it will set the content of the reference to the right-hand value
if, and only if, the current content of the reference is equal to the left-hand
value. This is performed as a single non-blocking atomic operation.

Listing 11.21 Correct Implementation of Unbind Methods

// Synchronized wversion
public synchronized void unsetLog(Log log) {
if (this.log == log)
this.log = null;

}

// AtomicReference wversion

public void unsetLog(Log log) {
logRef . compareAndSet (log, null);

}

This completes the implementation of DynLogMailboxListener from Listing
11.19, so we can now go ahead and test that it works.

11.6.6. Running the Example

To try out the dynamic policy variant of the mailbox listener we should first
stop the static-policy variant, optlogmailboxlistener, otherwise we could
get confused about the messages printed to the console from both listeners.
Next we install and start the dynlogmailboxlistener bundle (the bnd de-
scriptor is again omitted because it is trivially derived from previous exam-
ples). At this point the ConsoleLog service is currently available, so we should
see the following output:

osgi> stop 13

osgi> install file:dynlogmailboxlistener.jar
Bundle id is 14

osgi> start 14
DynLogMailboxListener created

osgi> LOG: 1 message(s) arrived in mailbox growing
LOG: 1 message(s) arrived in mailbox growing

8This explains why volatile cannot be used: there is an unavoidable check-then-act se-
quence in the unbind method.

DRAFT PREVIEW prepared for Christopher Brind

11.6 References to Services 245

Now remove the log service, wait a little, and reinstate it again:
osgi> stop 7

No log available!

No log available!

osgi> start 7

ConsoleLog created

LOG: 1 message(s) arrived in mailbox growing
LOG: 1 message(s) arrived in mailbox growing

We should be able to see our component being dynamically bound and un-
bound each time the log service is stopped and started, without any need for
it to be restarted.

11.6.7. Minimising Churn with Dynamic References

In Section 11.6.3 we discussed the concept of churn, and the reasons why SCR
does not rebind a static, optional reference when a service becomes available
to satisfy the reference.

Now consider another scenario: our component is currently bound to a service
instance, let’s call it A. Then a new service of the same type becomes available,
B, which has a much higher ranking than A. Let’s say that the value of A’s
service.ranking property is zero while B’s is 10. Should SCR unbind the
reference to A and rebind it to B?

In the case of a static policy reference, the answer should be obvious. No, SCR
will not discard and recreate a component merely to supply it with a “better”
reference. The same rule applies here as it did before — components are only
recreated when SCR has no choice, but in this scenario SCR has the choice to
do nothing. Therefore, it does nothing.

Less obviously, the same is true for a dynamic policy reference. Though the
churn created by rebinding a dynamic reference is less than that for a static
reference, it is still not zero since our component may need to do some internal
work when its service references are re-bound. SCR will always favour doing
nothing, i.e. a bound service reference will never be re-bound unless the bound
service has become unavailable.

So when is the ranking of a service actually used by SCR? Only in the following
cases:

e A component is starting up, and there are multiple possible instances
that could be chosen to satisfy its reference. SCR will chose the one
with the highest ranking.

e Many (i.e. more than two) instances of a service are available and a
component is bound to one of them; but then the bound service goes

DRAFT PREVIEW prepared for Christopher Brind

o W N e

10
11
12

o

10
11
12

14
15
16

18
19
20
21
22
23
24

246 Chapter 11. Declarative Services

away. SCR will use ranking to decide which of the remaining services
should be chosen to rebind the reference.

11.6.8. Recap of Dynamic Reference Implementation

Listing 11.22 shows a template summarising the correct coding pattern for
dynamic service references with DS, given a service reference of type Foo.

Listing 11.22 Template for Dynamic Service Usage with DS

<7xml version="1.0" encoding="UTF-8"7>
<!— "dynamic_template.xml" —>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.DynamicReferenceTemplate" />

<!— possible <service> element here —>

<reference interface="org.osgi.book.ds.Foo" bind="setFoo"
unbind="unsetFoo" policy="dynamic"
cardinality="0..1"/>
</scr:component>

package org.osgi.book.ds;
import java.util.concurrent.atomic.AtomicReference;
public class DynamicReferenceTemplate {

private final AtomicReference<Foo> fooRef =
new AtomicReference<Foo >();

public void setFoo(Foo foo) {
fooRef .set (foo);
}

public void unsetFoo(Foo foo) {
fooRef .compareAndSet (foo, null);

public void doSomething () {
Foo foo = fooRef.get ();
if (foo != null) {
// do something with foo

11.7. Component Lifecycle

Alongside the ability to offer and consume services, many components need
lifecycle. Just like bundles, components can be active or inactive, and in their
active state they can do work that is not related to offering services. Examples

DRAFT PREVIEW prepared for Christopher Brind

1

3

5

7
8

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

11.7 Component Lifecycle 247

include opening server sockets, running threads, monitoring system devices,
and so on. Therefore DS supports activation and deactivation of components.

Thanks to this lifecycle support, DS components can largely replace the use of
BundleActivators. In fact they have a great advantage over bundle activators
because they can very easily access services to do their work. This is why we
said that in Section 11.5.1 that DS bundles do not really need activators.

In the simplest case, we can take advantage of lifecycle in our components
simply by adding methods named activate and deactivate, without param-
eters. Listing 11.23 shows an example in which we reimplement the Heart-
beatActivator example from Chapter 2 (see Listing 2.7 on page 42) but with
a small difference: instead of printing messages directly to the console every
five seconds, we send messages to the log service, as long as it is available.

Listing 11.23 The Heartbeat Component

package org.osgi.book.ds.lifecycle;
import org.osgi.book.logapi.Log;
public class HeartbeatComponent {

private Thread thread;
private Log log;

public HeartbeatComponent () {
System.out.println("HeartbeatComponent created");

public void activate ()
System.out.println("HeartbeatComponent activated");
thread = new Thread(new Runnable () {
public void run() {
try {
while (!Thread.currentThread ().isInterrupted()) {
Thread.sleep (5000);

if (log != null)
log.log(Log.INFO, "I’m still here!", null);
else

System.err.println("No log available!");

} catch (InterruptedException e) {
System.out.println("I’m going now.");
}

}

1)
thread.start ();

}

public void deactivate () {
System.out.println("HeartbeatComponent deactivated");
thread.interrupt ();

}

public void setLog(Log log) {
System.out.println("HeartbeatComponent.setLog() invoked");
this.log = log;

DRAFT PREVIEW prepared for Christopher Brind

Bow N =

N o

248 Chapter 11. Declarative Services

Listing 11.24 shows the XML declaration. SCR automatically detects the
activate and deactivate methods on our component class so we don’t need
to declare them in the XML. We can however choose to call them something
else, for example begin and end, in which case we need to add two attributes

activate="begin" and deactivate="end" to the top-level component ele-
ment of the XML.

Listing 11.24 The Heartbeat Component, XML Descriptor

<?7xml version="1.0" encoding="UTF-8"7>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation
class="org.osgi.book.ds.lifecycle.HeartbeatComponent" />

<reference interface="org.osgi.book.logapi.Log" bind="setLog"
cardinality="0..1"/>
</scr:component>

Let’s take this example for a spin, ensuring that the ConsoleLog service is still
available.
osgi> start 7

osgi> install file:heartbeat_component. jar
Bundle id is 15

osgi> start 15

HeartbeatComponent created
ConsoleLog created
HeartbeatComponent .setLog () invoked
HeartbeatComponent activated

osgi> LOG: I’m still here!
LOG: I’m still here!

Since the component does not offer a service, and its reference to the log
service is satisfiable, it is created immediately, passed a reference to the log
and activated. Then it starts to send log messages every five seconds.

Now let’s shutdown the log service:

osgi> stop 7
HeartbeatComponent deactivated
I'm going now.
HeartbeatComponent created
HeartbeatComponent activated
No log available!

No log available!

We are using the static policy so we expect to see our component discarded
and recreated when the log service goes away. In addition we see that the
deactivate method is called before the component is discarded, and the
activate method is called on the new instance. This is an important fea-
ture, as it means SCR does not simply “forget” about objects it discards, but
ensures they can be cleaned up in an orderly fashion.

DRAFT PREVIEW prepared for Christopher Brind

11.7 Component Lifecycle 249

11.7.1. Lifecycle and Service Binding/Unbinding

From the debugging output above we saw that the bind method for the service
reference was called before the activation method. For a mandatory reference
this is important since the component should never be in an active state when
the service reference is unsatisfied. However with a dynamic, optional ref-
erence we should be able to bind and unbind services without activating or
deactivating the component.

Let’s take a look at how the lifecycle methods interact with the bind and
unbind methods:

Static References

With a static reference, the bind method must be called before the activate
method. However in the case of an optional reference the bind method may
not be called at all. If bind has still not been called by the time activate is
called then our component can assume that the reference will remain unbound
throughout its lifetime.

When a bound service goes away, the deactive method must be called before
the unbind. However we usually do not bother to implement unbind on a
static reference.

Dynamic References

Dynamic, mandatory references work largely the same as static ones: the
bind must be called before activate, and deactivate must be called before
unbind.

However there is a difference when service replacement occurs, i.e. the bound
service goes away but an alternative service is immediately available. In this
case, the bind and unbind methods are called without deactivating and ac-
tivating the component, i.e. while the component remains active. This can
even happen concurrently while our activate or deactivate method is running
in another thread.

With a dynamic, optional reference, the bind and unbind methods can really
be called at any time, including concurrently with activate/deactivate.

11.7.2. Handling Errors in Component Lifecycle Methods

It is possible that during the activation of our component, we might detect
an error condition that means the component cannot start. For example we

DRAFT PREVIEW prepared for Christopher Brind

250 Chapter 11. Declarative Services

might find that some required resource is not available, or an unexpected error
might occur. The proper way to deal with this is to throw an exception from
the activate method, and we are free to throw whatever exception types we
like, either checked or unchecked.

When this happens, SCR catches the exception’ and deals with it as fol-
lows. First, it writes a message to the OSGi log, if there is an instance of the
LogService available. Then it stops the activation of the component from go-
ing ahead. If the component includes a provided service, then either the service
will not be published or the existing service registration will be withdrawn.

Activation errors may create a small problem for consumers of our services.
As we have seen, components that offer services are usually not created or ac-
tivated until the service is actually used for the first time; technically, our acti-
vate method will be executed when a consumer first calls BundleContext.get—
Service on the published service. Only at that point does our activate method
have a chance to detect an error condition and throw an exception, but it is
already too late to unpublish the service because the consumer bundle has
already seen it. Therefore the call to BundleContext.getService will return
null, which the consumer must be able to handle.

In most cases this will be fine, since well-behaved service consumers should
always be aware that null may be returned from getService. And if the
consumer is another DS component using a service reference element, then we
do not have to worry at all because SCR will handle the error. For example,
if the other DS component has a mandatory reference to our service but our
activate method throws an error, then that component will remain in the
“unsatisfied” state.

Incidentally, the deactivate method may also throw an exception, but in this
case SCR simply logs the error and continues.

11.8. Unary vs Multiple References

As we mentioned when the cardinality attribute of a reference was in-
troduced, we can also request SCR to bind our component to multiple in-
stances of the target service, rather than just one. This is done by setting
the cardinality attribute to either “0..n” or “1..n”. The first of these is “op-
tional and multiple”, meaning that the component can continue to exist even
when there are no services available for the reference. The latter is “manda-
tory and multiple” meaning that at least one service must exist, otherwise the

9Note that SCR will not catch instances of java.lang.Error or its subclasses, since these
indicate error conditions that cannot be reasonably handled by an application, e.g., “out
of memory”.

DRAFT PREVIEW prepared for Christopher Brind

11.8 Unary vs Multiple References 251

component will be deactivated'’. Multiple references are commonly used to
implement the whiteboard pattern (see Chaper 7) using DS.

At this point there should be nothing difficult or surprising about the way
multiple references work: SCR will simply call our bind method once for each
service that is available, and call unbind for each bound service that goes away.

11.8.1. Static Policy with Multiple References

This begs the question of what happens when the static policy is used for a
multiple reference. Suppose when our component starts there are nine services
available for it to bind to: SCR will call bind nine times — once for each service
instance — before activating and publishing the component.

Then one of those nine services goes away. Now SCR must deactivate the
component, call unbind nine times (if we have provided an unbind method),
create a new component instance and call bind eight times before activating
it. But what if a new service arrives? SCR will simply ignore it, for the same
reason it refuses to re-bind an optional reference, as described in Section 11.6.3.
Thus there is continuous downwards pressure on the number of services bound
to a static multiple reference, so it will inevitably trend towards zero.

Because of this effect, it is the author’s opinion that static policy is nearly
always inappropriate for use with a multiple reference. Therefore in the ex-
amples to follow we will use dynamic policy exclusively.

11.8.2. Implementing Multiple References

If using dynamic policy to implement a multiple reference then we must also
be prepared to deal with the bind/unbind methods being called concurrency
while we are trying to use the services in another thread. This is the same
problem we had in Section 11.6.4 but now instead of managing just a single
object we must manage a collection of objects safely.

The key challenge is that, when we use the services, we typically have to
iterate over the entire collection. For example a component that implements
the whiteboard pattern would iterate over every service reference in order
to invoke the listener methods. While this happens the collection contents
must not change, so we would have to perform the entire iteration inside a
synchronized block, but as we learned in Chapter 6 it is dangerous to hold
such a lock while invoking services. Also the bind/unbind methods would be
held up for as long as the iteration is running.

L0Unfortunately DS does not support any other cardinalities besides these, so we cannot
ask for a cardinality of, say, “2..n” or “0..5”.

DRAFT PREVIEW prepared for Christopher Brind

10
11

13
14
15
16
17
18
19
20
21
22
23
24

252 Chapter 11. Declarative Services

As before, we could choose to take a copy of the collection into a local variable,
but this would be inefficient if executed many times. It is better to make the
common case fast, perhaps at the expense of the less common case. We are
likely to access the collection far more often than we update the collection,
because updating only happens during bind or unbind. There is a collection
class in the Java 5 concurrency APIs that makes exactly the desired trade-off:
CopyOnWriteArrayList. It allows us direct access to the collection without
copying for read operations, and internally copies the contents when a write
operation occurs. Crucially an Iterator over this collection type will not be
affected by changes to the collection contents that occur after the iterator
method is called, so we can write a straightforward iteration block without
worrying at all about concurrent changes. Listing 11.25 shows a component
which does exactly this — note the lack of any explicit synchronization or
defensive copying.

Listing 11.25 Implementing Multiple References

package org.osgi.book.ds.multiple;

import java.util.Collection;
import java.util.concurrent.CopyOnWriteArraylList;

import org.osgi.book.reader.api.MailboxListener;
public class WhiteboardComponent {

private final Collection<MailboxListener> listeners
= new CopyOnWriteArraylList<MailboxListener >();

public void fireMessagesArrived() {

for (MailboxListener listener : listeners) {
listener .messagesArrived ("mailbox", null, new long[0])
}

public void addMailboxListener (MailboxListener listener) {
listeners.add(listener);

public void removeMailboxListener (MailboxListener listener) {
listeners.remove(listener);

}

11.9. Discussion: Are These True POJOs?

In the introduction to this chapter, on page 221, it was claimed that DS
components are POJOs. However we have seen now some programming idioms
that are probably quite unfamiliar to developers who have worked with only
with traditional component containers, such as static dependency injection
frameworks. The differences range from the presence of additional “unset”
methods, to the thread-safe approach we must take when updating references

DRAFT PREVIEW prepared for Christopher Brind

11.9 Discussion: Are These True POJOs? 253

under the dynamic policy. It may seem that the necessity to use such idioms
violates the POJO principle.

But what does POJO — “Plain Old Java Object” — really mean? The term
came about as a reaction to heavyweight frameworks, in particular the Enter-
prise JavaBeans (EJB) specification versions 1 and 2, in which “beans” had
to implement special interfaces and perform all their interaction with other
beans and resources via look-ups executed against the EJB container, using
its API. This made those beans almost entirely reliant on their container, and
they were very hard to unit test because they could not be isolated from the
container or from each other. Dependency injection frameworks allowed us to
write POJOs, with no reliance on any container.

Likewise, DS components have no reliance on their container at all. It should
be easy to see that any of the component classes discussed so far in this chapter
can be instantiated and used outside of DS and outside of the OSGi frame-
work, whether for the purposes of testing or for deployment to an alternative
runtime. We do not even need OSGi libraries on our compilation classpath.
Therefore these components are clearly still POJOs, despite their slightly more
complicated internals.

In fact, DS components are arguable more widely deployable than any other
kind of POJO since they make fewer assumptions about the container or en-
vironment in which they will be executed. Static dependency injection frame-
works are great for removing the API dependencies and look-ups from our
component code, but they make no provisions for components to be dynami-
cally unwired or re-wired, nor do they typically support the concept of optional
wiring. Therefore a POJO written to such a container usually assumes that
the dependencies given to it will never become invalid, and it assumes that
its setters and lifecycle methods will not be called concurrently from differ-
ent threads. In effect, it assumes it will always be deployed to such a non-
threatening, static environment, and it will fail if deployed to a more dynamic
environment in which multi-threading is a factor. Thus it still has a depen-
dency on one very important aspect of its container! By contrast, well-written
DS components assume that concurrency may happen, and they cope with it;
yet they behave perfectly correctly in a static environment too.

The POJO movement exhorts us to keep our components plain, but there is no
requirement for them to be dumb. The components we have developed in this
chapter have been smart (or safe) POJOs, which run correctly under both a
static dependency injection framework and under a dynamic, multi-threaded
environment.

Unfortunately, “Smart” POJOs are (currently) slightly harder to write than
dumb ones. It is the author’s hope that better tools or languages will help to
close this gap. There also remains the problem of legacy component code that
may need to be ported from a static DI framework, but for those components

DRAFT PREVIEW prepared for Christopher Brind

254 Chapter 11. Declarative Services

we use DS’s static policy with mandatory service reference.

11.10. Using Bnd to Generate XML Descriptors

Now that we have seen many examples of DS XML descriptors, you should
have a firm understanding of what they contain and how they are structured.
You may also be quite tired of typing them in, as XML is a verbose and fussy
format. Fortunately bnd offers us two ways to avoid writing them entirely.

11.10.1. Bnd Headers for XML Generation

The simplest approach to generating DS component XML descriptors from
bnd is by writing instructions directly in the bnd descriptor file. This offers
a much more accessible and less verbose approach to specifying the required
metadata.

Generation from bnd headers is be done by extending the semantics of the
Service-Component header. Rather than specifying the path to a resource
inside the bundle, we can instead specify the name of a class, and then further
annotate it with attributes. For example Listing 11.26 shows an alternative
version of the bnd descriptor for LogMailboxListener, originally seen in List-
ing 11.12.

Listing 11.26 XML Generation Header for the Logging Mailbox Listener

logmailboxlistener.bnd

Private—Package: org.osgi.book.ds.mboxlistener

Service—Component: org.osgi.book.ds.mboxlistener.LogMailboxListener;)\
provide:=org.osgi.book.reader.api.MailboxListener;\
log = org.osgi.book.logapi.Log

The declaration starts with the implementation class name of the component.
Further attributes are separated by semicolons, and the first attribute provide
specifies the service interface. The second attribute log uses slightly different
syntax (a solitary equals rather than colon and equals) to indicate that it is a
service reference. The name of the reference is log and the service interface
is org.osgi.book.logapi.Log. The bind and unbind methods are inferred
fromthe simple name of the service interface to be setLog and unsetLog.

When we run bnd on the descriptor in Listing 11.26, it will generate an XML
file in the resulting bundle at the path 0SGI-INF/org.osgi.book.ds.mbox—
listener.LogMailboxListener.xml. The contents of this generated XML
file are shown in Listing 11.27%.

1 One interesting point to note with this XML file is it does not include the namespace that

DRAFT PREVIEW prepared for Christopher Brind

[N R

w0 ~

10

11.10 Using Bnd to Generate XML Descriptors 255

Listing 11.27 Generated XML for the Logging Mailbox Listener

<7xml version=’1.0’ encoding=’utf-8’7>
<component name=’org.osgi.book.ds.mboxlistener.LogMailboxListener’>
<implementation
class=’org.osgi.book.ds.mboxlistener.LogMailboxListener’ />
<service>
<provide interface=’org.osgi.book.reader.api.MailboxListener’/>
</service>
<reference name=’log’ interface=’org.osgi.book.logapi.Log’
bind=’setLog’ unbind=’unsetLog’/>
</component>

The Log reference in this example uses the default static policy, and the de-
fault cardinality which is 1..1 i.e. unary/mandatory. We can change this
by appending a single character annotation to the end of the service interface
name. Listing 11.28 is a variant which makes the Log reference optional; it also
has the effect of switching to the dynamic policy, which is typically preferred
with optional references.

Listing 11.28 XML Generation Header for the Optional Logging Mailbox
Listener

logmailboxlistener.bnd

Private—Package: org.osgi.book.ds.mboxlistener

Service—Component: org.osgi.book.ds.mboxlistener.OptLogMailboxListener;
provide:=org.osgi.book.reader.api.MailboxListener;\
log = org.osgi.book.logapi.Log?

The full list of indicator characters is shown in Table 11.1. These indicators
do not cover all possible combinations of cardinality and policy — for example,
there is no indicator for multiple/static — but they do cover the most sensible
combinations. If we need access to more unusual options then we can use
long-form attributes, as shown in Listing 11.29. The multiple, optional and
dynamic attributes each take a list of service reference names to which they

apply.

Listing 11.29 Long Form Cardinality and Policy Attributes in Bnd

Service—Component: org.osgi.book.ds.web.MyWebComponent;
log = org.osgi.book.logapi.Log;\

http = org.osgi.service‘http.HttpService;\
multiple := 1log;\

optional := log, http;)\

dynamic := http

we said was required for SCR to treat the declaration according to DS 1.1 rules. In fact
bnd has detected we are not using any of the 1.1 features, so it omits the namespace,
which will allow the component to be used under DS 1.0 as well as 1.1.

DRAFT PREVIEW prepared for Christopher Brind

256 Chapter 11. Declarative Services

Character | Cardinality | Policy

? 0..1 dynamic

* 0..n dynamic

+ 1.n dynamic

~ 0..1 static
1.1 static

Table 11.1.: Cardinality and Policy Indicators in Bnd

11.10.2. XML Generation from Java Source Annotations

While the generation approach based on bnd headers is undoubtedly more
succinct than directly entering XML, the syntax for them is still somewhat
fiddly, especially with the need for two different kinds of assignment operators
(i.e., = and :=).

A more natural solution is offered by bnd based on generation of XML de-
scriptors from Java 5 Annotations inserted into the Java source code. This
has the great advantage that the declarations are located physically alongside
the component code that they refer to; and also the positions of the annota-
tions can be used to communicate information — such as bind method names
— that would otherwise have to be spelled out explicitly in an XML or bnd
descriptor. To get a feel for how the annotations work, see Listing 11.30 which
reimplements the LogMailboxListener class from earlier in the chapter, but
with added annotations for bnd to process.

The @Component annotation indicates that this class defines a component,
and it has an attribute to specify the service (or services) provided by the
component and a service property. Other attributes exist, for example we
could add immediate="true" in order to turn off the lazy instantiation feature
described in Section 11.5.1.

The second annotation we see here code is @Reference, which defines a service
reference. In all cases the service attribute is compulsory with this annota-
tion, as it defines the service interface to which the reference should bind. We
also have some attributes to control the static/dynamic policy, the cardinal-
ity and so on. Note that instead of a single cardinality attribute with values
“0..17, “1..n” etc., we have a pair of boolean attributes named optional and
multiple.

The @Reference is always attached to the bind method for a reference, and
there are some special rules used by bnd to determine which method provides
the unbind. By default, the name of the unbind method is presumed to be
the name of the bind method prefixed by “un”, so in this example the unbind
method corresponding to setLog is unsetLog. There is a special case when the

DRAFT PREVIEW prepared for Christopher Brind

~w

o

10
11

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

11.10 Using Bnd to Generate XML Descriptors 257

name of the bind method begins with “add”, which is often used with multiple
references: the “add” segment of the name is replaced with “remove” to form
the unbind method name. So, if we have a bind method named addListener
then the unbind method name will be removelListener. However if neither
of these rules suits our needs then we can explicitly indicate the name of the
unbind method by adding an unbind attribute to the @Reference annotation,
for example unbind="deleteFoo".

Listing 11.30 LogMailboxListener with Bnd DS Annotations

package org.osgi.book.ds.annotated;

import java.util.concurrent.atomic.AtomicReference;
import org.osgi.book.logapi.Log;
import org.osgi.book.reader.api.x*;

import aQute.bnd.annotation.component.x*;
Q@Component (provide = MailboxListener.class,
properties = { "service.ranking=10" })

public class LogMailboxListener implements MailboxListener {

private final AtomicReference<Log> logRef
= new AtomicReference<Log > ();

public void messagesArrived(String mboxName, Mailbox mbox,
long [] ids) {

Log log = logRef.get ();
if (log != null) log.log(Log.INFO, ids.length +
" message(s) arrived in mailbox " + mboxName , null);
else System.err.println("No log available!");
}
QReference (service = Log.class, dynamic = true, optional = true)

public void setLog(Log log) {
logRef .set (log);
}

public void unsetLog(Log log) {
logRef . compareAndSet (log, null);
}

To compile this source code we will need visibility of the annotations de-
fined by bnd. This can be done by putting the bnd JAR itself on the com-
pilation classpath; however in case we do not wish to put the whole of bnd
on the classpath, the annotation interfaces are available in a separate JAR
named annotation-wversion.jar, downloadable from the same location as
bnd. Just be careful to use matching versions of the annotations and bnd.
Note that the annotations are not retained at runtime, so it is not necessary
for your bundles to import the aQute.bnd.annotation.component package
with Import-Package.

Listing 11.31 shows an annotation-based version of the HeartbeatComponent
seen earlier. This time the @Component annotation has no attributes — in
particular no provide, since the component is not a service. Instead it has
@Activate and @Deactivate annotations to indicate its lifecycle methods.

DRAFT PREVIEW prepared for Christopher Brind

258 Chapter 11. Declarative Services

Listing 11.31 Heartbeat Component with Bnd DS Annotations

1 package org.osgi.book.ds.annotated;

3 import java.util.concurrent.atomic.AtomicReference;
4 import org.osgi.book.logapi.Log;
5 import aQute.bnd.annotation.component.*;

7 @Component
8 public class HeartbeatComponent {

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

private Thread thread;
private final AtomicReference<Log> logRef
= new AtomicReference<Log>();

@Activate
public void start() {
thread = new Thread(new Runnable () {
public void run() {
try

while (!Thread.currentThread ().isInterrupted()) {
Thread.sleep (5000);
Log log = logRef.get ();
if (log != null)
log.log(Log.INFO, "I’m still here!", null);
else System.err.println("No log available!");

} catch (InterruptedException e) {
System.out.println("I’m going now.");

}
1)
thread.start ();
}
@Deactivate
public void stop() {
thread.interrupt ();
}

QReference (service=Log.class, dynamic=true, optional=true)
public void setLog(Log log) {
logRef .set (log);

public void unsetLog(Log log) {
logRef . compareAndSet (log, null);

DRAFT PREVIEW prepared for Christopher Brind

ISR

11.11 Configured Components 259

The rest of the DS examples in this chapter will use these bnd source code
annotations.

11.10.3. Automatic Service Publication

In Listing 11.30 the @Component annotation included a provide attribute to
indicate that the component should be published under a particular service
interface. In fact this was not necessary: when generating the XML descriptor,
bnd automatically includes a service publication element for any interfaces im-
plemented by the component class. This happens both when generating using
the special bnd headers, and when generating from Java source annotations.

In this case, bnd would have detected that the component class implements
the MailboxListener interface, and therefore would automatically include the
XML necessary to publish under that interface. Therefore it was not necessary
to include the provide attribute explicitly.

In some cases we don’t want to provide a service even when the component
class implements an interface. In these cases we need to specify an empty list
explicitly, as follows:

Q@Component (provide = {})
public class NonServiceComponent implements MySecretInterface {
}

11.11. Configured Components

In the introduction to this chapter, on page 221, it was mentioned that DS
components can be configured in a number of ways. Listing 11.32 shows a
component that is able to receive configuration data.

The only change needed to make a DS component configurable is to add a
parameter of type Map<String,Object>'?, then simply access the data and
use it however we like.

Notice that this code goes to quite some lengths to accept data in a vari-
ety of different formats. In particular we accept any of the sub-classes of
java.lang.Number (i.e. Integer, Long, Double etc.) and in addition any
string that is parseable as a Long. Being flexible in the data we accept is a
good way to make robust components that are widely reusable. Unfortunately
it can make our code somewhat longer than otherwise necessary — especially

12Tn fact the type parameters are erased at runtime, so any form of Map can be used,
including the raw type. However we know from the DS specification that the map keys
will always be of type String so it is convenient to add this to our method signature.

DRAFT PREVIEW prepared for Christopher Brind

11
12
13
14
15

17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40

42
43
44
45
46
47
48
49
50

51

SIS
s ow

o
&

260 Chapter 11. Declarative Services

Listing 11.32 Configured Component

package org.osgi.book.ds.annotated;

import java.util.Map;
import aQute.bnd.annotation.component.x;

Q@Component (properties = {"interval=5000"})
public class ConfiguredComponent {

private static final String PROP_INTERVAL = "interval";
private static final String MSG_MANDATORY =

"The property named ’%s’ must be present.";
private static final String MSG_INVALID =

"The property names ’%s’ is of invalid or unrecognised type.";

private Thread thread;

QActivate
public void start(Map<String,Object> config) {
final long interval = getMandatoryLong(config, PROP_INTERVAL);
thread = new Thread(new Runnable () {
public void run() {
try {
while (!Thread.currentThread ().isInterrupted()) {
Thread.sleep(interval);
System.out.println("I’m still here!");

} catch (InterruptedException e) {
System.out.println("I’m going now.");

}
});
thread.start ();

}

@Deactivate

public void stop() {
thread.interrupt ();

}

static long getMandatoryLong(Map<String ,Object> cfg, String key) {
Object o = cfg.get(key);
if (o == null)
throw new IllegalArgumentException (
String.format (MSG_MANDATORY , key));
else if (o instanceof Number)
return ((Number) o).longValue ();
else if (o instanceof String)
return Long.parselong ((String) o);
else
throw new IllegalArgumentException (
String.format (MSG_INVALID, key));

DRAFT PREVIEW prepared for Christopher Brind

11.11 Configured Components 261

since, in this example, the getMandatoryLong method is used only once! In
reality we may wish to pull getMandatoryLong, along with other similar meth-
ods for different data types, into a library of utility functions.

11.11.1. Sources of Configuration Data

But where does the configuration data actually come from? In fact there are
three sources of data, in ascending order of priority.

Component Descriptor Properties

The first source of configuration data is the set of property and properties
elements found in the XML descriptor of the component declaration (or in
the properties attribute of the @Component annotation). We saw the use of
the component properties back in Section 11.5.3 to provide service properties;
the same set of properties are also considered part of the configuration of the
component.

The dual use of properties, i.e. both as part of the published properties of a
service and as the internal configuration of the component, is an important
design point of DS. Publishing all of the properties that form the configura-
tion of the component enables consumers to filter or select over any of those
properties. It’s difficult to predict which properties of a component may be
useful for a consumer to have visibility of, so DS makes them all visible.

However, specifying configuration properties in the XML descriptor is very
limiting, since they must all be fixed at the time that the bundle is built —
there is no way to dynamically change them at runtime. Therefore the XML
descriptor properties are really only suitable for the default configuration of
our component.

Configuration Admin

The second source of configuration data is the Configuration Admin (CM)
service, discussed at length in Chapter 9.

When using DS we can receive configuration data from Configuration Admin
without ever having to implement the ManagedService or ManagedService-
Factory interfaces. SCR quietly listens for configurations having a Persistent
ID (PID) matching the name of our component. If the Configuration Ad-
min service is available, and if a configuration record exists with a matching
PID, then our component will receive the data inside that configuration record
through its activation method.

DRAFT PREVIEW prepared for Christopher Brind

262 Chapter 11. Declarative Services

When configuration data is available from both Configuration Admin and from
the XML descriptor, the Configuration Admin data overrides the XML de-
scriptor properties. The overriding happens on individual properties, not the
whole set of properties. This enables us to use the XML descriptor to supply
default values for many of the required properties, with Configuration Admin
overriding a subset of them at runtime.

Factory Components

The third source of configuration data, overriding both of the previous two
sources, is the content of a Dictionary that can be passed to a call to
ComponentFactory.newInstance method of a so-called “factory component”.

We have not yet discussed factory components, however they are rarely used,
and this source of configuration data is simply not relevant to the standard
components we have looked at so far. Therefore we can safely ignore it until
we come to factory components later, in Section 77.

11.11.2. Testing with Filelnstall

We will now test the example configured component by feeding it some data
using Apache Filelnstall, which we first saw in Chapter 9, Section 9.2.2. Recall
that FileInstall looks for a file named <pid>.cfg in the load directory, where
<pid> is the PID of the configuration record that will be created. As stated
above, the PID should match the name of the DS component.

We have so far not explicitly set the names of our DS components, and so they
have defaulted to the names of their implementation classes. Therefore the
PID we need to create is org.osgi.book.ds.annotated.ConfiguredComp-
onent. We can override this default and set the name to whatever we choose
by adding a name attribute at the top level element of our XML descriptor, or
to the @Component annotation.

To test configuring the component from Listing 11.32, we need to create a file in
the load directory named org.osgi.book.ds.annotated.ConfiguredComp-
onent.cfg with the following content:

interval=10000

When this file is created we should notice that the polling interval of the
component slows down.

DRAFT PREVIEW prepared for Christopher Brind

11.11 Configured Components 263

11.11.3. Dealing with Bad Configuration Data

Sometimes the configuration data that a component receives — whether from
the XML descriptor or through Configuration Admin — will be “bad”. The
definition of “bad” data depends on our component, but typically it would
include:

e Missing parameters which are required by the component.
e Data values out of range, e.g. interval=-100.

e Corrupt or nonsensical data values, e.g. interval=fish.

Unfortunately neither Configuration Admin nor Declarative Services provide
any validation of the data they supply to the components, therefore it is the
responsibility of each component to check the data it receives to see whether it
is valid before using it. What should our component do if it finds invalid data?
It has two choices; either it can proceed using default values as substitutes for
the supplied values, or it can throw an exception.

If we proceed with defaults then it’s a good idea to at least write a warn-
ing message into a log, so that an administrator might find the warning and
correct the invalid data. For this reason it may be useful to include an op-
tional reference to the OSGi Log Service in our component declaration. The
other alternative — throwing an exception — will prevent the activation of the
component as described in Section 11.7.2.

11.11.4. Dynamically Changing Configuration

As we know from Chapter 9, configuration data can be changed at runtime,
even while our application is running and therefore while the components using
it are active. Components therefore need to have a way to receive changes to
their configuration.

The components we have seen so far had only activate and deactivate
methods. When their configuration data changes, the only way SCR can
update them is to deactivate and recreate them, then call activate with the
new data. This is rather reminiscent of the static policy for service references,
and much of the time it is perfectly adequate.

However, sometimes it is not. If a component is expensive to create then it
may be wasteful to destroy and recreate it merely to change its configuration.
Therefore DS includes the ability to dynamically reconfigure components with-
out recycling them. They key to this is the Modified Method that, if it exists,
is called by SCR when the configuration of the component changes while the
component is active. Just like dynamic service replacement, a component that
implements a modified method must be aware that it might be called from an

DRAFT PREVIEW prepared for Christopher Brind

Bow N =

W

® N o

10
11

13
14

16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

264 Chapter 11. Declarative Services

arbitrary thread even while the configuration data is being used, so thread-safe
programming patterns must be used.

Unlike activate and deactivate, there is no default method name for the
modified method; we must specify it using the modified attribute at the top
level of the XML Declaration as follows:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
activate="start" modified="modified" deactivate="stop">

</scr:component>

Or if we are using the bnd annotations we can simply attach the @Modified
annotation to the appropriate method. The method itself can take a parameter
of type Map<String,0Object> just like the activate method, and in fact it is
perfectly possible to use the same method for both activation and modification
if we write it carefully. Listing 11.33 shows a very simple component that
allows dynamic reconfiguration using a modified method, which also happens
to be the same as the activate method.

Listing 11.33 A Component with Modifiable Configuration

package org.osgi.book.ds.annotated;

import java.util.Map;
import java.util.concurrent.atomic.AtomicReference;

import org.eclipse.osgi.framework.console.x;
import org.osgi.service.cm.ConfigurationException;
import aQute.bnd.annotation.component.x;

@Component (provide = CommandProvider.class)
public class ModifiableConfigComponent implements CommandProvider {

static final String PROP_MSG = "message";
static final String DEFAULT_MSG = "This is the default message";

private final AtomicReference<String> messageRef
= new AtomicReference<String>(DEFAULT_MSG);

@Activate
@Modified
public void start(Map<String, Object> config)
throws ConfigurationException {
String message = (String) config.get (PROP_MSG);

if (message == null)
messageRef .set (DEFAULT_MSG);
else

messageRef .set (message);

public String getHelp () {
return "test - print a test message\n";

public void _test(CommandInterpreter ci) {
ci.println(messageRef.get ());
}

An important point to note is the way exceptions are handled. Whereas an ex-

DRAFT PREVIEW prepared for Christopher Brind

Bow o=

N o o W

11.11 Configured Components 265

ception thrown from an activate method prevents activation of the component,
an exception thrown from a modified method does not cause the component to
deactivate — though of course it does cause a log entry to be written. Therefore
a modified method cannot trigger deactivation when it detects that the new
configuration is invalid. We have to either continue using the old configuration
or fall back to defaults for the fields that are invalid. If that is not sufficient,
i.e. we really need the component to be deactivated, then it is best not to
supply a modified method.

11.11.5. Configuration Policies

A problem that was discussed in the Configuration Admin chapter (Section
9.2.3) was what to do when no configuration is available. In many cases we can
just use the default values we get from the XML descriptor, but other times
there is just no sensible default. As before, consider a mailbox component
backed by a database — it would be very dubious to put the database connection
parameters into the XML descriptor, they really need to be supplied at runtime
via Configuration Admin. If no configuration record exists for our component,
it would be best not to activate our component nor register it as a service.

DS provides a much neater way to achieve this goal. Using hand-written
ManagedService instances it was necessary to perform “split” registration,
producing additional complexity. With DS we can simply declare a “policy”
for our component with respect to its configuration. This is done with the
configuration-policy attribute on the top-level element of the XML de-
scriptor, which may be set to the value “require”:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/vl1.1.0"
configuration —policy="require">

</scr:component>

Using the bnd annotations this becomes an attribute named configurationPolicy

on the @Component annotation, which takes values defined by the enumeration
ConfigurationPolicy. For example:

import static aQute.bnd.annotation.component.ConfigurationPolicy.x;
Q@Component (properties = {"interval=5000"},
configurationPolicy = require)

public class ConfiguredComponent {

/)

Here is the meaning of each of these policies:

DRAFT PREVIEW prepared for Christopher Brind

266 Chapter 11. Declarative Services

Optional (optional)

This is the default if no policy is specified.. The component will always be cre-
ated, and if configuration data with a PID matching the component’s name is
available, it will be supplied to the component. Otherwise, the XML descriptor
data will be supplied.

Require (require)

Under this policy, the component will not be “satisfied” unless there exists
a configuration record with a PID matching its name. If such a record is
missing, or has not been created yet, then the component will not be created
or activated, nor will it be registered as a service. If a matching configuration
becomes available later, then the component will be activated and registered.
Lifewise if the configuration is deleted then the component will be unregistered,
deactivated and destroyed.

Note that the required configuration policy does not enforce anything about
the content of the configuration record. The configuration may have missing
fields, nonsensical values and so on, but SCR will still use it to activate the
component so long as it has a matching PID. Again it is the component’s
responsibility to deal with any problems in the data itself, and that may include
throwing an exception to abort activation.

It may appear that the lack of validation makes the required configuration pol-
icy less useful than it could be, or even useless. For example, with the default
optional policy, we can detect a missing configuration record in our activate
method and throw an exception, as described in Section 11.11.3. However
there is an important a difference if the component provides a service. Under
the optional configuration policy, the service will always be published, but
due to lazy activation the component will not discover until later whether its
configuration data is missing (see Section 11.7.2). With the required configu-
ration policy, the service will only be registered when a configuration record
exists. Admittedly the configuration may be invalid, meaning the component
still needs to throw an exception during activation, but this policy at least
handles the very common case of a missing configuration.

Ignore (ignore)

This policy means that data from Configuration Admin should simply be ig-
nored. The component will always be created and it will never be supplied with
data from Configuration Admin, even if there is a record with a PID matching
the component’s name. The component will only receive configuration data
from the XML descriptor.

DRAFT PREVIEW prepared for Christopher Brind

aow

© 0w N o

17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

11.12 Singletons, Factories and Adapters 267

11.11.6. Example Usage of Required Configuration

Listing 11.34 shows a slightly altered version of the last component that uses
the required component configuration. This time a default message is not
used, and a modified method is not provided, because we want the com-
ponent to become inactive when its configuration is either missing or in-
valid. Upon building this component into a bundle and installing/starting
it, we should mot immediately see a new instance of the MailboxListener
service published. Only when we create a configuration record with a PID
of org.osgi.book.ds.annotated.RequiredConfigComponent will we see the
service published.

Listing 11.34 A Component with Required Configuration

package org.osgi.book.ds.annotated;

import java.util.Map;
import java.util.concurrent.atomic.AtomicReference;

import org.eclipse.osgi.framework.console.x;

import org.osgi.service.cm.ConfigurationException;

import aQute.bnd.annotation.component.*;

import static aQute.bnd.annotation.component.ConfigurationPolicy.x*;

@Component (configurationPolicy = require,
provide = CommandProvider.class)
public class RequiredConfigComponent implements CommandProvider {

static final String PROP_MSG = "message";

private final AtomicReference<String> messageRef
= new AtomicReference<String >(null);

QActivate
public void start(Map<String, Object> config)
throws ConfigurationException {
String message = (String) config.get(PROP_MSG);
if (message == null) throw new ConfigurationException(
PROP_MSG, "Property is mandatory.");
messageRef .set (message);

public String getHelp () {
return "test - print a test message\n";

public void _test(CommandInterpreter ci) {
ci.println(messageRef .get ());
}

11.12. Singletons, Factories and Adapters

Figure 11.2 summarises the two forms of cardinality we have seen so far in DS.

DRAFT PREVIEW prepared for Christopher Brind

268 Chapter 11. Declarative Services
Y Y
Unary Reference Service 1 Multiple Reference Service 1
(0..10r 1{. 1) (0..nor 1..g)
\‘\ Y \\\\ Y
\\\ Service 2 Service 2
E E
Y Y
E
Y
Service n Service n
ﬁ ﬁ

Figure 11.2.: Unary and Multiple Cardinalities in DS

s N s N
Component 1 > Service 1

\ J \ V,

s N s N
Component 2 > Service 2

\ J \ y,

s N s N

>

\ / \ V,

s N s N
Component n » Service n

\ J \ V,

Figure 11.3.: One Component Per Service — Not Supported by DS

In both of these cases, the component on the left of the diagram — the com-
ponent actually constructed by SCR — is a singleton. The cardinality of the
reference controls whether the component binds to all instances of a service
or selects one of them, but it does not control the number of instances of the
component.

Thus the cardinality shown in Figure 11.3, in which we create an instance of the
component for each instance of the service, is not supported by DS. However it
is quite easy to support this kind of reference using ServiceTracker — Section
4.8 included a classic example in Listing 4.12 on page 93.

DRAFT PREVIEW prepared for Christopher Brind

Part Ill.

Practical OSGi

DRAFT PREVIEW prepared for Christopher Brind

12. Using Third-Party Libraries

Inevitably when developing a Java application, we rely on third party libraries
to implement some part of the application or to make our own code simpler or
shorter. Typical Java projects tends to have a large collection of JAR files that
they build and deploy with, and for the most part this is a good thing: the
reliance on external code is the result of Java’s huge ecosystem of developers
producing useful libraries, both open source and commercial. It’s also a result
of Java’s platform independence, meaning we can simply drop a JAR onto our
classpath and use it without worrying about CPU architectures and so on.

However, the uncontrolled use of third party libraries can land us in “JAR
Hell”, as we have already seen. OSGi offers a solution, but only when it is given
properly constructed bundles to manage. In a perfect world, all Java libraries
would already be packaged as OSGi bundles with explicit dependencies and
exports, and we could simply install them into our framework and start using
them. Sadly in the real world only a small fraction of libraries are offered
as OSGi bundles, although the number is increasing all the time. To use the
remainder, we have to do some extra work.

The two main approaches to using arbitrary are embedding the library into a
bundle and wrapping the library as a bundle. We will shortly see the benefits
of each approach and the steps involved. However, the very first step is the
same in both cases, and is very important but easily overlooked.

12.1. Step Zero: Don’t Use That Library!

The first thing we should do when considering using a third party library is to
try not to use it. This may seem obtuse, but the serious point is that using a
library carries costs as well as benefits, and we should be sure that the benefits
outweigh the costs. Unfortunately, whereas the benefits are felt immediately,
the costs tend to be spread over time, or may even be paid by somebody else:
end users, maintainers, administrators, other developers. It is human nature
to be tempted by an immediate gain and to ignore the future cost, even if it
is large.

The benefits of using a library are clear enough. By reusing code that’s avail-
able elsewhere we can get our job done quicker, and end up with more main-
tainable code. These benefits are approximately proportional to the amount

DRAFT PREVIEW prepared for Christopher Brind

272 Chapter 12. Using Third-Party Libraries

of code that can avoid writing ourselves by making use of the library: it’s a
bigger win to eliminate a thousand lines of unnecessary code than ten lines.
Also some libraries offer features that are just so hard to implement correctly
(e.g., concurrency or encryption utilities) that the majority of programmers
should leave it to experts to write the code.

But what are the costs? As soon as we use a library — for example one
delivered as a JAR file — we lose the ability to run in environments where
that JAR file is not available. We can solve this problem in one of two ways:
either we include the library with our application, or we must have a system
for finding pre-installed copies of the library on any platform that we deploy
to.

The first solution can lead to bloated downloads and a waste of resources, as
we may have reduced the amount of source code but we increase the size of
our application, sometimes dramatically. Unless the library is very small and
focussed, inevitably there will be parts of it that we don’t use: those parts
add to the size of our application without contributing anything. This option
also ignores the fact that there may be a perfectly usable copy of the library
already available on the target computer. Users may find that they have many
identical copies of common libraries like Apache Log4J as each Java application
they use installs its own independent copy.

The second solution is clearly more desirable but it is a very difficult technical
challenge for which nobody has yet found a good solution. Historically this
has been hindered by the non-modular nature of JAR files: if our application
finds a copy of a library on a user’s computer, how does it know whether it is
the correct version? Indeed, how does it even identify it as the correct library,
given only an arbitrary file name? And does the library have further depen-
dencies that are not yet present? Obviously OSGi can help this situation a
great deal, but it is still not an easy problem to solve. For example, if our ap-
plication installs a bundle because it was not previously present on the target
computer, how does it make sure that bundle is available to other applications
that might wish to use it? Solving this calls for the use of standard reposito-
ries and deployment practices, but no such standard has achieved widespread
acceptance yet.

This situation should improve with time, but however easy OSGi makes the
management of dependencies it will always be easy to manage no dependency.
Therefore it better not to introduce a dependency unless doing it would be a
significant benefit.

1For example, a quick scan of the author’s computer reveals 26 independent copies of
Log4J.

DRAFT PREVIEW prepared for Christopher Brind

12.2 Augmenting the Bundle Classpath 273

12.2. Augmenting the Bundle Classpath

So we have determined that, yes, we really do want to use that third-party
library, foo.jar from XYZ Corporation from our bundle. The quickest and
easiest way to use do this (though not necessarily the best way) is to aug-
ment the bundle’s internal classpath by using the Bundle-Classpath manifest
header.

12.2.1. Embedding JARs inside a Bundle

In the introduction chapter we discussed the classpath mechanism used in
standard Java to make libraries available to an application. OSGi abolishes
the single, global classpath and replaces it with bundles, but each bundle has
an “internal” classpath which works just like the global Java one. That is,
each bundle has a list of JARs which it reads sequentially when it tries to
load a class?. The Bundle-Classpath header allows us to specify the bundle’s
internal classpath much like we use the -classpath command line parameter
to specify the global one.

Note that the location of the JARs referenced by Bundle-Classpath cannot
be an arbitrary filesystem location, it must be a path to a JAR file embed-
ded inside the bundle JAR. If the value of the header is “libs/mylib. jar”
then there must exist a JAR file nested inside the bundle JAR at the loca-
tion 1ib/mylib. jar. It’s very important that Bundle-Classpath should not
be used to refer to JARs at arbitrary external locations because this would
expose us to many of the same deployment problems that standard Java suf-
fers from. Bundles must be coherent, self-contained, installable units, having
dependencies only on other bundles as expressed through the manifest.

The Bundle-Classpath header is specified as a comma-separated list. In a
bundle where the value of this header is “1ibs/mylibA. jar,1libs/mylibB, jar”,
a class load request will first try to find the requested class in mylibA, then in
mylibB. Each path is always specified relative to the bundle root, and there is a
special path we can add to the list: «” (i.e., dot or period), which simply means
the bundle JAR itself. When we don’t include “” in the Bundle-Classpath,
then classes will not be loaded directly from the bundle JAR, which is just a
container for the nested JARs.

At runtime, the classes in included JARs are fully-fledged and integral parts
of our bundle, there is no difference between classes loaded from nested JARs
and classes loaded directly from the bundle JAR. We can even export packages
from the nested JARs using the Export-Package header.

2 Assuming that the class could not be imported via Import-Package or Require-Bundle.
Recall that imported packages take precedence over local ones (see Section 3.8).

DRAFT PREVIEW prepared for Christopher Brind

274 Chapter 12. Using Third-Party Libraries

If we don’t include the Bundle-Classpath header in our manifest, it takes the
default value of just “”. So by default the classpath is equal to the bundle
JAR, which is exactly the behaviour we have seen until now.

12.2.2. Problems with Augmenting the Bundle Classpath

Just as the global, flat classpath in standard Java leads to myriad problems —
which we characterise as “JAR Hell”, overuse of embedded third-party libraries
in a bundle can lead to a loss of modularity and “mini-Hells”.

Embedding a JAR in our bundle makes the library offered by the JAR available
to that bundle... but it does not normally make it available to any other
bundle. If another bundle wants to use the library as well it may follow
the same embedding approach, and now we have two copies of the library.
Following this reasoning to its logical conclusion, we might find every bundle
in our application embedding its own copies of the same collection of libraries!

The problem is worse than just bloat due to duplication, though that is bad
enough. The identity of a Java class is defined by its implementation code and
the classloader that loaded it, therefore a class that is loaded separately by two
different bundles will have two separate identities, even if the embedded JARs
are byte-for-byte identical. This means that instances of any such class cannot
be communicated between the two bundles, because they are incompatible.

For example, suppose bundles A and B both embed a copy of “Joda Time”
library, a popular library for date and time handling. If A exposes an API that
accepts an org.joda.time.LocalDate object as a method parameter, then
bundle B may reasonably expect that it can create an instance of LocalDate
and pass it to A. However this would cause a ClassCastException since the
LocalDate class has been loaded in separate classloaders.

Notwithstanding the above problems, embedding JARs in our bundles is not
always the wrong approach. It can be appropriate for small or specialised
libraries that are used only in the internal implementation of a bundle. How-
ever, if a library is likely to be used by multiple bundles, or if it forms part of
the public API of a bundle, then it should be wrapped, i.e. turned into a full,
standalone bundle.

12.3. Finding OSGi Bundles for Common Libraries

In the above scenario it would have been preferable if Joda Time was avail-
able as an OSGi bundle: then bundles A and B could simply have imported
the org.joda.time package, and would have been able to pass instances of
LocalDate freely since there would be just one definition of it.

DRAFT PREVIEW prepared for Christopher Brind

12.4 Transforming JARs into Bundles, Part I 275

Unfortunately Joda Time is not (yet!) available as an OSGi bundle if we
download it from its official web site®. But, we can download an OSGi bundle
of Joda Time from several alternative sites. In general, if a library is useful
to other developers, it’s increasingly likely that somebody else has already
done the conversion and we can simply reuse the result. Also as projects such
as Eclipse and Spring are now using OSGi, they have started to offer large
repositories containing many common open source libraries. These repositories
should be our first port of call when seeking a “bundleized” copy of a library.

SpringSource Enterprise Bundle Repository * is currently the most compre-
hensive repository. SpringSource, the company behind the popular Spring
Framework, offers this repository to assist developers using their OSGi-
based application server product. It contains a very large (and growing)
number of open source libraries, offered through an advanced web inter-
face.

Eclipse Orbit ° was created for the use of Eclipse. It is not as comprehen-
sive as SpringSource’s repository because only libraries needed by official
Eclipse projects are included, and also the licence for each library must
be deemed compatible with the Eclipse Public Licence (EPL). Nonethe-
less Orbit may sometimes contain a library not found elsewhere, so it is
useful to know about.

TODO

12.4. Transforming JARs into Bundles, Part |

The repositories listed above do not always help. Maybe we need to use a
commercial library which cannot be freely redistributed, or a specialised library
that is not popular enough to make it into a general-purpose repository. Or
we may need a more recent version of a library than is available from the
repositories, which inevitably lag somewhat behind the latest releases from
the official web sites. In these cases, we need to perform the transformation
to a bundle ourselves.

Fortunately, bnd makes this a very easy process, though it is not — and as
we will see, cannot be — fully automatic. We will first look at the process for
“OSGifying” a straightforward library, then we will look at some less straight-
forward examples. Our first example is Joda Time

3http://joda-time.sourceforge.net/
4http://www.springsource.com /repository
Shttp://www.eclipse.org/orbit/

DRAFT PREVIEW prepared for Christopher Brind

http://joda-time.sourceforge.net/
http://www.springsource.com/repository
http://www.eclipse.org/orbit/

276 Chapter 12. Using Third-Party Libraries

12.4.1. Step 1: Obtain and Analyse Library

First we need to get hold of the library and work out a few basic pieces of
information about it. The latest version of Joda Time is 1.5.2 and it can be
downloaded from:

http://downloads.sourceforge.net/joda-time/joda-time-1.5.2.zip

After downloading and unzipping we need to find the main JAR file, which
in this case is joda-time-1.5.2.jar, and decide on the symbolic name and
version we will give to the bundle. It’s common practice to use a symbolic
name that looks like a Java package name, and usually we choose the highest-
level unique package name. This is org.joda.time. The version number is
clear from the original ZIP file: 1.5.2.

12.4.2. Step 2: Generate and Check

Having decided these values we can write them down in a bnd descriptor named
org.joda.time_1.5.2.bnd as shown in Listing 12.1

Listing 12.1 Bnd Descriptor for Joda Time

org.joda.time_1.5.2.bnd
—classpath: joda—time —1.5.2. jar
version: 1.5.2

Bundle—SymbolicName: org. joda.time
Bundle—Version: ${version}
Export—Package: #;version=${version}

The first line after the comment is simply a convenience which allows us to
omit the -classpath switch each time we run bnd from the command line.
The second line sets an internal identifier for the version of the library: we
do this so that if we need to change the version string later, we only need to
change it in one place. Note that this identifier will not be included in the
final bundle manifest, since it does not begin with an upper case letter.

A blank line serves to separate the preamble from the actual manifest headers
where we set the symbolic name, bundle version and a list of exported pack-
ages. It’s reasonable to assume that all of the packages in the JAR should
be exported: the asterisk achieves this, and we just need to add the version
attribute to the exports.

Now let’s run bnd:

$ java —jar /path/to/bnd.jar org.joda.time_1.5.2.bnd
org.joda.time_1.5.2.jar 647 542631

DRAFT PREVIEW prepared for Christopher Brind

http://downloads.sourceforge.net/joda-time/joda-time-1.5.2.zip

12.5 Transforming JARS into Bundles, Part II 277

Bnd reports success rather tersely by stating the name of the bundle JAR it
has generated (org.joda.time_1.5.2.jar), the number of entries in the JAR
(647, which includes entries for directories as well as files) and the size of the
JAR in bytes.

At this stage we should check for certain problems that can crop up in the
set of imported and exported packages for the bundle. We could do this by
directly examining the bundle manifest, but it can be hard to read. Bnd offers
a utility for printing information about bundles, so we can look at the imports
and exports by running bnd with the print -impexp command:

$ java —jar /path/to/bnd.jar print —impexp org.joda.time_1.5.2.jar

[IMPEXP |
Export —Package

org.joda.time {version=1.5.2}
org.joda.time.base {version=1.5.2}
org.joda.time.chrono {version=1.5.2}
org.joda.time.convert {version=1.5.2}
org.joda.time.field {version=1.5.2}
org.joda.time.format {version=1.5.2}
org.joda.time.tz {version=1.5.2}
org.joda.time.tz.data {version=1.5.2}
org.joda.time.tz.data.Africa{version=1.5.2}

org.joda.time.tz.data.America{version=1.5.2}

In this case bnd has not generated any imports, because Joda Time does not
have any dependencies on libraries outside the standard JRE. The exports also
look fine, with no unexpected entries. Therefore this bundle is complete: we
have successfully “OSGified” Joda Time.

12.5. Transforming JARS into Bundles, Part Il

Now we will look at a slightly trickier example: HSQLDB [?] is an embeddable
SQL relational database engine written in pure Java. It can be used for file-
based storage in a standalone application, or as a traditional database server.
In either mode it offers JDBC support. The download link is as follows:

http://downloads.sourceforge.net/hsqldb/hsqldb_1_8_0_9.zip

After unzippping, the main JAR is at 1ib/hsqldb.jar and we choose the
symbolic name org.hsqldb. But what about the version? Here we hit the
first small problem: HSQLDB uses four numeric parts in its version number,
whereas OSGi allows only three numeric plus an alphanumeric part. We need
to map the final segment to an alphanumeric string, bearing in mind the
warnings of Section ??. Therefore we add a leading zero to the final segment
to get a version number of 1.8.0.09. The resulting bnd descriptor is shown
in Listing 12.2. Notice that this follows exactly the same pattern as the Joda
Time descriptor; in fact our first pass bnd descriptor always looks like this.

DRAFT PREVIEW prepared for Christopher Brind

http://downloads.sourceforge.net/hsqldb/hsqldb_1_8_0_9.zip

278 Chapter 12. Using Third-Party Libraries

Listing 12.2 Bnd Descriptor for HSQLDB, First Pass

org.hsqldb_1.8.0.09.bnd (lst Pass)
—classpath: 1lib/hsqldb. jar
version: 1.8.0.09

Bundle—SymbolicName: org.hsqldb
Bundle—Version: ${version}
Export—Package: #;version=${version}

Unfortunately when we run bnd against this descriptor we hit another problem:
it prints an error and fails to generate the bundle JARS.

$ java —jar /path/to/bnd.jar org.hsqldb_1.8.0.09.bnd

One error

1 : Unresolved references to [.] by class(es) on the Bundle—
Classpath[Jar:dot]: [hsqglServlet.class]

The error message is somewhat cryptic but observing the reported class name
of hsqlServlet.class and taking a look in the original JAR reveals the source
of the problem: this class is in the default package (i.e., it does not have a
package name), which means it cannot be exported. This is probably a mistake
by the authors of HSQLDB, or at least a questionable decision, since putting
classes in the default package is very bad practice for a library. Fortunately it
is almost certainly safe to simply omit this class, which we can do by refining
our export statement as follows:

Export—Package: org.hsqldbx*;version=${version}

If we run bnd again it will now generate a bundle JAR:

$ java —jar /path/to/bnd.jar org.hsqldb_1.8.0.09.bnd
org.hsqldb_1.8.0.09. jar 356 706011

As before we should check the generated imports and exports. The result of
calling bnd with the print -impexp command is shown in Listing 12.3.

12.5.1. Step 3: Correcting Imports

The set of imports detected by bnd tells a story about the composition of
HSQLDB. Notice the presence of dependencies on both Swing and the HTTP
Servlet APIs, indicating that this JAR contains a mish-mash of both GUI and
server side functionality. Sadly this is quite typical of many Java libraries.

We know that HSQLDB can be used in several contexts. Clearly there is some
GUI code in this JAR, along with some usage of the Servlet API, but we also
know that HSQLDB can be embedded in standalone processes, including ones

6Earlier versions of bnd may treat this problem as merely a warning and still build the
bundle JAR, but we should deal with the problem anyway.

DRAFT PREVIEW prepared for Christopher Brind

12.5 Transforming JARS into Bundles, Part II 279

Listing 12.3 Generated Imports and Exports for HSQLDB, First Pass

$ java —jar /path/to/bnd print —impexp org.hsqldb_1.8.0.09. jar
[IMPEXP |
Import—Package
javax.naming
javax.naming.spi
javax .net
javax .net .ssl
javax .security.cert
javax.servlet
javax.servlet.http
javax.sql
javax.swing
javax.swing.border
javax.swing.event
javax.swing.table
javax .swing.tree
sun.security.action
Export —Package
org.hsqldb {version=1.8.0.0
org.hsqldb. index {version=1.8.0.0

9}
9}

that are “headless”, i.e. without a GUI. So neither the Swing nor the Servlet
dependencies seem to be core to the functionality of HSQLDB.

The Servlet API dependency is the biggest problem, because it means our
HSQLDB bundle will not resolve unless it can be wired to an exporter of the
javax.servlet and javax.servlet.http packages. These are not part of the
standard JRE libraries, so they would have to be offered by another bundle.
It would be a shame to prevent access to HSQLDB entirely just because one
part of it may not be available.

On the other hand, we can’t simply remove the dependencies, because then
the bundle would not be able to load classes from the javax.servlet and
javax.servlet.http packages at all, even when they are available! Therefore
the best thing to do is to make the imports optional, so that HSQLDB can
use the Servlet API when an exporter can be found, but will not be prevented
from resolving if no exporter is present. We do this by adding an explicit
Import-Package instruction to the bnd descriptor:

Import—Package: javax.servletx*;resolution:=optional, =*

Notice the “*” at the end of the instruction, which acts as a catch-all. With-
out it, we would import only the javax.servlet and javax.servlet.http
packages.

There is some risk inherent in marking an import as optional. By doing so we
are asserting that the bundle will still work in the absence of the import. ..
but bnd has detected that something in the bundle uses it, so is our assertion
really safe? It depends on what we mean by the bundle “still working”. To
answer in full we would have to examine all possible use-cases of HSQLDB,

DRAFT PREVIEW prepared for Christopher Brind

280 Chapter 12. Using Third-Party Libraries

following the code paths through the bundle to see if they touch the optional
imports. If a use-case touches one of the optional imports, it will fail with a
NoClassDefFoundError when the package it not present, but as long as the
majority of use-cases (and in particular the ones we consider to be “core” for
the library) do not fail then the bundle is still useful”.

Unfortunately a full examination of all the use-cases tends to be far too much
work, or even impossible if the library is closed-source. So we usually take a
judgement call instead: HTTP servlets do not seem to be core to the func-
tioning of HSQLDB, so we make those imports optional.

How about the Swing package dependencies? These are less of a problem since
Java Standard Edition always includes Swing in the base JRE library. Still,
there are Java editions and Java-like platforms that do not include Swing, such
as Java Micro Edition or Google Android, so it is worthwhile marking these
imports as optional also®.

Most of the remaining listed packages are parts of the JRE base library, and
do not need to be marked optional. But there is one package on the list that
is quite troubling: sun.security.action. This package is part of the Sun
JRE implementation, but is not part of the publicly specified JRE libraries.
Sun strongly discourages developers from using these packages as they are
not present in other JRE implementations such as IBM’s J9 or BEA /Oracle’s
JRockit, and they are not even guaranteed to stay the same across different
versions of Sun’s own JRE. If we leave this dependency in our bundle, it be
restricted to running on the Sun JRE.

We need to do some detective work to see whether the dependency can be
safely made optional. It seems likely that it can, because nowhere on the
HSQLDB web site or documentation is it stated that HSQLDB only runs on
the Sun JRE! The first step is to look at which packages of HSQLDB make
use of the import. The print -uses command will tell us. Listing 12.4 shows
the (abridged) output, from which we can see that the offending package is
only used by the org.hsqldb.util package.

To narrow it down further, we need to look at the source code, which for-
tunately we have available since HSQLDB is open source. Searching in-
side the org.hsqldb.util package reveals that the class GetPropertyAc-
tion from sun.security.action is used by ConnectionDialogCommon and
DatabaseManagerSwing. Clearly these are GUI classes, and we have already
made the Swing dependency optional, so it makes no difference to mark the
sun.security.action dependency as optional also. Furthermore if we read

"In some cases this analysis can reveal that the imports are not used at all! This tends
to happen when some part of a library has become obsolete and is no longer reachable
from the public API, but it has not yet been removed.

81t would take a more thorough analysis to see whether HSQLDB actually does run on
Java ME or Android.

DRAFT PREVIEW prepared for Christopher Brind

12.5 Transforming JARS into Bundles, Part II 281

the code for these classes, GetPropertyAction is actually loaded using reflec-
tion, and there is proper error handling in place for when the class cannot be
loaded. These utility classes have been carefully coded to use the Sun JRE
class when possible, but not to fail when running on other JREs. Our conclu-
sion is that is is safe to mark the import as optional. Listing 12.5 shows the
final version of the bnd descriptor for HSQLDB.

Listing 12.4 Package Uses for HSQLDB, First Pass (Abridged)

$ java —jar /path/to/bnd.jar print —uses org.hsqldb_1.8.0.10. jar
[USES]
org.hsqldb java.sql

javax.net

org.hsqldb.store java.sql
org.hsqldb.1lib

org.hsqldb.types org.hsqldb

org.hsqldb.1lib
org.hsqldb.util java.sql

javax.swing

sun.security.action

Listing 12.5 Bnd Descriptor for HSQLDB, Final Version

org.hsqldb_1.8.0.09.bnd (Final Version)
—classpath: 1lib/hsqldb. jar
version: 1.8.0.09

Bundle—SymbolicName: org.hsqldb

Bundle—Version: ${version}

Export—Package: org.hsqldb x; version:${version}

Import —Package: javax.servlets#;resolution:=optional,)
javax.swings*;resolution:=optional,)\
sun.security.action;resolution:=optional,)\

*

12.5.2. Step 4: Submit to Repository

Sadly all of the work we have just done to “bundleize” HSQLDB was unnec-
essary, since HSQLDB can already be found in the SpringSource repository,
amongst others. The preceding section was intended merely as an illustration
of the process.

Still, if we were really the first to bundleize HSQLDB then ideally we should
also be the last! We can now publish the bundle to a repository so that other
developers need not repeat our efforts. All of the public repositories have a
process for submitting new bundles.

It is also a good idea to maintain your own repository. Companies and organ-
isation working with OSGi should consider creating a company-wide bundle

DRAFT PREVIEW prepared for Christopher Brind

282 Chapter 12. Using Third-Party Libraries

repository into which developers across the organisation can contribute bun-
dles. This is particularly useful for commercially licensed libraries that can
never appear in the public repositories but can be legally shared within a
company, assuming the licence permits doing so. This can also be done at
a project level if OSGi is not yet used in other projects, and even individual
developers can benefit from keeping bundleized libraries in a safe place so they
can be reused later.

12.6. Runtime Issues

You may have noticed that in our efforts so far to bundleize two libraries, we
have not actually run either of them! Bnd is a powerful static analysis tool,
and in many cases the metadata produced is accurate. Nevertheless we should
always check the resulting bundles by running them, as this can reveal certain
kinds of problem that are simply not accessible to any static analysis tool.
These problems fall into two main categories: reflection-based dependencies;
and classloader shenanigans.

12.6.1. Reflection-Based Dependencies

Bnd searches for dependencies by analysing the compiled bytecode of every
Java class that will appear in a bundle. In this way it can find all of the static
or “compiled-in” dependencies. For example when looking at the class A it
may find that one of the methods of A invokes a method on class B: therefore
A depends on B. Or, perhaps a method of A takes an instance of B as a
method parameter, or returns a B. Or, A may be a subclass of B, and so
on. All of these kinds of dependency are easily discovered by bnd and used to
calculate the Import-Package header.

However, sometimes a dependency exists that is not visible to bnd, and this
usually happens when the Reflection API is used to load classes by name at
runtime.

In fact, bnd is still able to discover some of these dependencies too. Recall
that it found a dependency on sun.security.action.GetPropertyAction in
HSQLDB, which appears in the Java source as follows:

Class ¢ = Class.forName("sun.security.action. GetPropertyActlon")
Constructor constructor = c.getConstructor (...);

This worked because the parameter passed to Class.forName was a hard-
coded constant. But it may have been a variable, and the value of that variable
may have been initialised from a configuration file or even text entry by the
user, so it’s impossible to know until runtime what class should be loaded.
Therefore bnd cannot generate an import.

DRAFT PREVIEW prepared for Christopher Brind

12.7 ClassLoader Shenanigans 283

This presents a problem for OSGi. Bundle classloaders can only load classes
that are explicitly imported with Import-Package or Require-Bundle, or are
present on the bundle’s internal classpath. If a library tries to load a class
org.foo.Bar and the package org.foo is not available then Class.forName
will throw a ClassNotFoundException. This is the case even if some bundle
exports org.foo.

Worse of all, we can only find such errors through testing the code at runtime.
This sounds almost as bad as normal Java, where ClassNotFoundExceptions
and NoClassDefFoundErrors can crop up at any time. But of course it is not
really that bad at all — reflection-based dependencies are very much rarer
than normal static ones. Let’s look at how to deal with them.

12.6.2. Hidden Static Dependencies

Some code uses reflection simply to “hide” an otherwise normal static depen-
dency. Why would anybody wish to hide a dependency? HSQLDB has already
given us a perfect example: by loading the GetPropertyAction with reflec-
tion, the code still works on non-Sun JVMs that do not have the class, yet it
can take advantage of the class when it is available.

Another use-case is hiding a dependency from the compiler. Using reflection,
a we can access features of a library at runtime even if we do not have access
to that library at compile time.

Once we have found such a hidden static dependencies they are easy enough
to deal with. We simply add the relevant package to our Import-Package
header. Whether we make it optional or not depends on whether we think
that it is core to the functionality of the library.

12.6.3. Dynamic Dependencies

TODO

12.7. ClassLoader Shenanigans

Some libraries go well beyond simple reflection and dive deep into Java’s flex-
ible classloading architecture. Although there is nothing wrong with this as
such, it needs to be done with great care. As we saw with dynamic depen-
dencies, there are some common assumptions made by libraries that are fine
in standard Java but do not hold true in more complex environments such as
OSGi or J2EE.

DRAFT PREVIEW prepared for Christopher Brind

284 Chapter 12. Using Third-Party Libraries

An example of a widespread library that gets classloading dramatically wrong
is Apache Commons Logging. It fails quite disastrously when run under OSGi.
The reason for this is ironic: Commons Logging attempts to compensate for
Java’s weak modularity and extensibility support by searching the “classpath”
for a concrete logging implementation it can use.

The idea behind Commons Logging is reasonable: many libraries need to
generate log messages, but they don’t know which logging framework will be
used by the applications they are embedded in. If a library links with any
concrete logging framework (e.g., LogdJ), then it can be difficult to use the
library in an application that uses any other framework. So, Commons Logging
offers an abstraction for library code to link against, and it binds dynamically
to a concrete logging framework at runtime. It is this dynamic search that
fails under OSGi, since it assumes global visibility of logging classes on the
“classpath”. It would be possible to use a straightforward static binding, if
Commons Logging were available as multiple JARs, each bound to a single
concrete logging implementation. But Commons Logging opts for a single
JAR as it is safer and more manageable under standard Java.

In general, libraries that use “classloader shenanigans” should be avoided by
OSGi developers. Sadly it is not always so easy, since they may be used by
other libraries required by our application. It is best in these cases to find
alternative libraries. In the case of Commons Logging, which is a particular
problem since it is so widespread, the SLF4J (Simple Logging Framework for
Java) [?] project offers an API-compatible replacement, and is already available
as an OSGi bundle.

DRAFT PREVIEW prepared for Christopher Brind

13. Testing OSGi Bundles

TODO

DRAFT PREVIEW prepared for Christopher Brind

14. Building Web Applications

TODO

DRAFT PREVIEW prepared for Christopher Brind

Part 1V.

Appendices

DRAFT PREVIEW prepared for Christopher Brind

A. ANT Build System for Bnd

The following is suggested project structure for building OSGi projects based
on ANT and bnd. The project structure is assumed to be as in Figure A.1.
The purpose of these directories is as follows:

src contains the Java source of our bundles, laid out in the normal Java way
with subdirectories for each package.

test contains JUnit-based tests for our Java source, also laid out in package
subdirectories.

bundles contains binary or pre-built bundles as JARs that form the dependen-
cies of our code. We will need these at compile time as well as runtime.
For example we may include osgi.cmpn. jar, which is a bundle that con-
tains the APT (but not implementation!) of all the OSGi Compendium
services.

All of the bnd descriptor files are placed at the top level of the project!'. This
is also where we place build.xml and a supplementary properties file called
build.properties. The latter file is shown in Listing A.1; the settings shown
will certainly need to be changed to match your own computer.

Listing A.1 build.properties

Path to the Felix installation directory
felix.home=/path/to/felix —1.0.3

Location of the JUnit JAR
junit.path=/path/to/junit/junit —4.4.jar

#Location of bnd.jar
bnd.path=/path/to/bnd/bnd. jar

IThis could be changed to a subdirectory by editing the bundle target of the ANT build.

DRAFT PREVIEW prepared for Christopher Brind

292

Chapter A. ANT Build System for Bnd

Project Directory |

src

——| org/foo/.../[Foo.java |
-

—| org/fool.../FooTest.java |
]
—I bundles

——‘ osgi.cmpn.jar |
L] |
—| helloworld.bnd |

—| mailbox_api.bnd |

B |

Figure A.1.: OSGi Project Structure

DRAFT PREVIEW prepared for Christopher Brind

293

Listing A.2 build.xml

1 <?xml version="1.0" encoding="UTF-8"7>
2 <project name="osgibook" default="bundle">

4 <!—— Import machine—specific settings —>

5 <property file="build.properties"/>

7 <!—— Setup build paths —>

8 <property name="build_dir" value="build"/>

9 <property name="build_classes_dir" value="${build_dir}/classes"/>
10 <property name="build_bundles_dir" value="${build_dir}/bundles"/>
11 <property name="build_test_dir" value="${build_dirl}/tests"/>
13 <!—— Set a classpath for the 0SGi libraries ——>

14 <path id="osgilibs">

15 <pathelement location:"${felix.home}/bin/felix.jar"/>
16 <fileset dir="bundles" includes="*.jar"/>

17 </path>

19 <!—— Set a classpath for JUnit tests —>

20 <path id="test_classpath">

21 <path refid="osgilibs"/>

22 <pathelement location="${junit.path}"/>

23 </path>

25 <!—— Load the bnd custom task —>

26 <taskdef resource="aQute/bnd/ant/taskdef.properties"

27 classpath="${bnd.path}"/>

29 <!—— TARGET: clean; cleans all build outputs —>

30 <target name="clean" description="Clean all build outputs">
31 <delete dir="${build_dirl}"/>

32 </target>

34 <!—— TARGET: compile; compiles Java sources ——>

35 <target name="compile" description="Compile Java sources'">
36 <mkdir dir="${build_classes_dir}"/>

37 <javac srcdir="src" destdir="${build_classes_dirl}"

38 debug="true" classpathref="osgilibs"/>

40 <mkdir dir="${build_test_dir}"/>

41 <javac srcdir="test" destdir="${build_test_dir}"

42 debug="true" classpathref="test_classpath"/>

43 </target>

45 <!—— TARGET: bundle; generates bundle JARs using bnd —>

46 <target name="bundle" depends="compile"

47 description="Build bundles">

48 <mkdir dir="${build_bundles_dir}"/>

49 <!—— Convert an ANT fileset to a flat list of files —>
50 <pathconvert property="bnd.files" pathsep=", ">

51 <fileset dir="${basedirl}">

52 <include name="x*.bnd"/>

53 </fileset>

54 </pathconvert>

55 <bnd classpath="${build_classes_dir}" failok="false"

56 output="${build_bundles_dir}" files="${bnd.files}"/>
57 </target>

58 </project>

DRAFT PREVIEW prepared for Christopher Brind

Bibliography

Boeing 747 Fun Facts. http://www.boeing.com/commercial/
747family/pf/pf_facts.html.

Java JAR File Specification. http://java.sun.com/j2se/1.4.2/docs/
guide/jar/jar.html.

Apache Jakarta Commons HttpClient. http://jakarta.apache.org/
httpcomponents/httpclient-3.x/.

Eclipse Equinox. http://www.eclipse.org/equinox.

Eclipse. Eclipse Public License 1.0. http://opensource.org/licenses/
eclipse-1.0.php.

Knopflerfish OSGi. http://www.knopflerfish.org/.
Apache Felix. http://felix.apache.org/site/index.html.
Concierge OSGi. http://concierge.sourceforge.net/.

JSR 277: Java Module System. http://www.jcp.org/en/jsr/detail?
id=277.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Boston, MA, USA, 1995.

DRAFT PREVIEW prepared for Christopher Brind

http://www.boeing.com/commercial/747family/pf/pf_facts.html
http://www.boeing.com/commercial/747family/pf/pf_facts.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html
http://jakarta.apache.org/httpcomponents/httpclient-3.x/
http://jakarta.apache.org/httpcomponents/httpclient-3.x/
http://www.eclipse.org/equinox
http://opensource.org/licenses/eclipse-1.0.php
http://opensource.org/licenses/eclipse-1.0.php
http://www.knopflerfish.org/
http://felix.apache.org/site/index.html
http://concierge.sourceforge.net/
http://www.jcp.org/en/jsr/detail?id=277
http://www.jcp.org/en/jsr/detail?id=277

	Preface
	Nuts and Bolts
	Introduction
	What is a Module?
	The Problem(s) with JARs
	Class Loading and the Global Classpath
	Conflicting Classes
	Lack of Explicit Dependencies
	Lack of Version Information
	Lack of Information Hiding Across JARs
	Recap: JARs Are Not Modules

	J2EE Class Loading
	OSGi: A Simple Idea
	From Trees to Graphs
	Information Hiding in OSGi Bundles
	Versioning and Side-by-Side Versions

	Dynamic Modules
	The OSGi Alliance and Standards
	OSGi Implementations
	Alternatives to OSGi
	Build Tools: Maven and Ivy
	Eclipse Plug-in System
	JSR 277

	First Steps in OSGi
	Bundle Construction
	OSGi Development Tools
	Eclipse Plug-in Development Environment
	Bnd

	Installing a Framework
	Setting up Eclipse
	Running Equinox
	Installing bnd
	Hello, World!
	Bundle Lifecycle
	Incremental Development
	Interacting with the Framework
	Starting and Stopping Threads
	Manipulating Bundles
	Exercises

	Bundle Dependencies
	Introducing the Example Application
	Defining an API
	Exporting the API
	Importing the API
	Interlude: How Bnd Works
	Requiring a Bundle
	Version Numbers and Ranges
	Version Numbers
	Versioning Bundles
	Versioning Packages
	Version Ranges
	Versioning Import-Package and Require-Bundle

	Class Loading in OSGi
	JRE Packages
	Execution Environments
	Fragment Bundles
	Class Space Consistency and "Uses" Constraints

	Services
	Late Binding in Java
	Dependency Injection Frameworks
	Dynamic Services

	Registering a Service
	Unregistering a Service
	Looking up a Service
	Service Properties
	Introduction to Service Trackers
	Listening to Services
	Tracking Services
	Filtering on Properties
	Cardinality and Selection Rules
	Optional, Unary
	Optional, Multiple
	Mandatory, Unary
	Mandatory, Multiple

	Service Factories

	Example: Mailbox Reader GUI
	The Mailbox Table Model and Panel
	The Mailbox Tracker
	The Main Window
	The Bundle Activator
	Putting it Together

	Concurrency and OSGi
	The Price of Freedom
	Shared Mutable State
	Safe Publication
	Safe Publication in Services
	Safe Publication in Framework Callbacks

	Don't Hold Locks when Calling Foreign Code
	GUI Development
	Using Executors
	Interrupting Threads
	Exercises

	The Whiteboard Pattern and Event Admin
	The Classic Observer Pattern
	Problems with the Observer Pattern
	Fixing the Observer Pattern
	Using the Whiteboard Pattern
	Registering the Listener
	Sending Events

	Event Admin
	Sending Events
	The Event Object
	Receiving Events
	Running the Example
	Synchronous versus Asynchronous Delivery
	Ordered Delivery
	Reliable Delivery

	Exercises

	The Extender Model
	Looking for Bundle Entries
	Inspecting Headers
	Bundle States
	Using a Bundle Tracker
	Testing the Help Extender

	Bundle Events and Asynchronous Listeners
	The Eclipse Extension Registry
	Impersonating a Bundle
	Conclusion

	Configuration and Metadata
	Configuration Admin
	Audiences

	Building Configurable Objects
	Configured Singletons
	Running the Example with FileInstall
	Configured Singleton Services
	Multiple Configured Objects
	Multiple Configured Objects with FileInstall
	A Common Mistake
	Multiple Configured Service Objects
	Configuration Binding

	Describing Configuration Data
	Metatype Concepts
	Creating a Metadata File

	Building a Configuration Management Agent
	Listing and Viewing Configurations
	Creating and Updating Configurations
	Creating Bound and Unbound Configurations

	Creating a Simple Configuration Entry

	Component Oriented Development
	Introduction to Component Oriented Development
	What is a Software Component?

	Declarative Services
	The Goal: Declarative Living
	Introduction
	Summary of Declarative Services Features
	A Note on Terminology and Versions

	Declaring a Minimal Component
	Running the Example
	Providing a Service
	Lazy Service Creation
	Forcing Immediate Service Creation
	Providing Service Properties

	References to Services
	Optional vs Mandatory References
	Static vs Dynamic References
	Minimising Churn
	Implementing the Dynamic Policy
	Service Replacement
	Running the Example
	Minimising Churn with Dynamic References
	Recap of Dynamic Reference Implementation

	Component Lifecycle
	Lifecycle and Service Binding/Unbinding
	Handling Errors in Component Lifecycle Methods

	Unary vs Multiple References
	Static Policy with Multiple References
	Implementing Multiple References

	Discussion: Are These True POJOs?
	Using Bnd to Generate XML Descriptors
	Bnd Headers for XML Generation
	XML Generation from Java Source Annotations
	Automatic Service Publication

	Configured Components
	Sources of Configuration Data
	Testing with FileInstall
	Dealing with Bad Configuration Data
	Dynamically Changing Configuration
	Configuration Policies
	Example Usage of Required Configuration

	Singletons, Factories and Adapters

	Practical OSGi
	Using Third-Party Libraries
	Step Zero: Don't Use That Library!
	Augmenting the Bundle Classpath
	Embedding JARs inside a Bundle
	Problems with Augmenting the Bundle Classpath

	Finding OSGi Bundles for Common Libraries
	Transforming JARs into Bundles, Part I
	Step 1: Obtain and Analyse Library
	Step 2: Generate and Check

	Transforming JARS into Bundles, Part II
	Step 3: Correcting Imports
	Step 4: Submit to Repository

	Runtime Issues
	Reflection-Based Dependencies
	Hidden Static Dependencies
	Dynamic Dependencies

	ClassLoader Shenanigans

	Testing OSGi Bundles
	Building Web Applications

	Appendices
	ANT Build System for Bnd

