
The Eclipse 4.1 Application Platform

An Introduction to e4

How to write an RCP-Application with e4

Tom Schindl <tom.schindl@bestsolution.at>

The Eclipse 4.1 Application Platform Page 1 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Table of contents
Abstract.. 3
Setup the IDE.. 3

Download & Install Eclipse 4.0 SDK..3
Install Eclipse 4.0 (Model)Tooling...4

Setup project... 5
Create an OSGi-Project.. 5
Add a product definition... 6
Add a minimal Eclipse 4.0-ApplicationModel..7
Create a MailDemo-4.0.product... 9

Create the MailServices... 10
Create the UI... 12

Implement the AccountView UI..13
Create a TestProject...14
Create the FolderView UI.. 15
Create the Mail UI...17

Assemble an Eclipse 4.0-Application..20
DI and the POJO Application Programming Model...................................20
Wiring the POJOs into the Application Model..23

Improve the Application L&F...27
Extended Annotations...30

@Preference... 30
@Focus.. 32
Menus and @Execute... 32

The Event System...36
Advanced Eclipse 4.0 - Contributing Fragments...38

Contributing a Command-Element...40
Contributing a Handler... 41
Contributing a HandledMenuItem...43
Contributing a ToolItem.. 44
Dynamic UI creation.. 46
Improve Usability with Keybindings.. 53

Get the source... 57
Using git-repository at github.com...57
Download zip-Files...57

Closing words...57

The Eclipse 4.1 Application Platform Page 2 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Abstract
One of the most used RCP-Applications to teach people the concept of the 3.x
platform is the mail demo generated by the PDE Wizard. In this tutorial we are
going to create a similar application using the Eclipse 4.1 Application
Platform.

This document will not delve into the details about about the internals of the
Application Platform but will instead focus on showing how one can use it to
create an application.

We hope to deliver an in depth book talking about the internals and more
advanced information in the 4.1 timeframe.

Setup the IDE
Probably the most natural way to develop an Eclipse 4.1 application is to
download the Eclipse 4.1 SDK which uses the Eclipse 4.1 Application
Platform to provide you a Java and OSGi-Tooling-IDE.

We should mention at this point that you are NOT forced to use the Eclipse 4.1
SDK to write Eclipse 4.1 applications and all the introduced tooling is available
to you as well in the Helios Release through the e4 Update-Site of the Eclipse-
IDE.

Though we appreciate if you use Eclipse 4.1 SDK as your IDE we'd like to
mention that it is not targeted yet for daily work but marked as an “Early
Adopter Release” giving plugin developers the possibility to test if their 3.x
bundles run in a 4.1 environment.

Download & Install Eclipse 4.1 SDK
You should be able to download Eclipse 4.1 SDK from
http://eclipse.org/eclipse4/ . Featurewise what you get with this download is
comparable to Eclipse Classic 3.7 that includes JDT, PDE, CVS,

After having downloaded the Eclipse version for your platform you'll have to
unzip it and launch the platform executeable and you should see an 4.1 SDK
similar to this one:

The Eclipse 4.1 Application Platform Page 3 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://eclipse.org/eclipse4/
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Install Eclipse 4.1 (Model)Tooling
The Eclipse 4.1 tooling provides a specialized editor designed with the Eclipse
4.1 application model in mind and simplifies working with it.

If you don't want to use the tooling you can also use standard EMF-Tools to
work with the application model but most people will probably prefer the
specialized editor we are using through out this tutorial.

Because the Eclipse 4.1 Tooling has not yet graduated into the 4.1 SDK you
need to install it using Help > Install New Software … .

The Eclipse 4.1 Application Platform Page 4 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 1: 4.1 SDK

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Warning:
Do not install the XWT-Tooling (most important not the one for the Visual
Workbench Designer) because it might make opening .e4xmi-Files fail on
certain platforms (e.g. OS-X).

Troubleshooting:
In case the installation fails because p2 is unable to resolve e.g. the EMF
dependencies check that your Eclipse 4.1 comes with the helios-update-site
preconfigured. If because of whatever reason your installation does not come
with indigo-update-sites configured add the following ones:

• http://download.eclipse.org/releases/indigo

• http://download.eclipse.org/e4/updates/0.11

Setup project
There is a wizard for creating a complete Eclipse 4.1 Application project but we
will not be using that wizard. Instead, we will setup the project by hand so that
we understand exactly what is going on in the back.

Create an OSGi-Project
We are using File > New > Project … and select Plug-in Development > Plug-in
Project and enter the following data into the wizard pages:

The Eclipse 4.1 Application Platform Page 5 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 2: Install Eclipse 4.1 Tooling

mailto:tom.schindl@bestsolution.at
http://download.eclipse.org/releases/indigo
http://download.eclipse.org/e4/updates/0.11
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Add a product definition
In order to create something we can launch and export we are creating an
Equinox application and product definition by using the extension points
provided by “org.eclipse.equinox.app”.

To write an Eclipse 4.1 Application, we don't have to define our own application
but reuse an application already defined by the Eclipse 4.1 Application Platform
named ”org.eclipse.e4.ui.workbench.swt.E4Application”.

Let's do things step by step:

a) Open the MANIFEST.MF

Add a dependency on “org.eclipse.equinox.app“

b) Create a plugin.xml

Add a product definition like this
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension

id="product"
point="org.eclipse.core.runtime.products">

 <product
application="org.eclipse.e4.ui.workbench.swt.E4Application"
name="Mail App">

The Eclipse 4.1 Application Platform Page 6 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 3: New OSGi-Project 1 Figure 4: New OSGi-Project 2

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 </product>
 </extension>
</plugin>

As an alternative you can use the “Extension”-Tab in the MANIFEST.MF-Editor –
in case it is not shown select the Extension-Link on the “Overview”-tab.

We are still missing two things before we can launch our application:

• An Eclipse 4.1 Application which uses the predefined E4Application has
to have a minimal workbench model (we'll learn about this in the
upcoming sections)

• A .product to define a launchable and exportable application.

Add a minimal Eclipse 4.1-ApplicationModel
In contrast to 3.x applications where you used a mixture of Java and Extension
Points to setup up an application the Eclipse 4.1 Application Platform follows
another route. The complete application is defined and made up from one
single model.

You'll learn in later sections of the tutorial how this application model can be
made up dynamically but for getting something up and running we'll create a
minimal application model using “File > New > Other” and select “e4 > Model
> New Application Model”.

Fill in the following information:

The Eclipse 4.1 Application Platform Page 7 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 5: Extension

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Technically this would be enough to launch an application, but a UI-Application
without at least one window is quite senseless.

After having created the Application.e4xmi, the “e4 Workbench Model”-Editor
should have opened itself automatically.

Select the “Windows” entry on the left, select “TrimmedWindow” on the right
and press the button next to the drop down. The result should be an editor
looking like this:

The Eclipse 4.1 Application Platform Page 8 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 6: New Application Model

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Afterwards select the “Trimmed Window” entry in the tree and set the height
and width values to 640 and 480 and the Label-Property to “MailDemo 4.0”.

Let's take a look at what is written to Application.e4xmi:
<?xml version="1.0" encoding="ASCII"?>
<application:Application
 xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:application="http://www.eclipse.org/ui/2010/UIModel/application"
 xmlns:basic="http://www.eclipse.org/ui/2010/UIModel/application/ui/basic"
 xmi:id="_-K-zoJS1Ed-3RJVy9OYaEA"
 elementId="org.eclipse.e4.demo.mailapp.application">
 <children
 xsi:type="basic:TrimmedWindow"
 xmi:id="_mWWEUJS2Ed-3RJVy9OYaEA"
 label="MailDemo 4.0"
 width="640"
 height="480"/>
</application:Application>

You normally don't have to edit this file by hand because Eclipse 4.1 provides
tooling and I'd also like to point out that XMI is only one possible serialization
format of the EMF Model we just created – yes you've just created your first
instance of an EMF Model.

The default system expects to have a model loaded from such an XMI-File but
the framework allows you to replace this by your own model

The Eclipse 4.1 Application Platform Page 9 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 7: Add window to model

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

loading/construction strategy if you are not comfortable with the default – all
the framework cares about internally is to get an in memory EMF Model of the
application whether loaded from XMI, constructed on the fly, loaded over the
wire, … is something totally up to you.

One of the important things you notice in the file are the xmi:id attributes
who have a very cryptic value that is needed by the default implementation
used to restore the application state when started.

Create a MailDemo-4.0.product
A product file allows us to define a product we'll export later on to provision on
our clients' desktops. You should familiarize yourself with the process of
creating such a “.product” but here's a step by step instruction because we
need to add some extra stuff PDE is not able resolve on its own.

1. New > File > Other …

2. Plug-in Development > Product Configuration

3. In dialog enter:

◦ Filename: MailDemo-4.0

◦ Use an existing product: org.eclipse.e4.demo.mailapp.product

4. Add the following additional bundles

◦ org.eclipse.equinox.ds: This adds declarative OSGi services who
use the extender pattern and so none of the framework has a
dependency on it

◦ org.eclipse.equinox.event: This provides e4 the event system it
uses internally for communication and can be used by you as well

◦ org.eclipse.e4.ui.workbench.renderers.swt: e4 comes with a
very flexible rendering system which allows people to completely
replace the rendering. We are using the default one provided by e4
team.

5. Press „Add Required Plug-ins“

Before we can launch, we need to add some more information to our product-
extension point to make it look like this:
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 name="Mail App">
 <property

The Eclipse 4.1 Application Platform Page 10 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 name="appName"
 value="Mail App">
 </property>
 <property
 name="applicationXMI"
 value="org.eclipse.e4.demo.mailapp/Application.e4xmi">
 </property>
 </product>
 </extension>

</plugin>

The important information we need to provide to the E4Application is, what
initial model it should use to make up the application.

Now we are ready to launch our minimal Eclipse 4.1 application the first time
and it will show us something like this:

Want the source code? Look at “Source Zip for Chapter 2” on page 59.

Create the MailServices
To let our application really do meaningful stuff and present you all the cool
new features the Eclipse 4.1 Application Platform provides you when writing
OSGi based UI applications, we are going to add some OSGi service stuff.

The Eclipse 4.1 Application Platform itself is designed from day one with OSGi
in mind and so in order to follow good OSGi practives we create 2 new OSGi-
projects:

• org.eclipse.e4.demo.mailapp.mailservice

• org.eclipse.e4.demo.mailapp.mailservice.mock

We are not going into details here how this is implemented but you should

The Eclipse 4.1 Application Platform Page 11 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 8: First Application

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

simply download the premade bundles and import them in your workspace.

The premade bundles are available from “Premade Service-Bundle” on
page 59.

The important APIs for now are:

• IMailSessionFactory#openSession(): Allows you to open a mail
session

• IMailSession#getAccounts(): used to retrieve mail accounts

• IMailSession#getMails(): used to fetch mails from a folder

If you are not familiar with Declarative OSGi Services, there's a vast number of
tutorials and books describing them in great detail.

After having imported the bundles your workspace should look like this:

The Eclipse 4.1 Application Platform Page 12 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 9: Workspace after
ServiceBundles import

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

To finish this task we need to add the 2 new bundles to our “.product” file and
recreate our launch configuration so that those new bundles are picked up.

Create the UI
Next thing we need to do is to write our UI-Code. In 3.x we would have
derived our UI-Parts from ViewPart or EditorPart but this is not needed
anymore when using the Eclipse 4.1 Application Platform where everything is a
POJO.

Before we can start writing our UI code, we need to add the following
dependencies to our MANIFEST.MF in ”org.eclipse.e4.demo.mailapp”:

• org.eclipse.swt

• org.eclipse.jface

• org.eclipse.jface.databinding

• org.eclipse.core.databinding

• org.eclipse.core.databinding.observable

• org.eclipse.core.databinding.property

• org.eclipse.core.databinding.beans (this one you also has to added
to “.product” file – don't forget to update your launch-config!)

• org.eclipse.e4.demo.mailapp.mailservice

Implement the AccountView UI
Next we create a new Java-Class named
org.eclipse.e4.demo.mailapp.AccountView and add the following lines of
Java-Code into it.
public class AccountView {
 private IMailSessionFactory mailSessionFactory;
 private IMailSession mailSession;
 private TreeViewer viewer;
 private String username = "john";
 private String password = "doe";
 private String host = "tomsondev.bestsolution.com";

 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 this.mailSessionFactory = mailSessionFactory;
 viewer = new TreeViewer(parent,SWT.FULL_SELECTION);
 viewer.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 if(element instanceof IAccount) {
 return ((IAccount) element).getName();
 } else if(element instanceof IFolder) {
 return ((IFolder)element).getName();
 }
 return super.getText(element);

The Eclipse 4.1 Application Platform Page 13 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 }
 });

 IObservableFactory factory = new IObservableFactory() {
 private IListProperty prop = BeanProperties.list("folders");

 public IObservable createObservable(Object target) {
 if(target instanceof IObservableList) {
 return (IObservable) target;
 } else if(target instanceof IFolderContainer) {
 return prop.observe(target);
 }
 return null;
 }
 };

 TreeStructureAdvisor advisor = new TreeStructureAdvisor() {};

 viewer.setContentProvider(new ObservableListTreeContentProvider(factory, advisor));
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setHost(String host) {
 this.host = host;
 }

 public void init() {
 if(username != null && password != null && host != null) {
 mailSession = mailSessionFactory.openSession(host, username, password);
 viewer.setInput(mailSession.getAccounts());
 }
 }
}

How can we test this UI? We could add it directly to our Eclipse 4.1 application
but when looking closer, we see that there's no need to bring up the complete
framework to see what our fragment is doing.

There's not even a dependency on an OSGi environment so the class above
should be runnable as a standard Java-Application.

Create a TestProject
We create a Test project we can use to launch our UI codeparts who have now
no real dependency on the Application-Framework nor OSGi itself.

Although we are writing a standard Java application let's create a PDE-enabled
project named “org.eclipse.e4.demo.mailapp.test” so that we don't have
to manage the classpath ourselves.

The Eclipse 4.1 Application Platform Page 14 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Add the following dependencies to the MANIFEST.MF:

• org.eclipse.swt

• org.eclipse.jface.databinding

• org.eclipse.core.databinding

• org.eclipse.e4.demo.mailapp

• org.eclipse.e4.demo.mailapp.mailservice

• org.eclipse.e4.demo.mailapp.mailservice.mock

• org.eclipse.core.runtime

Open the MANIFEST.MF in “org.eclipse.e4.demo.mailapp” and export the
“org.eclipse.e4.demo.mailapp”-package so that it is visible in our test-
bundle.

Add a TestAccountView-Class:
public class TestAccountView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 AccountView view = new AccountView(shell, new MailSessionFactoryImpl());
 view.setUsername("john");
 view.setPassword("doe");
 view.setHost("tomsondev.bestsolution.at");
 view.init();

 shell.open();

 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }
}

Now launch it as a standard Java-Application and you should see something
like this:

The Eclipse 4.1 Application Platform Page 15 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Create the FolderView UI
This view displays all mails of a folder in a SWT table. Here's the code and the
class to test it.
public class FolderView {
 private TableViewer viewer;

 public FolderView(Composite parent) {
 this.viewer = new TableViewer(parent);
 this.viewer.setContentProvider(new ArrayContentProvider());
 this.viewer.getTable().setHeaderVisible(true);
 this.viewer.getTable().setLinesVisible(true);

 TableViewerColumn column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("Subject");
 column.getColumn().setWidth(250);
 column.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 return ((IMail)element).getSubject();
 }
 });

 column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("From");
 column.getColumn().setWidth(200);
 column.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 return ((IMail)element).getFrom();
 }
 });

 column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("Date");
 column.getColumn().setWidth(150);
 column.setLabelProvider(new ColumnLabelProvider() {
 private DateFormat format = SimpleDateFormat.getDateTimeInstance();

 @Override
 public String getText(Object element) {

The Eclipse 4.1 Application Platform Page 16 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 10: Test Account UI

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 Date date = ((IMail)element).getDate();
 if(date != null) {
 return format.format(date);
 }
 return "-";
 }
 });
 }

 public void setFolder(IFolder folder) {
 viewer.setInput(folder.getSession().getMails(folder, 0, folder.getMailCount()));
 }
}

And the class to test it:
public class TestFolderView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 FolderView view = new FolderView(shell);
 view.setFolder(((IAccount)new MailSessionFactoryImpl().openSession(
 "", "john", "doe").getAccounts().get(0)).getFolders().get(0)
);

 shell.open();
 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }
}

The UI you should see when running the Java Application looks like this:

The Eclipse 4.1 Application Platform Page 17 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 11: Test FolderView

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Create the Mail UI
This UI displays a mail to the user. The Java code for the View looks like this:
public class MailView {
 private DataBindingContext dbc;
 private WritableValue mail = new WritableValue();
 private ObservablesManager manager;

 public MailView(final Composite composite) {
 dbc = new DataBindingContext();
 manager = new ObservablesManager();
 manager.runAndCollect(new Runnable() {
 public void run() {
 initUI(composite);
 }
 });
 }

 public void setMail(IMail mail) {
 if(mail != null) {
 this.mail.setValue(mail);
 }
 }

 private void initUI(Composite composite) {
 Composite parent = new Composite(composite, SWT.NONE);
 GridLayout gd = new GridLayout();
 gd.horizontalSpacing=0;
 gd.verticalSpacing=0;
 parent.setLayout(gd);

 Composite header = new Composite(parent,SWT.NONE);
 header.setLayout(new GridLayout(2,false));
 header.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 Label l = new Label(header, SWT.NONE);
 l.setText("From");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("from").observeDetail(mail));

 l = new Label(header,SWT.NONE);
 l.setText("Subject");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("subject").observeDetail(mail));

 l = new Label(header,SWT.NONE);
 l.setText("To");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("to").observeDetail(mail));

 l = new Label(parent, SWT.SEPARATOR|SWT.HORIZONTAL);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

The Eclipse 4.1 Application Platform Page 18 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 Text t = new Text(parent, SWT.BORDER|SWT.V_SCROLL|SWT.H_SCROLL|SWT.WRAP);
 t.setLayoutData(new GridData(GridData.FILL_BOTH));
 t.setEditable(false);
 dbc.bindValue(WidgetProperties.text().observe(t),
 BeanProperties.value("body").observeDetail(mail));
 }

 public void dipose() {
 manager.dispose();
 }
}

And the class to test it:
public class TestMailView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 MailView view = new MailView(shell);
 IFolder folder = ((IAccount)new MailSessionFactoryImpl().openSession(
 "", "john", "doe").getAccounts().get(0)).getFolders().get(0);

 view.setMail(folder.getSession().getMails(folder, 0, 1).get(0));
 shell.open();

 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }
}

Running the test-Program should create a UI like this:

The Eclipse 4.1 Application Platform Page 19 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

We new have created all the UI parts of our application without the need to
have any knowledge about the Eclipse 4.1 Application Platform. All we had to
know was SWT/JFace and how to program in Java.

Want the source code? Look at “Source Zip for Chapter 4” on page 59.

Assemble an Eclipse 4.1-Application

DI and the POJO Application Programming Model
We now have 3 UI classes that on their own don't make much sense but
together they are able to build a complete MailReader application.

Before we start with the process of integrating our POJOs in the application
model I think it makes sense to explain what we are going to do in the next
few sections of this tutorial.

I assume most of you have already heard at least once about Dependency
Injection (DI). Those of you who have ever worked with Spring or Guice are
familiar with the concepts. For others who never have - don't be afraid, it's not
really not rocket science.

Let's take a look at a typical 3.x sample code, dealing with the change of the
current selection in the workbench.
public class View extends ViewPart {

 public void createPartControl(Composite parent) {

 getSite().getSelectionProvider().addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 if(event.getSelection() instanceof IStructuredSelection) {

The Eclipse 4.1 Application Platform Page 20 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 12: Test MailView

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 Object o = ((IstructuredSelection)event.getSelection()).getFirstElement();

 if(o instanceof IFolder) {
 updateFolder((IFolder) o);

 }

 }

 }

 });

 }

 void updateFolder(IFolder folder) {
 // Do something when selection changes
 }
}

And here's what you write when using the Eclipse 4.1 Application Platform:
public class View {
 @Inject
 void updateFolder(@Named(IServiceConstants.ACTIVE_SELECTION) IFolder folder) {
 // Do something when selection changes
 }
}

The first thing you notice is that the code is much more concise and you don't
have to write tons of glue code but what is more interesting is that you are
flipping sides.

Instead of being the active part, you play the inactive one who gets informed
automatically if something changes you are interested in.

This makes your code much more reuseable because you are not depending on
external stuff like the ISelectionService being available.

I'm not going into great detail here now because DI is a very wide area. The
imporant thing for us is that we'll have to add annotations like @Inject at
various places in our code (constructors, fields, methods) to get information
we need to make up the UI.

There's no other way to get access to information because the Eclipse
4.1 Application Platform doesn't provide statics or singletons like the
3.x platform did!

Before we start adding the annotations to our code we have to add some more
bundles to our MANIFEST.MF:

• javax.inject

• javax.annotation

• org.eclipse.e4.core.di

• org.eclipse.e4.ui.services

The Eclipse 4.1 Application Platform Page 21 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Those provide the annotations we are going to add to our code and some
constants.

Modify the AccountView like this:

public class AccountView {
 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 // Unmodified
 }

 @PostConstruct
 public void init() {
 // Unmodified
 }
}

Modify the FolderView like this:

public class FolderView {
 @Inject
 public FolderView(Composite parent) {
 // Unmodified
 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 // Unmodified
 }
}

and the MailView like this:

public class MailView {

 @Inject
 public MailView(final Composite composite) {
 // Unmodified
 }

 @Inject
 public void setMail(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IMail mail) {
 // Unmodified
 }

 @PreDestroy
 public void dipose() {
 // Unmodified
 }
}

Let's try to understand the code parts above a bit better. The first thing you
need to know is that the instance creation and destruction is handled by the
Eclipse-4.1 DI-container.

When some code requests an instance of e.g. AccountView the DI-Framework
searches through constructors annotated with @Inject and tries to satisfy the
arguments of the constructor. The informations required to call the constructor

The Eclipse 4.1 Application Platform Page 22 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

are looked up in the so called IEclipseContext that you can think of as a Map
of type Map<String,Object>.

For the AccountView-constructor from above it searches for 2 keys:

• org.eclipse.swt.widget.Composite

• org.eclipse.e4.demo.mailapp.mailservice.IMailSessionFactory

and passes the value found to the constructor.

After having created an instance of the class it searches for fields and methods
annotated with @Inject and looks up their value.

In contrast to ordinary constructor injection, it remembers the injected keys
and whenever the value connected to the kay changes it reinjects the changed
value.

A special thing in this context is the usage of @Named that allows one to define
the key to used when looking up the value (by default the fully qualified class
name is used).

The @Optional annotation means that if no value is found or the value stored
under the key can not be converted to the required type, the system should
pass in null instead.

The other 2 annotations you see are controlling the life cycle of an object.
Methods annotated with @PostConstruct are called after the object is created
and all injections are done (field and method).

The @PreDestroy is the opposite. It is called before the object is destroyed by
the DI-container and provides the possibility to clean up resources allocated by
the POJO.

Wiring the POJOs into the Application Model
As noted above the Eclipse 4.1 Application Platform at its heart is a DI-
container that controls the entire application and connects bits and pieces to
make up a complete application from those small POJOs.

To connect all this information, it uses the application model we've already
used to define the initial layout of our application. Our POJOs from above are
now going to get part of the application model and because of the DI-
annotations we added, the application framework knows how to create
instances whenever it needs one.

a) Open the Application.e4xmi and create a structure like this:

The Eclipse 4.1 Application Platform Page 23 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

b) Select the 1st Part in the tree and press the “Find...“-button on the Class
URI attribute and search for our AccountView-POJO.

c) Select the 2nd Part in the tree, press the “Find...“-button and select the
“FolderView“

d) Select the 3rd in the tree, press the „Find...“-button and select the
“MailView“

The Eclipse 4.1 Application Platform Page 24 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 13: UI Model for Mail 4.1

Abbildung 14: Connect POJO with UI

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

What we've done in steps b) to d) is to wire our UI model with our POJOs and
now at the moment the application has to render a part which is connected to
such a POJO it creates an instance through the DI-Container and hands over
control for this area to the POJO.

When launching our application we should see something like this:

But there's still one thing missing. When selecting an entry in the account area
the list of mails is not updated. The problem you are seeing here is that the
AccountView has to inform others about the changed selection.

This information can be passed around by a special service named
ESelectionService. To get access to this service, you need to add
“org.eclipse.e4.ui.workbench“ to your MANIFEST.MF and modify the UI code
like this:

AccountView:

public class AccountView {
 @Inject
 @Optional
 private ESelectionService selectionService;

 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 // Unmodified
 viewer.addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 if(selectionService != null) {
 selectionService.setSelection(
 ((IStructuredSelection)event.getSelection()).getFirstElement()

The Eclipse 4.1 Application Platform Page 25 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 15: Running MailDemo Application

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

);
 }
 }
 });
 }

 @PostConstruct
 public void init() {
 // Unmodified
 }
}

FolderView:

public class FolderView {

 @Inject
 @Optional
 private ESelectionService selectionService;

 @Inject
 public FolderView(Composite parent) {
 // Unmodified
 viewer.addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 if(selectionService != null) {
 selectionService.setSelection(
 ((IStructuredSelection)event.getSelection()).getFirstElement()
);
 }
 }
 });
 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 // Unmodified
 }
}

The application should now behave as expected and look like this.

The Eclipse 4.1 Application Platform Page 26 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Want the source code? Look at “Source Zip for Chapter 5” on page 59.

Improve the Application L&F
Now that we have a running application, we can work on a more modern look
and feel.

To customize the L&F of applications, the Eclipse 4.1 Application Platform
provides us with a CSS-like declarative syntax.

In order to tell the framework what CSS stylesheet it has to apply to the
application we need to:

a) Create a directory called “css”

b) Add a file called “default.css”

c) Modify the plugin.xml like this
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 name="Mail App">
 <property
 name="appName"

The Eclipse 4.1 Application Platform Page 27 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 16: Running MailDemo Application after chapter 5

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 value="Mail App">
 </property>
 <property
 name="applicationXMI"
 value="org.eclipse.e4.demo.mailapp/Application.e4xmi">
 </property>
 <property
 name="applicationCSS"
 value="platform:/plugin/org.eclipse.e4.demo.mailapp/css/default.css">
 </property>
 </product>
 </extension>

</plugin>

The applicationCSS-property informs the system about the fact that there's a
CSS stylesheet which has to be applied to the whole RCP application.

Defining the above property is all you need to do to tell your application to
consume a CSS stylesheet.

Here's the initial CSS information we are adding:
.MTrimmedWindow.topLevel {
 margin-top: 5px;
 margin-bottom: 2px;
 margin-left: 2px;
 margin-right: 2px;
}

.MPartStack {
 tab-renderer:
url('platform:/plugin/org.eclipse.e4.ui.workbench.renderers.swt/org.eclipse.e4.ui.workbench.rendere
rs.swt.CTabRendering');
 unselected-tabs-color: #FFFFFF #FFFFFF #FFFFFF 100% 100%;
 outer-keyline-color: #DDDDDD;
 inner-keyline-color: #FFFFFF;
 padding: 0px 9px 10px;
 tab-outline: #DDDDDD;
 shadow-visible: true;
}

.MPartStack.active {
 unselected-tabs-color: #F6F6F6 #D3D3D3 #D1D1D1 #D1D1D1 #D6D6D6 #D6D6D6 #FFFFFF 20% 45% 60% 70%
100% 100%;
 outer-keyline-color: #C4C5C1;
 tab-outline: #C4C5C1;
}

.MTrimBar {
 background-color: #CFCFCF #A8A8A8 100%;
}

What you see above is the definition of 2 CSS classes MTrimmedWindow and
MPartStack. The name of those classes are the ones of the Application-Model
elements we used prefixed with an “M”.

I think I don't have to explain in great detail the attributes defined in

The Eclipse 4.1 Application Platform Page 28 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

MTrimmedWindow. Maybe the only remarkable thing is that the margin
information is not interpreted by the SWT-Widget but needs programmatic
intervention by the programmer updating the layout.

The information on MPartStack is more interesting because they differ from
what we know from the Web.

The most interesting one is the tab-renderer attribute which is pointing to a
Java class one can set since 3.6 on a CTabFolder to influence how it is drawn.
To find out what the others are doing I'd suggest you play around to see what
their effect is.

The first set of style information have been applied to widget owned by the
Eclipse 4.1 Application Platform but we'd also like to apply css information on
the widgets created by the Part-POJOs.

The Eclipse 4.1 Application Platform Page 29 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 17: MailDemo with CSS

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

The CSS information added to the file are:
.mailList {

background-color: #FFF #EEE 100%;
}

.mailHeader {
background-color: #FFF #DDD 100%

}

But to take effect in our application we need to modify our UI-Code to mark
the widget with the CSS-Classnames.
public class FolderView {
 @Inject
 public FolderView(Composite parent, @Optional IStylingEngine styleEngine) {
 //Unmodified
 if(styleEngine != null) {
 styleEngine.setClassname(this.viewer.getControl(), "mailList");
 }
 }
}

public class MailView {
 @Inject
 public MailView(final Composite composite, @Optional final IStylingEngine styleingEngine) {
 //Unmodified
 manager.runAndCollect(new Runnable() {

The Eclipse 4.1 Application Platform Page 30 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 18: CSS in custom area

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 public void run() {
 initUI(composite, styleingEngine);
 }
 });
 }

 private void initUI(Composite composite, IStylingEngine styleingEngine) {
 //Unmodified
 if(styleingEngine != null) {
 styleingEngine.setClassname(header, "mailHeader");
 }
 }
}

There's not much magic, we simply inform the DI-container that we need
another service (IStylingEngine) we can use to set a CSS class on the widget.

Want the source code? Look at “Source Zip for Chapter 6” on page 59.

Extended Annotations
To get access to the extended annotations you'll have to add another
dependency in your MANIFEST.MF. The name of the dependency is
“org.eclipse.e4.core.di.extensions”.

@Preference

The next area we are going to take a look at is how to best deal with
preferences. A perfect example for preferences are the username, password
and host information used to create a MailSession in AccountView.
public class AccountView {
 // ...
 private String username = "john";
 private String password = "doe";
 private String host = "tomsondev.bestsolution.com";

 // ...

 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setHost(String host) {
 this.host = host;
 }
}

To get access to values stored in the preferences, the 4.1 Platform provides a
special annotation you can use in conjunction with @Inject named
@Preference that can take 2 parameters:

The Eclipse 4.1 Application Platform Page 31 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

• nodepath (optional): the path to the preference node, by default the
bundle name is used

• value: the value key

public class AccountView {

 // ...

 private boolean modified = false;

 // ...

 @Inject
 public void setUsername(@Preference("username") String username) {
 this.username = username;
 this.modified = true;
 }

 @Inject
 public void setPassword(@Preference("password") String password) {
 this.password = password;
 this.modified = true;
 }

 @Inject
 public void setHost(@Preference("host") String host) {
 this.host = host;
 this.modified = true;
 }

 @PostConstruct
 public void init() {
 if(username != null && password != null && host != null) {
 mailSession = mailSessionFactory.openSession(host, username, password);
 if(mailSession != null) {
 viewer.setInput(mailSession.getAccounts());
 } else {
 viewer.setInput(new WritableList());
 }
 }
 modified = false;
 }
}

After having added this code, the preferences get automagically injected into
our view, but we still need to react on the changes and inform the user that he
probably wants to recreate the mail session.

A simple solution for now is to remember that values have been modified and
the next time the AccountView receives the focus ask the user whether he'd
like to reconnect.

@Focus

To inform the framework what method to invoke when the view receives focus,
all we need to do is to annotate a method in our code using the @Focus which

The Eclipse 4.1 Application Platform Page 32 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

is coming from “org.eclipse.e4.ui.di” which you should add to your
MANIFEST.MF and then add a method like this:

@Focus
void onFocus(@Named(IServiceConstants.ACTIVE_SHELL) Shell shell) {
 if(modified) {
 if(MessageDialog.openQuestion(shell,
 "AccountInfos Modified",
 "The account informations have been modified would you like to reconnect with them?")
) {
 init();
 if(mailSession == null) {
 MessageDialog.openWarning(shell,
 "Connection failed",
 "Opening a connecting to the mail server failed.");
 }
 }
 }
}

Want the source code? Look at “Source Zip for Chapter 7” on page 59.

Menus and @Execute

In the previous chapter we added preferences support to our AccountView.
Now we'll now add a dialog we use to edit those preferences:

a) Open the Application.e4xmi

b) Select the “Trimmed Window” in the Tree and select the “Main Menu”
checkbox:

c) Create a structure like this

The Eclipse 4.1 Application Platform Page 33 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 19: Add main menu

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

d) Click on the Class URI and enter the following information

This will generate a class like this:
public class PreferenceHandler {

The Eclipse 4.1 Application Platform Page 34 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 20: Create the menu structure

Figure 21: Create handler class

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 @Execute
 public void execute() {
 }
}

In the above steps we've connected the MenuItem directly to a Java-Class.
Now at the moment the user selects the MenuItem, the framework calls the
method annotated with @Execute.

Before going on to implement the Dialog and the Handler you need to add the
following bundles to your MANIFEST.MF:

• org.eclipse.e4.core.contexts

• org.eclipse.equinox.preferences

• org.eclipse.equinox.common

The implementation of the dialog looks like this:
public class PreferenceDialog extends TitleAreaDialog {

 @Inject
 @Preference("username")
 private String username;

 @Inject
 @Preference("password")
 private String password;

 @Inject
 @Preference("host")
 private String host;

 private Text usernameField;
 private Text passwordField;
 private Text hostField;

 @Inject
 public PreferenceDialog(@Named(IServiceConstants.ACTIVE_SHELL) Shell parentShell) {
 super(parentShell);
 }

 @Override
 protected Control createDialogArea(Composite parent) {
 Composite area = (Composite) super.createDialogArea(parent);

 getShell().setText("Connection informations");
 setTitle("Connection informations");
 setMessage("Configure the connection informations");

 Composite container = new Composite(area, SWT.NONE);
 container.setLayoutData(new GridData(GridData.FILL_BOTH));
 container.setLayout(new GridLayout(2, false));

 Label l = new Label(container, SWT.NONE);
 l.setText("Username");

 usernameField = new Text(container, SWT.BORDER);
 usernameField.setText(username == null ? "" : username);

The Eclipse 4.1 Application Platform Page 35 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 usernameField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 l = new Label(container, SWT.NONE);
 l.setText("Password");

 passwordField = new Text(container, SWT.BORDER);
 passwordField.setText(password == null ? "" : password);
 passwordField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 l = new Label(container, SWT.NONE);
 l.setText("Host");

 hostField = new Text(container, SWT.BORDER);
 hostField.setText(host == null ? "" : host);
 hostField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 return area;
 }

 @Override
 protected void okPressed() {
 IEclipsePreferences prefs = new InstanceScope().getNode("org.eclipse.e4.demo.mailapp");
 prefs.put("username", usernameField.getText());
 prefs.put("password", passwordField.getText());
 prefs.put("host", hostField.getText());

 try {
 prefs.flush();
 super.okPressed();
 } catch (BackingStoreException e) {
 ErrorDialog.openError(getShell(), "Error",
 "Error while storing preferences",
 new Status(IStatus.ERROR, "org.eclipse.e4.demo.mailapp", e.getMessage(),e)
);
 }
 }
}

You will notice that we are using DI here as well in order to get the current
preference's value. The useage of DI is not restricted to the framework,
instead you can use it in your own code as well to create instances.

The implementation of the PreferenceHandler shows how one uses the DI
framework in custom code to create an instance of a class.
@Execute
public void execute(IEclipseContext context) {
 PreferenceDialog dialog = ContextInjectionFactory.make(PreferenceDialog.class, context);
 dialog.open();
}

The Eclipse 4.1 Application Platform Page 36 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Want the source code? Look at “Source Zip for Chapter 8” on page 59.

The Event System
Another major change coming with the Eclipse 4.1 Application Platform is the
event system provided. The 4.1 Application Platform does not invent its own
but uses the EventAdmin-Bus provided by OSGi instead (you are free to
substitute through your own implementation just in case you are not happy
with the default one!).

The first thing we do is to register ourselves as a listener to the MailSession
and post an event into the system. Before writing the code you'll have to add
some more bundles:

• org.eclipse.e4.core.services

• org.eclipse.osgi.services

public class AccountView {

 //Unmodified

 private ISessionListener listener;

 @Inject
 @Optional
 private IEventBroker eventBroker;

The Eclipse 4.1 Application Platform Page 37 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 22: Connection Configuration

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {

 //Unmodified
 listener = new ISessionListener() {
 public void mailAdded(IFolder folder, IMail mail) {
 if(eventBroker != null) {
 Map<String,Object> map = new HashMap<String, Object>();
 map.put(EventConstants.NEW_MAIL_TAG_FOLDER, folder);
 map.put(EventConstants.NEW_MAIL_TAG_MAIL, mail);
 eventBroker.post(EventConstants.NEW_MAIL, map);
 }
 }
 };
 }

 //Unmodified

 @PostConstruct
 public void init() {
 if(username != null && password != null && host != null) {
 if(mailSession != null) {
 mailSession.removeListener(listener);
 }

 mailSession = mailSessionFactory.openSession(host, username, password);
 if(mailSession != null) {
 viewer.setInput(mailSession.getAccounts());
 mailSession.addListener(listener);
 } else {
 viewer.setInput(new WritableList());
 }
 }
 modified = false;
 }

 @PreDestroy
 void cleanUp() {
 if(mailSession != null && listener != null) {
 mailSession.removeListener(listener);
 }
 }
}

The code is quite straightforward, the only interesting thing is that we are
using ”post” - meaning that we are not blocking untall receivers processed the
event. If we want the event to be deliver in a synchronous fashion we would
have used ”send”.

Code parts that want to get informed about those events are subscribing them
to the EventBroker like this:

public class FolderView {

 //Unmodified

 @Inject
 @Optional
 private IEventBroker eventBroker;
 private EventHandler eventHandler;

The Eclipse 4.1 Application Platform Page 38 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 private IFolder folder;

 //Unmodified

 @PostConstruct
 void hookEvents() {
 if(eventBroker != null) {
 eventBroker.subscribe(EventConstants.NEW_MAIL, new EventHandler() {

 public void handleEvent(final Event event) {
 if(event.getProperty(EventConstants.NEW_MAIL_TAG_FOLDER) == folder) {
 viewer.getControl().getDisplay().asyncExec(new Runnable() {
 public void run() {
 viewer.add(event.getProperty(EventConstants.NEW_MAIL_TAG_MAIL));
 }
 });
 }
 }
 });
 }
 }

 @PreDestroy
 void unhookEvents() {
 if(eventBroker != null && eventHandler != null) {
 eventBroker.unsubscribe(eventHandler);
 }

 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 if(folder != null) {
 this.folder = folder;
 viewer.setInput(folder.getSession().getMails(folder, 0, folder.getMailCount()));
 }
 }
}

It is important to note that this is the ONLY event system available and all
notifications are passed through this system (e.g. creation of widgets like the
shells for workbench windows, ...).

Want the source code? Look at “Source Zip for EventSystem” on page
59.

Advanced Eclipse 4.1 - Contributing Fragments
Until now our application is created out of one single “monolithic” bundle and
application model definition, but that is not how a typical Eclipse-RCP-
Application is made up. One of the strengths of Eclipse 3.x has been that an
application could be made up from different bundles who contributed pieces to
make up a complete application.

e4 is no different in this aspect but contributing to the model is done a bit
differently. What you do is to contribute small fragments to a base application
model and then the Eclipse 4.0 Application Platform merges those fragments

The Eclipse 4.1 Application Platform Page 39 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

into the final model used to create the application.

A first and very important thing when contributing is that the elements in the
base model we want to contribute to have to, have an elementId (in the editor
shown as “Id”).

You should open our Application.e4xmi and check:

• the Application-Element has the Id:
org.eclipse.e4.demo.mailapp.application

• the File-Menu-Element has the Id:
org.eclipse.e4.demo.mailapp.filemenu

The next thing we do is to create new OSGi-bundle named
“org.eclipse.e4.demo.mailapp.newmail” and add the following
dependencies:

• org.eclipse.e4.core.di

• javax.inject

• org.eclipse.e4.ui.services

• org.eclipse.swt

• org.eclipse.e4.demo.mailapp.mailservice

• org.eclipse.e4.ui.model.workbench

• org.eclipse.e4.ui.workbench

• org.eclipse.e4.core.contexts

• javax.annotation

• org.eclipse.jface

• org.eclipse.jface.databinding

• org.eclipse.core.databinding

• org.eclipse.core.databinding.observable

• org.eclipse.core.databinding.property

• org.eclipse.core.databinding.beans

Now we create a Model-Fragment using “File > New > Other ...” and “e4 >
Model > New Model Fragment”.

We are going to contribute the following things to the base model:

• A Command to the Application-element

• A Handler to the Application-element

• A HandledMenuItem to the File-Menu-element

The Eclipse 4.1 Application Platform Page 40 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Contributing a Command-Element
Before we start adding commands and other stuff we need to add some extra
stuff to our application model which teaches the Eclipse Application Platform
how to deal with commands, handlers and stuff like this.

Open your Application.e4xmi and add the following Addon-Elements:

<?xml version="1.0" encoding="UTF-8"?>
<application:Application xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:advanced="http://www.eclipse.org/ui/2010/UIModel/application/ui/advanced"
 xmlns:application="http://www.eclipse.org/ui/2010/UIModel/application"
 xmlns:basic="http://www.eclipse.org/ui/2010/UIModel/application/ui/basic"
 xmlns:menu="http://www.eclipse.org/ui/2010/UIModel/application/ui/menu"
 xmi:id="_JoCdII0JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ide.application"
 bindingContexts="_JoDEMI0JEeCR2c-wvIZHbw">

 <!-- ALL OTHER CONTENT -->

 <addons xmi:id="_JoDEM40JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.core.commands.service"
 contributionURI="platform:/plugin/org.eclipse.e4.core.commands/org.eclipse.e4.core.commands.C
ommandServiceAddon"/>

 <addons xmi:id="_JoDENI0JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ui.contexts.service"
 contributionURI="platform:/plugin/org.eclipse.e4.ui.services/org.eclipse.e4.ui.services.Conte
xtServiceAddon"/>

 <addons xmi:id="_JoDENY0JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ui.bindings.service"
 contributionURI="platform:/plugin/org.eclipse.e4.ui.bindings/org.eclipse.e4.ui.bindings.Bindi
ngServiceAddon"/>

 <addons xmi:id="_JoDENo0JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ui.workbench.commands.model"
 contributionURI="platform:/plugin/org.eclipse.e4.ui.workbench/org.eclipse.e4.ui.internal.work
bench.addons.CommandProcessingAddon"/>

 <addons xmi:id="_JoDEN40JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ui.workbench.contexts.model"
 contributionURI="platform:/plugin/org.eclipse.e4.ui.workbench/org.eclipse.e4.ui.internal.work
bench.addons.ContextProcessingAddon"/>

 <addons xmi:id="_JoDEOI0JEeCR2c-wvIZHbw" elementId="org.eclipse.e4.ui.workbench.bindings.model"
 contributionURI="platform:/plugin/org.eclipse.e4.ui.workbench.swt/org.eclipse.e4.ui.workbench
.swt.util.BindingProcessingAddon"/>

</application:Application>

We are not going into detail on addons here the only thing you need to know
about them is that you can enhance the Eclipse 4.1 Application Platform adding
such Addons. Other things contributed through the Addons System are e.g.
Part-Drag and Drop, Min/Max of Stacks, … . Let's proceed now with the
addition of commands and handlers.

The first element we contribute is a Command-Element that is contributed to
the Application-Element of our base model.

a) In the Fragment-Editor we select the ModelFragments entry and press the

The Eclipse 4.1 Application Platform Page 41 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

“Add ...”-button

b) We press the “Find ...”-button next to the “Element Id”-TextField that helps
us to find the correct element id of the application-element

c) We press the “Find ...”-button next to the “Featurename”-TextField that
helps us to find the feature-name (=attribute-name) the contributed Command
should be stored in.

The Eclipse 4.1 Application Platform Page 42 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 23: Select Application-Element Id

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

d) Select Command in the drop down click the button next to it

e) Fill the “Element Id” and “Name”-Fields like this:

Contributing a Handler
The next element we contribute is a Handler that gets connected to our
command and will be called when the command is executed.

The Eclipse 4.1 Application Platform Page 43 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 24: Select Featurename

Figure 25: Edit Command Element

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

a) Add another “String Model Fragment”

b) Set “Element Id” to “org.eclipse.e4.demo.mailapp.application” and
“Featurename” to “handlers”

c) Add a Handler-Element

d) Press the “Find...”-button next to the Command text field

e) Press the “Class URI”-Link and enter the following information

The Eclipse 4.1 Application Platform Page 44 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 26: Connect to command

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Contributing a HandledMenuItem
The next thing we contribute is MenuItem to the File-Menu that is connected to
our command.

a) Add another “String Model Fragment”

b) Set “Element Id” to “org.eclipse.e4.demo.mailapp.filemenu”,
“Featurename” to “children” and “Position in list” to “first”

c) Add an HandledMenuItem-Element

d) Set the “Label”-Attribute to “New Mail”

e) Press the “Find ...”-button next to the “Command”-TextField

The Eclipse 4.1 Application Platform Page 45 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 27: Set a handler class

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Contributing a ToolItem
Open the Application.e4xmi and add

• a TrimBar with side-value set to Top

• a ToolBar with Id set to “org.eclipse.e4.demo.mailapp.maintoolbar”

The model should now look like this:

The Eclipse 4.1 Application Platform Page 46 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 28: Connect MenuItem to Command

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Open the default.css-File and add the following entry:
.MTrimBar {
 background-color: #CFCFCF #A8A8A8 100%;
}

Back in our fragment.e4xmi, execute the following steps:

a) Add another “String Model Fragment”

b) Set “Element Id” to “org.eclipse.e4.demo.mailapp.maintoolbar” and
“Featurename” to “children”

c) Add a HandledToolItem, set its label to “New Mail” and connect it also to the
“org.eclipse.e4.demo.mailapp.command.newmail”-command

We have to add 2 more elements:

• Command-Element and the following properties:

◦ Id: org.eclipse.e4.demo.mailapp.command.sendmail

◦ Name: “Send Mail”

• Handler:

◦ connected to org.eclipse.e4.demo.mailapp.command.sendmail-
command

The Eclipse 4.1 Application Platform Page 47 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 29: Toolbar Addition

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

◦ Class-URI: pointing to a class named SendMail

Dynamic UI creation
That's it for the model. Let's now work on the Java code of the handler.
public class NewMailHandler {

 @Execute
 public void execute(final MApplication application, IMailSession mailSession) {
 // Create the window
 final MTrimmedWindow window = MBasicFactory.INSTANCE.createTrimmedWindow();
 window.getTags().add("temporaryObject");
 window.setHeight(500);
 window.setWidth(600);

 // Create the toolbar
 MTrimBar topTrim = MBasicFactory.INSTANCE.createTrimBar();
 topTrim.setSide(SideValue.TOP);
 window.getTrimBars().add(topTrim);

 MToolBar toolbar = MMenuFactory.INSTANCE.createToolBar();
 topTrim.getChildren().add(toolbar);

 MHandledToolItem sendItem = MMenuFactory.INSTANCE.createHandledToolItem();
 sendItem.setLabel("Send");
 sendItem.setIconURI("platform:/plugin/org.eclipse.e4.demo.mailapp.newmail/images/email_go.png")
;

 for(MCommand cmd : application.getCommands()) {
 if("org.eclipse.e4.demo.mailapp.command.sendmail".equals(cmd.getElementId())) {
 sendItem.setCommand(cmd);
 }
 }

 toolbar.getChildren().add(sendItem);

 // Create the mail editor

The Eclipse 4.1 Application Platform Page 48 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 30: Final Fragment

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 MPart part = MBasicFactory.INSTANCE.createPart();
 part.setContributionURI(
 "platform:/plugin/org.eclipse.e4.demo.mailapp.newmail/org.eclipse.e4.demo.mailapp.newmail.Edi
tMailView");
 window.getChildren().add(part);
 application.getChildren().add(window);
 window.getContext().set(IMail.class, mailSession.createMail());
 }

 @CanExecute
 public boolean canExecute(@Optional IMailSession mailSession) {
 return mailSession != null;
 }
}

What we are doing here is to interface with the application model to add a new
window that has a toolbar at the top and a part to edit a mail that will take up
the rest of the window's area.

I think what you see above is one of the coolest things in the Eclipse 4.1
Application Platform. You have access to the application model and are allowed
to modify it at runtime, adding, removing, moving things around.

We also introduced a new @CanExecute-annotation that can be used on
Command-Handlers to compute the enabled state. The framework calls this
method whenever the values defined in the parameters of the method change,
in our case the new command is only enabled if there's a IMailSession
available.

Before we can run the application we need to make some changes to our
existing code:
public class AccountView {
 // Unmodified code

 @Inject
 @Optional
 private MApplication application;

 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 // Unmodified code

 // Work around for 4.0 Bug of not cleaning up on Window-close
 viewer.getControl().addDisposeListener(new DisposeListener() {
 public void widgetDisposed(DisposeEvent e) {
 cleanUp();
 }
 });
 }

 // Unmodified code

 @PostConstruct
 public void init() {
 // Unmodified code

 if(application != null) {
 application.getContext().set(IMailSession.class, mailSession);

The Eclipse 4.1 Application Platform Page 49 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 }
 }

 // Unmodified code

 @Focus
 void onFocus(@Named(IServiceConstants.ACTIVE_SHELL) Shell shell) {
 // Unmodified code

 if(application != null) {
 application.getContext().set(IMailSession.class, mailSession);
 }
 }
}

So here we access to the MApplication-Element to get easy access to the
context attached to it and store the current mail-session there.

You may notice tjat I also introduced a work-around for a bug in the 4.1-code
base that deals with @PreDestroy when a window is closed. This bug hasn't
been a problem so far for our tutorial, because we only had a single window
but as of now is going to affect us.

We also have to fix the problem in the FolderView:

public class FolderView {
 // Unmodified code

 @Inject
 public FolderView(Composite parent, @Optional IStylingEngine styleEngine) {
 // Unmodified code

 // Work around for 4.0 Bug of not cleaning up on Window-close
 viewer.getControl().addDisposeListener(new DisposeListener() {
 public void widgetDisposed(DisposeEvent e) {
 unhookEvents();
 }
 });
 }
}

The last 2 things missing are now:

a) The implementation of our EditMailView:

public class EditMailView {
 @Inject
 private MTrimmedWindow window;

 private ComboViewer viewer;

 private IObservableValue master = new WritableValue();

 private ObservablesManager manager = new ObservablesManager();

 @Inject
 public EditMailView(final Composite container) {
 manager.runAndCollect(new Runnable() {
 public void run() {
 createUI(container);
 }

The Eclipse 4.1 Application Platform Page 50 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 });
 }

 private void createUI(Composite container) {
 Composite parent = new Composite(container,SWT.NONE);
 parent.setLayout(new GridLayout(2, false));

 Label l = new Label(parent, SWT.NONE);
 l.setText("Account");

 viewer = new ComboViewer(parent);
 viewer.getControl().setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 viewer.setLabelProvider(new LabelProvider() {
 @Override
 public String getText(Object element) {
 return ((IAccount)element).getName();
 }
 });
 viewer.addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 window.getContext().set(IAccount.class,
 (IAccount)((IStructuredSelection)event.getSelection()).getFirstElement());
 }
 });
 viewer.setContentProvider(new ObservableListContentProvider());

 DataBindingContext dbc = new DataBindingContext();
 IWidgetValueProperty prop = WidgetProperties.text(SWT.Modify);

 l = new Label(parent, SWT.NONE);
 l.setText("To");

 Text t = new Text(parent, SWT.BORDER);
 t.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(prop.observe(t), BeanProperties.value("to").observeDetail(master));

 l = new Label(parent, SWT.NONE);
 l.setText("Subject");

 t = new Text(parent, SWT.BORDER);
 t.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(prop.observe(t), BeanProperties.value("subject").observeDetail(master));

 BeanProperties.value("subject").observeDetail(master).addValueChangeListener(
 new IValueChangeListener() {
 public void handleValueChange(ValueChangeEvent event) {
 String value = (String) event.diff.getNewValue();
 value = value == null ? "" : value;

 if(window != null) {
 window.setLabel("New Mail: " + value);
 }
 }
 });

 t = new Text(parent, SWT.BORDER|SWT.MULTI|SWT.WRAP);
 GridData gd = new GridData(GridData.FILL_BOTH);
 gd.horizontalSpan = 2;
 t.setLayoutData(gd);
 dbc.bindValue(prop.observe(t), BeanProperties.value("body").observeDetail(master));
 }

The Eclipse 4.1 Application Platform Page 51 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 @PreDestroy
 void cleanUp() {
 manager.dispose();
 }

 @Inject
 void setMailSession(IMailSession session) {
 if(session != null) {
 viewer.setInput(session.getAccounts());
 } else {
 if(! viewer.getControl().isDisposed()) {
 viewer.setInput(new WritableList());
 }
 }
 }

 @Inject
 @Optional
 void setMail(IMail mail) {
 master.setValue(mail);
 }
}

Not really a lot of magic besides that we are here pushing the ComboViewers-
Account selection into the TrimmedWindow's context.

When we introduced DI, I said you can think of the IEclipseContext used for
injection as a Map of type Map<String,Object> but the IEclipseContext is
not a flat but an hierarchical structure. There is an application-context
(attached to the Application-Element), a window-context (attached to a
Window-Element), a Part-Context attached to a Part, … .

b) The implementation of the SendMail handler:

public class SendMail {
 @Execute
 public void sendMail(@Named(IServiceConstants.ACTIVE_SHELL) Shell shell,
 MTrimmedWindow window, IMail mail, IAccount account, IPresentationEngine engine) {

 if(mail.getTo() == null || mail.getTo().trim().length() == 0 ||
 mail.getTo().indexOf('@') == -1) {

 MessageDialog.openError(shell, "No Recipient", "Your mail has no recipient.");
 return;
 }

 if(mail.getSubject() == null || mail.getSubject().trim().length() == 0) {
 if(! MessageDialog.openQuestion(shell, "No subject",
 "You have not set a subject would you like to proceed?")) {
 return;
 }
 }

 account.getSession().sendMail(account, mail);

 // Bug in 4.0 we need to tear down through the presentation-engine
 engine.removeGui(window);
 window.getParent().getChildren().remove(window);

The Eclipse 4.1 Application Platform Page 52 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 }

 @CanExecute
 public boolean canExecute(@Optional IAccount account, @Optional IMail mail) {
 return account != null && mail != null;
 }
}

The only interesting thing is the use of the IPresentationEngine that we need
to use because of another problem with removing already existing workbench-
windows from the application in the 4.1 codebase.

Because we have to use the IPresentationEngine, we should briefly explain
what it is and what it does. The IPresentationEngine is the one who
translates the Application-Model into an UI and reflects all modifications you
make on the model (like the one we made in NewMailHandler) in the UI -
ranging from easy ones like updating the label to such complex ones like
adding new windows, moving views and much more.

We can now run our application which looks like this:

You'll immediately notice a problem after having started and stopped the
application once. The new mail windows we created are restored on restart so
we need to take care on shutdown to remove them before the workbench state
is persisted.

The Eclipse 4.1 Application Platform Page 53 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 31: Final Application

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

The only available solution in 4.1 is to install a lifecycle-handler in the product
definition in “org.eclipse.e4.demo.mailapp”.

Create a class named LifecycleHandler which looks like this:

public class LifecycleHandler {
 @PreSave
 void cleanupModel(MApplication application, EModelService modelService) {
 List<Object> list = modelService.findElements(application, null, null,
 Collections.singletonList("temporaryObject"));

 for (Object o : list) {
 EcoreUtil.delete((EObject) o, true);
 }
 }
}

There are 4 annotations available to plug into the lifecycle:

• @PostContextCreate: Called after the application context is created

• @ProcessAdditions: Called before the model is passed to the renderer

• @ProcessRemovals: Called before the model is passed to the renderer

• @PreSave: Called before the model is persisted

The other nice thing is that the Eclipse 4.0 Application Platform provides us a
services to interface with the application model and we are using it here to
remove objects tagged with “temporaryObject”, yet still we need some EMF
help to clean the elements (note this is the first and only time in this tutorial
that you see that the application model is defined using EMF)

Finally we need to register the lifecycle handler in our product definition that
now looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 name="Mail App">
 <property
 name="appName"
 value="Mail App">
 </property>
 <property
 name="applicationXMI"
 value="org.eclipse.e4.demo.mailapp/Application.e4xmi">
 </property>
 <property
 name="applicationCSS"
 value="platform:/plugin/org.eclipse.e4.demo.mailapp/css/default.css">
 </property>
 <property

The Eclipse 4.1 Application Platform Page 54 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 name="lifeCycleURI"
 value="platform:/plugin/org.eclipse.e4.demo.mailapp/org.eclipse.e4.demo.mailapp.Life
cycleHandler">
 </property>
 </product>
 </extension>

</plugin>

Improve Usability with Keybindings
A professional application allows the user to use the application using the
keyboard as well and so, we add as a “final polish” keybindings.

We can only define keybindings for actions triggered through commands (so
we can't add one for our Connection Configuration dialog which is launched
using a DirectMenuItem).

The first thing we need to create are binding contexts that define under which
circumstance a keybinding is active.

a) Open the Application.e4xmi and check the “Root Context” checkbox

b) We set the “Id” to “org.eclipse.e4.demo.mailapp.app.context” and the
Name “In the Application”

c) Create a child context with “Id” set to
“org.eclipse.e4.demo.mailapp.mainwindow.context” and the Name to “In
Main Window”.

d) Bug workaround: There's a small bug in the Binding-Implementation which
yields an exception if no “org.eclipse.ui.contexts.dialog” is available. So we add
a dummy context with this id.

Now we have to define two BindingTables that we connect to the contexts
defined before.

The Eclipse 4.1 Application Platform Page 55 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

• BindingTable 1:

◦ Id: org.eclipse.e4.demo.mailapp.app.keybindings

◦ Context Id: org.eclipse.e4.demo.mailapp.app.context

• BindingTable 2:

◦ Id: org.eclipse.e4.demo.mailapp.mainwindow.keybindings

◦ Context Id: org.eclipse.e4.demo.mailapp.mainwindow.context

Now we are ready to create keybindings. The first one we create is a special
one to shutdown the application (CTRL+Q/CMD+Q).

You should create the following Model-Elements:

• A Command:

◦ Id: org.eclipse.e4.demo.mailapp.command.exit

◦ Name: Exit Application

• A Handler:

◦ Command: org.eclipse.e4.demo.mailapp.command.exit

◦ Class URI pointing to: org.eclipse.e4.demo.mailapp.ExitHandler

• A Separator to the File-Menu

• A HandledMenuItem to the File-Menu with

◦ Id: org.eclipse.ui.file.exit (this is important for OS-X users
because using this id ensures that the menu entry is moved to the

The Eclipse 4.1 Application Platform Page 56 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 32: Connect BindingTable to Contexts

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

Application-Menu)

◦ Label: Exit

◦ Command: org.eclipse.e4.demo.mailapp.command.exit

The application model looks like this after you have executed the actions
above:

The next model change is to add the KeyBinding to the
“org.eclipse.e4.demo.mailapp.app.keybindings”-BindingTable. You'll have to set
the following values on the element:

• Sequence: M1+Q

• Command: org.eclipse.e4.demo.mailapp.command.exit

Last step in our model is to

• associate our Application-Element with the
“org.eclipse.e4.demo.mailapp.app.context”-Context.

• associate our TrimmedWindow with the
“org.eclipse.e4.demo.mailapp.mainwindow.context”-Context

Open the elements and enter the above ids into the “Binding Context”-Field
and press “Add”.

Finally we implement the ExitHandler class:
public class ExitHandler {
 @Execute
 public void execute(@Named(IServiceConstants.ACTIVE_SHELL) Shell shell,
 IPresentationEngine engine) {

 if(MessageDialog.openQuestion(shell, "Exit Application?",

The Eclipse 4.1 Application Platform Page 57 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 33: Model Structure

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

 "Do you really want to exit the application?")) {

 engine.stop();

 }
 }
}

You can now launch your application and hit CTRL/CMD+Q and should be
prompted with dialog like this:

Last step in the binding story is to contribute a Keybinding for the “New Mail”-
Command.

Open the fragement.e4xmi and add a new “String Model Fragment” with the
following attributes:

• Element Id: org.eclipse.e4.demo.mailapp.mainwindow.keybindings

• Featurename: bindings

Add a KeyBinding-Element to the elements list and set the following values:

• Sequence: M1+N

• Command: org.eclipse.e4.demo.mailapp.command.newmail

Want the source code? Look at “Source Zip for Contribution” on page

The Eclipse 4.1 Application Platform Page 58 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Figure 34: Exit Application Dialog

mailto:tom.schindl@bestsolution.at
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

59.

Get the source

Using git-repository at github.com
The sources used in this document are all available from git repository hosted
at http://github.com/tomsontom/e4demo/ .

You'll can install EGit-Plug-in into your Eclipse 4.1 SDK to clone the respository
to your local workspace and import the sources.

Download zip-Files
• Premade Service-Bundle: http://tomsondev.com/e4rcp/services-

bundle.zip

• Source Zip for Chapter 2: http://tomsondev.com/e4rcp/chapter2.zip

• Source Zip for Chapter 4: http://tomsondev.com/e4rcp/chapter4.zip

• Source Zip for Chapter 5: http://tomsondev.com/e4rcp/chapter5.zip

• Source Zip for Chapter 6: http://tomsondev.com/e4rcp/chapter6.zip

• Source Zip for Chapter 7: http://tomsondev.com/e4rcp/chapter7.zip

• Source Zip for Chapter 8: http://tomsondev.com/e4rcp/chapter8.zip

• Source Zip for EventSystem:
http://tomsondev.com/e4rcp/eventsystem.zip

• Source Zip for Contribution:
http://tomsondev.com/e4rcp/contribution.zip

Closing words
I hope this RCP-Application tutorial has helped introduce you to the most
important concepts behind the new Eclipse 4.1 Application Platform and
provide you a jump start on writing applications using the Eclipse 4.1
Application Platform.

There is more of course, as we have actually only scratched the surface of this
new platform. Here are some topics we haven't yet looked into:

• Customization of the Workbench-Rendering by writing our own Renderers

• Writing our own IPresentationEngine to e.g. use a different Widget-
Toolkit like Swing to render the Workbench-UI

• Extending the Workbench Model to introduce your own concepts

The Eclipse 4.1 Application Platform Page 59 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://tomsondev.com/e4rcp/contribution.zip
http://tomsondev.com/e4rcp/eventsystem.zip
http://tomsondev.com/e4rcp/chapter8.zip
http://tomsondev.com/e4rcp/chapter7.zip
http://tomsondev.com/e4rcp/chapter6.zip
http://tomsondev.com/e4rcp/chapter5.zip
http://tomsondev.com/e4rcp/chapter4.zip
http://tomsondev.com/e4rcp/chapter2.zip
http://tomsondev.com/e4rcp/services-bundle.zip
http://tomsondev.com/e4rcp/services-bundle.zip
http://github.com/tomsontom/e4demo/
http://www.bestsolution.at/

The Eclipse 4.1 Application Platform

• CSS-Themes

• Advanced model contribution using Java-Code

Most API provided currently by the Eclipse 4.1 Application Platform is
provisional and can change in the 4.2 timeframe, so if you decide to use the
Eclipse 4.1 Application Platform as your application framework, you should
subscribe to the e4-dev-mailing list.

The provisional state of the API should not solely regarded as a disadvantage
as you have the opportunity to influence its direction as an early adopter.

We need your constructive feedback to make the Eclipse 4.1
Application Platform the most powerful UI-Application-

Framework

All Java-code provided in this document is released under EPL and you are free
to use it under the terms of this license.

The tutorials textual content and screenshots are released under Creative
Commons Attribution-NonCommercial-ShareAlike 3.0.

Finally there are some people who helped me with this document

• Angelo Zerr: provided feedback on the initial document

• Lars Vogel: provided feedback and the tip to use git for the different code
lines

• Remy Suen: for correcting many of my grammar and spelling errors

• Udo Rader: for correcting many of my grammar and spelling errors

Changelog
• July 2010 – First Version for Eclipse 4.0

• August 2010 – Changes based on User Feedback

• June 2011 – Updated to Eclipse 4.1

The Eclipse 4.1 Application Platform Page 60 of 60
Copyright Tom Schindl<tom.schindl@bestsolution.at>/http://www.bestsolution.at Creative Commons Attribution-NonCommercial-ShareAlike 3.0

mailto:tom.schindl@bestsolution.at
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.bestsolution.at/

	Abstract
	Setup the IDE
	Download & Install Eclipse 4.1 SDK
	Install Eclipse 4.1 (Model)Tooling

	Setup project
	Create an OSGi-Project
	Add a product definition
	Add a minimal Eclipse 4.1-ApplicationModel
	Create a MailDemo-4.0.product

	Create the MailServices
	Create the UI
	Implement the AccountView UI
	Create a TestProject
	Create the FolderView UI
	Create the Mail UI

	Assemble an Eclipse 4.1-Application
	DI and the POJO Application Programming Model
	Wiring the POJOs into the Application Model

	Improve the Application L&F
	Extended Annotations
	@Preference
	@Focus
	Menus and @Execute

	The Event System
	Advanced Eclipse 4.1 - Contributing Fragments
	Contributing a Command-Element
	Contributing a Handler
	Contributing a HandledMenuItem
	Contributing a ToolItem
	Dynamic UI creation
	Improve Usability with Keybindings

	Get the source
	Using git-repository at github.com
	Download zip-Files

	Closing words
	Changelog

