
Eclipse RCP MailApp 4.0

Eclipse RCP MailApp 4.0

Tom Schindl <tom.schindl@bestsolution.at>

Inhaltsverzeichnis
Setup the IDE..1

Download & Install Eclipse 4.0 SDK..2
Install e4 (Model)Tooling.. 3

Setup up project.. 4
Create an OSGi-Project.. 4
Add a product definition... 5
Add a minimal e4-ApplicationModel..6
Create a MailDemo-4.0.product...9

Create the MailServices... 10
Create the UI... 12

Implement the AccountView UI..12
Create a TestProject...13
Create the FolderView UI.. 15
Create the Mail UI...17

Assemble an e4-Application..19
DI and The POJO Application Programming Model...................................19
Wireing the POJOs into the Application Model..22

Improve the Application L&F...27
Extended Annotations...30

@Preference... 30
@Focus..31
Menus and @Execute... 32

The Event System...36
Contributing Fragments... 38

It's one of the most used RCP-Applications to teach people the concept of the
3.x platform is the mail demo generated by the PDE-Wizard. In this tutorial we
are going to create as a first step a similar application using technologies from
e4.

Setup the IDE
Probably the most natural way to develop an e4-RCP application is to download
the Eclipse 4.0 SDK which uses the e4 runtime platform to provide you and
Java and OSGi-Tooling-IDE.

We should mention at this point that you are NOT forced to use Eclipse 4.0 to

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

mailto:tom.schindl@bestsolution.at

Eclipse RCP MailApp 4.0

write e4-RCP applications and all the introduced tooling is available to you as
well in the Helios Release through the e4-Update-Site of the Eclipse-IDE.

Though we appreciate if you use Eclipse 4.0 as you IDE we'd like to mention
that it is not primarily targeted for daily work but marked as an „Early Adopter
Release“ giving plugin developers the possibility to test if their 3.x Bundles run
in a 4.0 environment.

Download & Install Eclipse 4.0 SDK
You should be able to download Eclipse 4.0 from
http://www.eclipse.org/helios/eclipse-sdk-4.0/. Featurewise what you get with
this download is comparable to Eclipse Classic 3.6 which includes JDT, PDE,
CVS,

After having download the Eclipse version for your platform you'll have to unzip
it and launch the platform executeable and you should see an 4.0 SDK similar
to this one.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/
http://www.eclipse.org/helios/eclipse-sdk-4.0/

Eclipse RCP MailApp 4.0

Install e4 (Model)Tooling
This is not needed if you are familiar with XMI and want to edit files like this
using a standard text-editor but most people prefer to use tooling which helps
them writing applications.

Because the e4 Tooling has not yet graduated to 4.0 SDK you need to install it
using Help > Install New Software … .

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 1: 4.0 SDK

Eclipse RCP MailApp 4.0

Setup up project
There is a wizard to create a complete e4-RCP-Project but we are not using
this wizard but setup the project by hand so that we understand step by step
what's done.

Create an OSGi-Project
We are using File > New > Project … and select Plug-in Development > Plug-in
Project and enter the following data into the wizard pages:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 2: Install e4 Tooling

Eclipse RCP MailApp 4.0

Add a product definition
Create something we can launch easily what one does when using Equinox is
to create an application and product definition using the extension points
provided by „org.eclipse.equinox.app“.

To write an e4-Application we don't have to define our own application but
reuse an application already defined by the e4 runtime named
„org.eclipse.e4.ui.workbench.swt.E4Application“.

Let's do things step by step:

a) Open the MANIFEST.MF

Add a dependency on „org.eclipse.equinox.app“

b) Open the plugin.xml

Add a product definition like this
<extension

id="product"
point="org.eclipse.core.runtime.products">

 <product
application="org.eclipse.e4.ui.workbench.swt.E4Application"
name="Mail App">

 </product>
</extension>

What's missing now to launch our application for the first time are 2 things we

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 3: New OSGi-Project 1 Abbildung 4: New OSGi-Project 2

Eclipse RCP MailApp 4.0

need to do. An e4-Application which uses the predefined E4Application has to
have a minimal workbench model (we'll learn about this in the next sections),
and a .product to define a launchable application.

Add a minimal e4-ApplicationModel
In contrast to 3.x application where you used a mixture of Java and Extension
Points to setup up an application e4 applications follow another route. The
complete application is defined and made up from one single model.

You'll learn in later sections of the tutorial how this application model can be
made up dynamically but for getting something up and running we'll create a
minimal application model using „File > New > Other“ and select „e4 > Model
> New Application Model“.

Fill in the following informations:

Technically this would be enough to launch an application but an UI-Application
without at least one window is senseless.

After having created the Application.e4xmi the „e4 Workbench Model“-Editor
should have opened itself automatically.

Select the „Windows“ entry on the left, select „TrimmedWindow“ on the right
and press the button next to the drop down. The result should be an editor
looking like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 5: New Application Model

Eclipse RCP MailApp 4.0

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

Afterwards select the „Trimmed Window“ entry in the tree and set the height
and width values to 640 and 480 and the Label-Property to „MailDemo 4.0“.

Let's take a look at what is written to Application.e4xmi:
<?xml version="1.0" encoding="ASCII"?>
<application:Application
 xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:application="http://www.eclipse.org/ui/2010/UIModel/application"
 xmlns:basic="http://www.eclipse.org/ui/2010/UIModel/application/ui/basic"
 xmi:id="_-K-zoJS1Ed-3RJVy9OYaEA"
 elementId="org.eclipse.e4.demo.mailapp.application">
 <children
 xsi:type="basic:TrimmedWindow"
 xmi:id="_mWWEUJS2Ed-3RJVy9OYaEA"
 label="MailDemo 4.0"
 width="640"
 height="480"/>
</application:Application>

You normally don't have to edit this file by hand because e4 provides tooling
and I'd also like to point out that XMI is only one possible serialization format
of the EMF-Model we just created – yes you've just created your first instance
of an EMF-Model.

The default system expects to have a model loaded from such an XMI-File but

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 6: Add window to model

Eclipse RCP MailApp 4.0

the framework allows you to replace this through your own model
loading/construction strategy if you are not comfortable with the default – all
the framework internally cares about is to get an in memory EMF-Model of the
application whether loaded from XMI, constructed on the fly, loaded over the
wire, … is something totally up to you.

One of the important things you notice in the file are the xmi:id-Attributes who
have a very cryptic value which is needed by the default implementation used
to restore the application state when started.

Create a MailDemo-4.0.product
A product file allows us to define a product we'll export later on to provision on
our clients desktops. If you should familiar with the process of creating such
a .product but here's a step by step instruction because we need to add some
extra stuff PDE is not able resolve itsown.

1. New > File > Other …

2. Plug-in Development > Product Configuration

3. In dialog enter:

◦ Filename: MailDemo-4.0

◦ Use an existing product: org.eclipse.e4.demo.mailapp.product

4. Add the following additional bundles

◦ org.eclipse.equinox.ds: This adds declarative OSGi-Services who use
the extender pattern and so none of the framework has a dependency
on it

◦ org.eclipse.equinox.event: This provides e4 the system it uses and
there's only one event system based upon the one provided by OSGi-
EventAdmin-service

◦ org.eclipse.e4.ui.workbench.renderers.swt: e4 comes with a very
flexible rendering system which allows people to completely replace
the rendering. We are using the default one provided by e4-Team.

5. Press „Add Required Plug-ins“

Before we can launch we need to add some more information to our product-
extension point to make it look like this:
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 name="Mail App">
 <property

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

 name="appName"
 value="Mail App">
 </property>
 <property
 name="applicationXMI"
 value="org.eclipse.e4.demo.mailapp/Application.e4xmi">
 </property>
 </product>
 </extension>

</plugin>

The important information we need to provide to the E4Application is which
initial model it should use to make up the application.

Now we are ready to launch our minimal e4 application the first time and it will
show us something like this:

TODO: Provide source code after Chapter 2 as a zip

Create the MailServices
To let our application really do meaningful stuff and present you all the cool
new features e4 provides you when writing OSGi-base UI-Applications we are
going to add some OSGi-Service stuff.

The e4-runtime itself is designed from day one with OSGi in mind and to follow
good OSGi-practices we create 2 new OSGi-projects:

• org.eclipse.e4.demo.mailapp.mailservice

• org.eclipse.e4.demo.mailapp.service.mock

I'm not going into detail here how this is implemented but you should simply
download the ready bundles and import them in your workspace.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 7: First Application

Eclipse RCP MailApp 4.0

TODO: Location where user can download 2 bundles as a zip

The important APIs for now are:

• IMailSessionFactory#openSession(): Which allows you to open a mail
session

• IMailSession#getAccounts(): To retrieve mail accounts

• IMailSession#getMails(): To fetch mails from a folder

If you are not familiar with Declarative OSGi-Services there's a vast number of
tutorials and books out describing them in great detail.

After having imported the bundles your workspace should look like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 8: Workspace after
ServiceBundles import

Eclipse RCP MailApp 4.0

To finish this task we need to add the 2 new bundles to our .product-File and
recreate our launch configuration so that those new bundles are picked up.

Create the UI
Next thing we need to do is to write our UI-Code. In 3.x we would have
derived our UI-Parts from ViewPart or EditorPart but this is not needed
anymore for e4 where everything is a POJO.

Before we can start writing our UI code we need to add the following
dependencies to our MANIFEST.MF in „org.eclipse.e4.demo.mailapp“:

• org.eclipse.swt

• org.eclipse.jface

• org.eclipse.jface.databinding

• org.eclipse.core.databinding

• org.eclipse.core.databinding.observable

• org.eclipse.core.databinding.property

• org.eclipse.core.databinding.beans (this one you also have to add
.product-File – don't forget to update your launch-config!)

• org.eclipse.e4.demo.mailapp.mailservice

Implement the AccountView UI
Next we create a new Java-Class named
org.eclipse.e4.demo.mailapp.AccountView and add the following lines of Java-
Code into it.
public class AccountView {
 private IMailSessionFactory mailSessionFactory;
 private IMailSession mailSession;
 private TreeViewer viewer;
 private String username = "john";
 private String password = "doe";
 private String host = "tomsondev.bestsolution.com";

 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 this.mailSessionFactory = mailSessionFactory;
 viewer = new TreeViewer(parent,SWT.FULL_SELECTION);
 viewer.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 if(element instanceof IAccount) {
 return ((IAccount) element).getName();
 } else if(element instanceof IFolder) {
 return ((IFolder)element).getName();
 }
 return super.getText(element);
 }
 });

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

 IObservableFactory factory = new IObservableFactory() {
 private IListProperty prop = BeanProperties.list("folders");

 public IObservable createObservable(Object target) {
 if(target instanceof IObservableList) {
 return (IObservable) target;
 } else if(target instanceof IFolderContainer) {
 return prop.observe(target);
 }
 return null;
 }
 };

 TreeStructureAdvisor advisor = new TreeStructureAdvisor() {};

 viewer.setContentProvider(new ObservableListTreeContentProvider(factory, advisor));
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setHost(String host) {
 this.host = host;
 }

 public void init() {
 if(username != null && password != null && host != null) {
 mailSession = mailSessionFactory.openSession(host, username, password);
 viewer.setInput(mailSession.getAccounts());
 }
 }
}

Now how can we test this UI? We could add it directly to our RCP-Application
but when looking closer to it we see that there's no need to bring up the
complete framework to see what our part is doing.

There's not even a dependency on an OSGi-Environment so the class above
should be runnable as a standard Java-Application.

Create a TestProject
We create a Test project we can use to launch our UI-Codeparts who have now
no real dependency on the Application-Framework nor OSGi itself.

Although we are writing a standard Java application lets create a PDE-enabled
project named „org.eclipse.e4.demo.mailapp.test“ so that we don't have to
manage the classpaths our own.

Add the following dependencies to the MANIFEST.MF:

• org.eclipse.swt

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

• org.eclipse.jface.databinding

• org.eclipse.core.databinding

• org.eclipse.e4.demo.mailapp

• org.eclipse.e4.demo.mailapp.mailservice

• org.eclipse.e4.demo.mailapp.mailservice.mock

• org.eclipse.core.runtime

Open the MANIFEST.MF in org.eclipse.e4.demo.mailapp and export the
„org.eclipse.e4.demo.mailapp“-package so that it is visible in our test-bundle.

Add a TestAccountView-Class:
public class TestAccountView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 AccountView view = new AccountView(shell, new MailSessionFactoryImpl());
 view.setUsername("john");
 view.setPassword("doe");
 view.setHost("tomsondev.bestsolution.at");
 view.init();

 shell.open();

 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }
}

And launch it as a standard Java-Application to and you should see something
like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

Create the FolderView UI
This view displays all mails of a folder in a SWT-Table. Here's the code and the
class to test it.
public class FolderView {
 private TableViewer viewer;

 public FolderView(Composite parent) {
 this.viewer = new TableViewer(parent);
 this.viewer.setContentProvider(new ArrayContentProvider());
 this.viewer.getTable().setHeaderVisible(true);
 this.viewer.getTable().setLinesVisible(true);

 TableViewerColumn column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("Subject");
 column.getColumn().setWidth(250);
 column.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 return ((IMail)element).getSubject();
 }
 });

 column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("From");
 column.getColumn().setWidth(200);
 column.setLabelProvider(new ColumnLabelProvider() {
 @Override
 public String getText(Object element) {
 return ((IMail)element).getFrom();
 }
 });

 column = new TableViewerColumn(viewer, SWT.NONE);
 column.getColumn().setText("Date");
 column.getColumn().setWidth(150);
 column.setLabelProvider(new ColumnLabelProvider() {
 private DateFormat format = SimpleDateFormat.getDateTimeInstance();

 @Override
 public String getText(Object element) {
 Date date = ((IMail)element).getDate();

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 9: Test Account UI

Eclipse RCP MailApp 4.0

 if(date != null) {
 return format.format(date);
 }
 return "-";
 }
 });
 }

 public void setFolder(IFolder folder) {
 viewer.setInput(folder.getSession().getMails(folder, 0, folder.getMailCount()));
 }
}

And the class to test it:
public class TestFolderView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 FolderView view = new FolderView(shell);
 view.setFolder(((IAccount)new MailSessionFactoryImpl().openSession("", "john",
"doe").getAccounts().get(0)).getFolders().get(0));

 shell.open();
 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }

}

The UI you should see when running the Java Application looks like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 10: Test FolderView

Eclipse RCP MailApp 4.0

Create the Mail UI
This UI displays the a selected mail to the user. The Java code for the View
looks like this:
public class MailView {
 private DataBindingContext dbc;
 private WritableValue mail = new WritableValue();
 private ObservablesManager manager;

 public MailView(final Composite composite) {
 dbc = new DataBindingContext();
 manager = new ObservablesManager();
 manager.runAndCollect(new Runnable() {
 public void run() {
 initUI(composite);
 }
 });
 }

 public void setMail(IMail mail) {
 if(mail != null) {
 this.mail.setValue(mail);
 }
 }

 private void initUI(Composite composite) {
 Composite parent = new Composite(composite, SWT.NONE);
 GridLayout gd = new GridLayout();
 gd.horizontalSpacing=0;
 gd.verticalSpacing=0;
 parent.setLayout(gd);

 Composite header = new Composite(parent,SWT.NONE);
 header.setLayout(new GridLayout(2,false));
 header.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 Label l = new Label(header, SWT.NONE);
 l.setText("From");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("from").observeDetail(mail));

 l = new Label(header,SWT.NONE);
 l.setText("Subject");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("subject").observeDetail(mail));

 l = new Label(header,SWT.NONE);
 l.setText("To");

 l = new Label(header, SWT.NONE);
 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 dbc.bindValue(WidgetProperties.text().observe(l),
 BeanProperties.value("to").observeDetail(mail));

 l = new Label(parent, SWT.SEPARATOR|SWT.HORIZONTAL);

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

 l.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 Text t = new Text(parent, SWT.BORDER|SWT.V_SCROLL|SWT.H_SCROLL|SWT.WRAP);
 t.setLayoutData(new GridData(GridData.FILL_BOTH));
 t.setEditable(false);
 dbc.bindValue(WidgetProperties.text().observe(t),
 BeanProperties.value("body").observeDetail(mail));
 }

 public void dipose() {
 manager.dispose();
 }
}

And the class to test it:
public class TestMailView {
 public static void main(String[] args) {
 final Display d = new Display();
 Realm.runWithDefault(SWTObservables.getRealm(d), new Runnable() {

 public void run() {
 Shell shell = new Shell(d);
 shell.setLayout(new FillLayout());
 MailView view = new MailView(shell);
 IFolder folder = ((IAccount)new MailSessionFactoryImpl().openSession("", "john",
"doe").getAccounts().get(0)).getFolders().get(0);

 view.setMail(folder.getSession().getMails(folder, 0, 1).get(0));
 shell.open();

 while(!shell.isDisposed()) {
 if(! d.readAndDispatch()) {
 d.sleep();
 }
 }
 }
 });

 d.dispose();
 }
}

Once more running the test-Programm should create an UI like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

We have now created all UI parts of our application without the need to have
any knowledge about the e4-Framework. All we had to know is SWT/JFace and
how to programm in Java.

TODO: Provide source code after Chapter 4 as a zip

Assemble an e4-Application

DI and The POJO Application Programming Model
We now have 3 UI-Classes who on their own are not making much sense but
when connected together they are able to build a complete MailReader
application.

Before we start with the process of integrating our POJOs in the Application
model I think it makes sense to explain what we are going to do in the next
view sections of this tutorial.

I assume most of you have already heard at least once about Dependency
Injection (DI). Those of you who have ever worked with Spring or Guice are
familiar with the concepts for others who never had don't be afraid its not
really complex.

Let's take a look at a typical 3.x code where we are reacting on the change of
the current selection in the workbench.
public class View extends ViewPart {

 public void createPartControl(Composite parent) {

 getSite().getSelectionProvider().addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 11: Test MailView

Eclipse RCP MailApp 4.0

 if(event.getSelection() instanceof IStructuredSelection) {
 Object o = ((IstructuredSelection)event.getSelection()).getFirstElement();

 if(o instanceof IFolder) {
 updateFolder((IFolder) o);

 }

 }

 }

 });

 }

 void updateFolder(IFolder folder) {
 // Do something when selection changes
 }
}

And here's what you write in e4

public class View {

 @Inject
 @Named(IServiceConstants.ACTIVE_SELECTION)
 void updateFolder(IFolder folder) {
 // Do something when selection changes
 }
}

The first thing you notice is that the code is much more concise and you don't
have to write tons of glue code but more important is that you are flipping
sides.

Instead of being the active part you get the inactive one who gets informed
automatically if something changes you are in need of.

This makes your code much more reuseable because you are not depending on
external stuff like the ISelectionService being available.

I'm not going into great detail here now because DI is a very wide area. The
imporant thing for us is that we'll have to add annotations like @Inject at
various places in our code (constructors, fields, methods) to get informations
we need to make up the UI.

There's no other way to get access to informations because e4 doesn't
provide statics or singletons like the 3.x platform did!

Before we start adding the annotations to our code we have to add some more
bundles to our MANIFEST.MF:

• javax.inject

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

• javax.annotation

• org.eclipse.e4.core.di

• org.eclipse.e4.ui.services

who provide the Annotations we are going to add to our code and some
constants.

Modify the AccountView like this:
public class AccountView {
 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 // Unmodified
 }

 @PostConstruct
 public void init() {
 // Unmodified
 }
}

Modify the FolderView like this:
public class FolderView {
 @Inject
 public FolderView(Composite parent) {
 // Unmodified
 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 // Unmodified
 }
}

and the MailView like this:
public class MailView {

 @Inject
 public MailView(final Composite composite) {
 // Unmodified
 }

 @Inject
 public void setMail(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IMail mail) {
 // Unmodified
 }

 @PreDestroy
 public void dipose() {
 // Unmodified
 }
}

Let's try to understand the code parts above a bit better. The first thing you
need to know is that the instance creation and destruction is handled by the
e4-DI-Container.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

At the moment the some code request an instance of e.g. AccountView the DI-
Framework search through constructors annotated with @Inject and tries to
satisfy the arguments of the constructor. The informations need to call the
constructor are looked up something called IEclipseContext which you can
think of as a Map of type Map<String,Object>.

For the AccountView-constructor from above it searches for 2 keys:

• org.eclipse.swt.widget.Composite

• org.eclipse.e4.demo.mailapp.mailservice.IMailSessionFactory

and passes the value found to the constructor.

After having created an instance of the class it search for fields and methods
annotated with @Inject and looks up the their value.

In contrast to the constructor stuff though it remembers the injected keys and
whenever the value connected to the key changes it reinjects the value.

A special thing in this context is the @Named useage which allows one to
define the key to use when looking up the value (by default the fully qualified
class name is used).

The @Optional annotation means that if no value is found or the value stored
under the key can not be converted to type the system should pass in NULL
instead.

The other 2 annotations you see are controling the lifecycle of the an object.
Methods annotated with @PostConstruct are called after the object is created
and all injections are done (field and method).

The @PreDestroy is the opposite. It is called before the object is destroyed by
the DI-Container and provides the possibility to clean up resources allocated by
the POJO.

Wireing the POJOs into the Application Model
As noted above the e4-runtime is at its heart a DI-Container which controls the
whole application and connects bits and pieces to make up a complete
application from those small POJOs.

To connect all this informations it uses the Application model we've already
used to define the initial layout of our application. Our POJOs from above are
now going to get part of the Application model and because of the DI-
Annotations we added the application framework knows how to create
instances whenever it needs one.

a) Open the Application.e4xmi and create a structure like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

b) Select the 1st Part in the tree and press the “Find...“-button on the Class
URI attribute and search for our AccountView-Pojo.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 12: UI Model for Mail 4.0

Eclipse RCP MailApp 4.0

c) Select the 2nd Part in the tree, press the „Find...“-button and select the
„FolderView“

d) Select the 3rd in the tree, press the „Find...“-button and select the
„MailView“

What we've done in step b) to d) is to wire our UI model with our POJOs and
now at the moment the application has to render a part which is connected to
such a POJO it creates an instance through the DI-Container and hands over
control for this area to the POJO.

When launching our application we should see something like this:

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 13: Connect POJO with UI

Eclipse RCP MailApp 4.0

But there's still one thing missing. When selecting an entry in the account area
the list of mails is not updated. The problem you are seeing here is that the
AccountView has to inform others about the changed selection.

This information can be passed around through an special service named
ESelectionService. To get access to this service you need to add
„org.eclipse.e4.ui.workbench“ to your MANIFEST.MF and modify the UI code like
this:

AccountView:
public class AccountView {
 @Inject
 @Optional
 private ESelectionService selectionService;

 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {
 // Unmodified
 viewer.addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 if(selectionService != null) {
 selectionService.setSelection(
 ((IStructuredSelection)event.getSelection()).getFirstElement()
);
 }
 }
 });
 }

 @PostConstruct
 public void init() {
 // Unmodified

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 14: Running MailDemo Application

Eclipse RCP MailApp 4.0

 }
}

FolderView:
public class FolderView {

 @Inject
 @Optional
 private ESelectionService selectionService;

 @Inject
 public FolderView(Composite parent) {
 // Unmodified
 viewer.addSelectionChangedListener(new ISelectionChangedListener() {
 public void selectionChanged(SelectionChangedEvent event) {
 if(selectionService != null) {
 selectionService.setSelection(
 ((IStructuredSelection)event.getSelection()).getFirstElement()
);
 }
 }
 });
 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 // Unmodified
 }
}

The application should now behave as expected and look like this.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 15: Running MailDemo Application after chapter 5

Eclipse RCP MailApp 4.0

TODO: Provide source code after Chapter 5 as a zip

Improve the Application L&F
Now that we have a running application we can work on a more modern look
and feel.

To customize the L&F of applications e4 provides us with CSS-Like declarative
syntax. To inform the framework about the CSS-stylesheet it apply to the
application we need to:

a) Create a directory css

b) Add a file called default.css

c) Modify the plugin.xml like this
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.eclipse.e4.ui.workbench.swt.E4Application"
 name="Mail App">
 <property
 name="appName"
 value="Mail App">
 </property>
 <property
 name="applicationXMI"
 value="org.eclipse.e4.demo.mailapp/Application.e4xmi">
 </property>
 <property
 name="applicationCSS"
 value="platform:/plugin/org.eclipse.e4.demo.mailapp/css/default.css">
 </property>
 </product>
 </extension>

</plugin>

The applicationCSS-property informs the system about the fact that there's a
CSS-stylesheet which has to be applied on the whole RCP-Application.

That's all needed to configure your application to use CSS informations all we
now have to do is add informations to the default.css to tweak the L&F.

Here's the initial CSS-Information we are adding:
.MTrimmedWindow {
 background-color: #E8E8E8;
 margin-top: 10px;
 margin-bottom: 2px;
 margin-left: 5px;
 margin-right: 5px;
}

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

.MPartStack {
 tab-renderer:
url('platform:/plugin/org.eclipse.e4.ui.workbench.renderers.swt/org.eclipse.e4.ui.workbench.rendere
rs.swt.CTabRendering');
 unselected-tabs-color: #FFFFFF #FFFFFF #FFFFFF 100% 100%;
 outer-keyline-color: #FFFFFF;
 inner-keyline-color: #FFFFFF;
 font-size: 12;
}

What you see above is the definition of 2 CSS-Classes MTrimmedWindow and
MPartStack. The name of those classes are the ones of the Application-Model
elements we are used prefixed with an “M”.

I think I don't have to explain in great detail the attributes defined in
MTrimmedWindow the only probably remarkable thing is that the margin
information is not interpreted by the SWT-Widget but needs programmatic
intervention by the programmer updating the layout.

The informations on MPartStack are more interesting because they differ from
what we know from the Web.

The most interesting one is the tab-renderer-attribute which is pointing to a
Java class which can be set since 3.6 on a CTabFolder to influence how it is
drawn. To find out what the others are doing I'd suggest you play around to
see what their effect is.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 16: MailDemo with CSS

Eclipse RCP MailApp 4.0

The first set of style informations have been applied to widget owned and
controled by the e4-application framework but we also like to apply css
informations on our UI code inside our POJOs.

The CSS informations added to the file are:
.mailList {

background-color: #FFF #EEE 100%;
}

.mailHeader {
background-color: #FFF #DDD 100%

}

But to take effect in our application we need to modify our our UI-Code to
mark the widget with the CSS-Classnames.
public class FolderView {
 @Inject
 public FolderView(Composite parent, @Optional IStylingEngine styleEngine) {
 //Unmodified
 if(styleEngine != null) {
 styleEngine.setClassname(this.viewer.getControl(), "mailList");
 }
 }
}

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 17: CSS in custom area

Eclipse RCP MailApp 4.0

public class MailView {
 @Inject
 public MailView(final Composite composite, @Optional final IStylingEngine styleingEngine) {
 //Unmodified
 manager.runAndCollect(new Runnable() {
 public void run() {
 initUI(composite, styleingEngine);
 }
 });
 }

 private void initUI(Composite composite, IStylingEngine styleingEngine) {
 //Unmodified
 if(styleingEngine != null) {
 styleingEngine.setClassname(header, "mailHeader");
 }
 }
}

There's not much magic, we simply inform the DI-Container that we need
another service (IStylingEngine) which we can use to set a class on the widget.

Extended Annotations

@Preference
The next area we are going to take a look at is how we are dealing with
preferences. A perfect example for preferences is the username, password and
host information used to create a MailSession in AccountView.
public class AccountView {
 // ...
 private String username = "john";
 private String password = "doe";
 private String host = "tomsondev.bestsolution.com";

 // ...

 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setHost(String host) {
 this.host = host;
 }
}

To get access to values stored in the preferences e4 provides a special
annotation you can use in conjunction with @Inject named @Preference
which can take 2 parameters:

• nodepath (optional): the path to the preference node, by default the

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

bundle name is used

• value: the value key

public class AccountView {

 // ...

 private boolean modified = false;

 // ...

 @Inject
 public void setUsername(@Preference("username") String username) {
 this.username = username;
 }

 @Inject
 public void setPassword(@Preference("password") String password) {
 this.password = password;
 }

 @Inject
 public void setHost(@Preference("host") String host) {
 this.host = host;
 }

 @PostConstruct
 public void init() {
 if(username != null && password != null && host != null) {
 mailSession = mailSessionFactory.openSession(host, username, password);
 if(mailSession != null) {
 viewer.setInput(mailSession.getAccounts());
 } else {
 viewer.setInput(new WritableList());
 }
 }
 modified = false;
 }

}

After having added this code the preferences get injected into our view but we
need to react on the changes and inform the user that he probably wants to
recreate the mail session.

A simple solution for now is to remember that values have been modified and
the next time the AccountView receives the focus ask the user whether he'd
like to reconnect.

@Focus
To inform the framework which method we'd like it to call when the view
receives the focus all we need to do is to annotate some method in our code
using the @Focus which is coming from “org.eclipse.e4.ui.di” which you should
add to your MANIFEST.MF and add a method like this.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

@Focus
void onFocus(@Named(IServiceConstants.ACTIVE_SHELL) Shell shell) {
 if(modified) {
 if(MessageDialog.openQuestion(shell,
 "AccountInfos Modified",
 "The account informations have been modified would you like to reconnect with them?")
) {
 init();
 if(mailSession == null) {
 MessageDialog.openWarning(shell,
 "Connection failed",
 "Opening a connecting to the mail server failed.");
 }
 }
 }
}

Menus and @Execute
In the previous chapter we added Preference Support to our AccountView we'll
now add a Dialog we use to edit those preferences.

a) Open the Application.e4xmi

b) Select the Trimmed Window in the Tree and select the “Main Menu”
checkbox.

c) Create a structure like this

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 18: Add main menu

Eclipse RCP MailApp 4.0

d) Click on the Class URI and enter the following informations

di)

This will generate a class like this:
public class PreferenceHandler {

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 19: Create menustructure

Abbildung 20: Create handler class

Eclipse RCP MailApp 4.0

 @Execute
 public void execute() {
 }
}

In the above steps we've connected the MenuItem directly to a Java-Class and
at the moment the user selects the MenuItem the framework calls the method
annotated with @Execute.

Before going on to implement the Dialog and the Handler you need to add the
following bundles to your MANIFEST.MF:

• org.eclipse.e4.core.contexts

• org.eclipse.equinox.preferences

• org.eclipse.equinox.common

The implementation of the Dialog looks like this:
public class PreferenceDialog extends TitleAreaDialog {

 @Inject
 @Preference("username")
 private String username;

 @Inject
 @Preference("password")
 private String password;

 @Inject
 @Preference("host")
 private String host;

 private Text usernameField;
 private Text passwordField;
 private Text hostField;

 @Inject
 public PreferenceDialog(@Named(IServiceConstants.ACTIVE_SHELL) Shell parentShell) {
 super(parentShell);
 }

 @Override
 protected Control createDialogArea(Composite parent) {
 Composite area = (Composite) super.createDialogArea(parent);

 getShell().setText("Connection informations");
 setTitle("Connection informations");
 setMessage("Configure the connection informations");

 Composite container = new Composite(area, SWT.NONE);
 container.setLayoutData(new GridData(GridData.FILL_BOTH));
 container.setLayout(new GridLayout(2, false));

 Label l = new Label(container, SWT.NONE);
 l.setText("Username");

 usernameField = new Text(container, SWT.BORDER);

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

 usernameField.setText(username == null ? "" : username);
 usernameField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 l = new Label(container, SWT.NONE);
 l.setText("Password");

 passwordField = new Text(container, SWT.BORDER);
 passwordField.setText(password == null ? "" : password);
 passwordField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 l = new Label(container, SWT.NONE);
 l.setText("Host");

 hostField = new Text(container, SWT.BORDER);
 hostField.setText(host == null ? "" : host);
 hostField.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 return area;
 }

 @Override
 protected void okPressed() {
 IEclipsePreferences prefs = new InstanceScope().getNode("org.eclipse.e4.demo.mailapp");
 prefs.put("username", usernameField.getText());
 prefs.put("password", passwordField.getText());
 prefs.put("host", hostField.getText());

 try {
 prefs.flush();
 super.okPressed();
 } catch (BackingStoreException e) {
 ErrorDialog.openError(getShell(), "Error",
 "Error while storing preferences",
 new Status(IStatus.ERROR, "org.eclipse.e4.demo.mailapp", e.getMessage(),e)
);
 }
 }
}

You notice that we are using DI here as well to get the current preference
values. The useage of DI is not restricted to the framework but you can use it
in your own code as well to create instances.

The implementation of the PreferenceHandler shows how one uses the DI-
Framework in custom code to create an instance of a class.
@Execute
public void execute(IEclipseContext context) {
 PreferenceDialog dialog = ContextInjectionFactory.make(PreferenceDialog.class, context);
 dialog.open();
}

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

The Event System
Another major change comeing with e4 is the event system provided. E4 does
not invent its own but uses the EventAdmin-Bus provided by OSGi.

The first thing we do is to register ourselves as listener to the MailSession and
posting an event into the system but before you'll have to add some more
bundles:

• org.eclipse.e4.core.services

• org.eclipse.osgi.services

public class AccountView {

 //Unmodified

 private ISessionListener listener;

 @Inject
 @Optional
 private IEventBroker eventBroker;

 @Inject
 public AccountView(Composite parent, IMailSessionFactory mailSessionFactory) {

 //Unmodified

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Abbildung 21: Connection Configuration

Eclipse RCP MailApp 4.0

 listener = new ISessionListener() {
 public void mailAdded(IFolder folder, IMail mail) {
 if(eventBroker != null) {
 Map<String,Object> map = new HashMap<String, Object>();
 map.put(EventConstants.NEW_MAIL_TAG_FOLDER, folder);
 map.put(EventConstants.NEW_MAIL_TAG_MAIL, mail);
 eventBroker.post(EventConstants.NEW_MAIL, map);
 }
 }
 };
 }

 //Unmodified

 @PostConstruct
 public void init() {
 if(username != null && password != null && host != null) {
 if(mailSession != null) {
 mailSession.removeListener(listener);
 }

 mailSession = mailSessionFactory.openSession(host, username, password);
 if(mailSession != null) {
 viewer.setInput(mailSession.getAccounts());
 mailSession.addListener(listener);
 } else {
 viewer.setInput(new WritableList());
 }
 }
 modified = false;
 }
}

The code is quite straight forward the only interesting thing is that we are
using post which means we are not blocking until all receivers priocessed the
event. If we want the event to be deliver in a synchronous fashion we would
have used send.

Code parts who want to get informed about those events are subscribing them
to the EventBroker like this:
public class FolderView {
 private IFolder folder;

 @PostConstruct
 void hookEvents() {
 if(eventBroker != null) {
 eventBroker.subscribe(EventConstants.NEW_MAIL, new EventHandler() {

 public void handleEvent(final Event event) {
 if(event.getProperty(EventConstants.NEW_MAIL_TAG_FOLDER) == folder) {
 viewer.getControl().getDisplay().asyncExec(new Runnable() {
 public void run() {
 viewer.add(event.getProperty(EventConstants.NEW_MAIL_TAG_MAIL));
 }
 });
 }
 }
 });
 }

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

Eclipse RCP MailApp 4.0

 }

 @Inject
 public void setFolder(@Named(IServiceConstants.ACTIVE_SELECTION) @Optional IFolder folder) {
 if(folder != null) {
 this.folder = folder;
 viewer.setInput(folder.getSession().getMails(folder, 0, folder.getMailCount()));
 }
 }
}

It is important to mention that this is the ONLY event system available and all
informations are passed through this system (e.g. creation of widgets like the
shells for workbench windows, ...).

Contributing Fragments
Until now our application is created out of one single “monolithic” bundle and
application model definition but that's not how a typical Eclipse-RCP-
Application is made up. One of the strengths of Eclipse 3.x has been that an
application could be made up from different bundles who contributed pieces to
make up a complete application.

e4 is no different in this aspect but contributing to the model is done a bit
differently. What you do is to contribute small fragments to a base application
model and the e4-runtime incooperates those fragments into the final model
used to create the application.

Copyright Tom Schindl<tom.schindl@bestsolution.at> - BestSolution.at

	Setup the IDE
	Download & Install Eclipse 4.0 SDK
	Install e4 (Model)Tooling

	Setup up project
	Create an OSGi-Project
	Add a product definition
	Add a minimal e4-ApplicationModel
	Create a MailDemo-4.0.product

	Create the MailServices
	Create the UI
	Implement the AccountView UI
	Create a TestProject
	Create the FolderView UI
	Create the Mail UI

	Assemble an e4-Application
	DI and The POJO Application Programming Model
	Wireing the POJOs into the Application Model

	Improve the Application L&F
	Extended Annotations
	@Preference
	@Focus
	Menus and @Execute

	The Event System
	Contributing Fragments

