

JUnit & Coverage Assessment for Project: DTP Page 1 of 12

JUnit and Coverage Assessment

DTP Connectivity
Codign Software

By: Joe Ponczak
www.codign.com

Objectives

• Assess current JUnit test cases

• Build additional JUnit tests cases using CoView

• Educate committers on appropriate static and dynamic metrics

• Measure path and branch coverage (Pre- and Post-CoView implementation)

• Determine value proposition for adoption among DTP committers

Benefits

• Improve unit test results with less resources

• Leverage existing software assets

• Reduce unit test churn

• Improve code design and maintainability

• Reduce code complexity

• Implement an automation program

• Provide a unit testing audit trail

Code Analyzed

Package: org.eclipse.datatools.connectivity
Package: org.eclipse.datatools.connectivity.ui
DTP Version: 1.0
IDE: Eclipse 3.2 and 3.2.1

JUnit & Coverage Assessment for Project: DTP Page 2 of 12

DEFINITIONS 3

RESULTS 3

Pre-CoView 3

Post-CoView 3

Overall Increase Using CoView 3

Cost 3

ADDITIONAL FINDINGS 4

VALUE TO DTP PROJECT MANAGEMENT & COMMITTERS 4

DTP PROJECT MANAGEMENT & COMMITTERS IMPLEMENTATION COSTS 4

WHY CODIGN SOFTWARE? 5

ABOUT CODIGN SOFTWARE 5

CONTACT INFORMATION 5

REPORT DETAILS 6

JUnit & Coverage Assessment for Project: DTP Page 3 of 12

Definitions

• Paths (also known as Cyclomatic Complexity): Identifies the number of paths

within a method. A path is the combination of branch outcomes from the top of the

method to the bottom. Ideally used to measure reliability and determine the minimal

set of unit tests needed.

• Path Coverage: Identifies the number of executed paths within a method. More

effective than branch or code coverage.

• Branches: Identifies the number of decision outcomes in a method. Each decision has

two outcomes (TRUE or FALSE) in addition to the entry of that method. A method with

no decisions still has 1 branch. Switch statements result in one branch for each switch.

• Branch Coverage: Identifies the number of executed branches within a method.

• Detailed difference between Path and Branch coverage is available here.

Results

Pre-CoView

Package Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

Org.eclipse.datatools.connectivity 59 38.31% 145 65.02%

Org.eclipse.datatools.connectivity.ui 6 66.67% 10 83.33%

Overall Coverage 65 39.88% 155 65.96%

Total JUnit Test Cases: 65

Post-CoView

Package Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

Org.eclipse.datatools.connectivity 96 57.83% 195 80.25%

Org.eclipse.datatools.connectivity.ui 6 66.67% 10 83.33%

Overall Coverage 102 58.29% 205 80.39%

Total JUnit Test Cases: 105

Overall Increase Using CoView:

• Path Coverage: 46.2% increase

• Branch Coverage: 21.87% increase

• JUnit: 40 additional JUnit tests created (61% increase)

Cost:

• 6 hours to complete

• $288 (assuming $100,000 salary with 2080 work hours per year)

•

JUnit & Coverage Assessment for Project: DTP Page 4 of 12

Additional

• Some of the methods contain unrealizable paths, as identified by CoView:

TemplateDescriptor.hasVisibleProperties, the templateprops.length value is checked twice --
once in the IF statement and once in the condition of the FOR statement. If length > 0 is TRUE

in the IF, it can't be FALSE in the FOR. So it would be desirable to remove the condition from
the IF statement, and reduce the cc by one.

• Test methods have conditional logic, which could lead to false positives:

ConnectionProfileManagerUITests.testGetWizardCategory When I run this test,

keys.size() returns 0, which means that the method under test (getWizardCategory) is never
invoked. The test is recorded as a successful run, leading you to think the method has been
tested. Using our coverage shows otherwise.

• Some methods have a moderately high Cyclomatic Complexity:

DriverManager.getFullJarList() A high Cyclomatic Complexity makes it harder to increase

coverage on these methods, since (a) it's less obvious to see how to drive down a particular
path and (b) even if you can see what data is needed to drive down a path, it becomes tedious
and time-consuming to create the data that will hit each decision just so.

• Some methods use constructs that make it difficult to set up a test state.

getFullJarList() loads property sets from a hard-coded file name. It would be easier to test if
the file name was a parameter, allowing you to specify a test file instead.

Value to DTP Project Management & Committers

• Objective measurements for JUnit tests

• Increase coverage of existing code

• Identify unrealizable paths

• Historical coverage analysis

• Easily add tests to existing code base

• Test logic of new code being designed

• Flush out design flaws early in the development process

• Develop “testable” code

DTP Project Management & Committers
Implementation Costs

• CoView Product: Free – Codign Software will donate one license per DTP committer,

with full support.

• Committer Training: Approximately 2 – 3 hours via webinar

• PM Training: Approximately 2 hours via webinar

JUnit & Coverage Assessment for Project: DTP Page 5 of 12

Why Codign Software?

Unit testing is an important part of any development effort, yet current approaches are often

manual and time consuming with little regards to design and consistency. Poor unit testing

techniques and tools result in uncaught defects, overly complex code and increased

maintenance efforts. Codign Software’s approach to unit testing is based on a combination of

proven techniques and tools that provide meaning and consistency to developers and

management.

About Codign Software

Codign Software offers training, consulting and tools for unit testing professionals. Our staff

has extensive experience in software development, unit testing, and parsing technologies and

methodologies.

Codign Software is committed to providing companies with excellent solutions comprised of

consultants, processes and tools that foster better development, repeatable processes and

audit results.

Contact Information

Joe Ponczak, CEO and Co-Founder
Joe.ponczak@codign.com

410.908.5201

Codign Software
www.codign.com
516 N. Charles St. Suite 405
Baltimore, MD 21201

JUnit & Coverage Assessment for Project: DTP Page 6 of 12

Report Details

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

org.eclipse.datatools.

connectivity

 ProfileManager

 getRootCategories() 1 100.00% 1 100.00%

 getInstance() 1 50.00% 2 66.67%

 getProfiles() 1 100.00% 1 100.00%

 getCategory(java.lang.String) 1 100.00% 1 100.00%

 getProfilesByCategory(java.lang
.String)

1 100.00% 1 100.00%

 getProfileByName(java.lang.Stri

ng)
1 100.00% 1 100.00%

 getProfileByInstanceID(java.lan
g.String)

1 100.00% 1 100.00%

 getProfileByProviderID(java.lan

g.String)
1 100.00% 1 100.00%

 createProfile(java.lang.String,jav
a.lang.String,java.lang.String,jav

a.util.Properties,java.lang.String)
1 100.00% 1 100.00%

 createProfile(java.lang.String,jav

a.lang.String,java.lang.String,jav
a.util.Properties,java.lang.String,

boolean)

1 100.00% 1 100.00%

 duplicateProfile(org.eclipse.datat

ools.connectivity.IConnectionPr
ofile)

1 100.00% 1 100.00%

 addProfile(org.eclipse.datatools.

connectivity.IConnectionProfile)
1 100.00% 1 100.00%

 addProfile(org.eclipse.datatools.
connectivity.IConnectionProfile,

boolean)
1 100.00% 1 100.00%

 deleteProfile(org.eclipse.datatool

s.connectivity.IConnectionProfil
e)

1 100.00% 1 100.00%

 modifyProfile(org.eclipse.datato

ols.connectivity.IConnectionProf
ile)

1 100.00% 1 100.00%

 modifyProfile(org.eclipse.datato

ols.connectivity.IConnectionProf

ile,java.lang.String,java.lang.Stri
ng)

1 100.00% 1 100.00%

JUnit & Coverage Assessment for Project: DTP Page 7 of 12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

 modifyProfile(org.eclipse.datato

ols.connectivity.IConnectionProf

ile,java.lang.String,java.lang.Stri
ng,java.lang.Boolean)

1 100.00% 1 100.00%

 addProfileListener(org.eclipse.d

atatools.connectivity.IProfileList

ener)
1 100.00% 1 100.00%

 removeProfileListener(org.eclips
e.datatools.connectivity.IProfile

Listener)
1 100.00% 1 100.00%

 getAdapter(java.lang.Class) 1 100.00% 1 100.00%

 Class Coverage 20 95.24% 21 95.45%

Package Coverage 20 95.24% 21 95.45%

JUnit & Coverage Assessment for Project: DTP Page 8 of 12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

org.eclipse.datatools.

connectivity.drivers

 DriverInstance

 getJarListAsArray() 1 25.00% 4 57.14%

 Class Coverage 1 25.00% 4 57.14%

 DriverManager

 getInstance() 1 50.00% 2 66.67%

 createNewDriverInstance(java.la

ng.String,java.lang.String,java.la

ng.String)
4 100.00% 7 100.00%

 getDriverInstanceByID(java.lan
g.String)

1 20.00% 5 71.43%

 getFullJarList() 0 0.00% 13 61.90%

 removeDriverInstance(java.lang.
String)

0 0.00% 8 72.73%

 resetDefaultInstances() 0 0.00% 1 5.26%

 Class Coverage 6 12.50% 36 52.94%

Package Coverage 7 13.46% 36 53.33%

JUnit & Coverage Assessment for Project: DTP Page 9 of 12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

org.eclipse.datatools.

connectivity.drivers.

models

 CategoryDescriptor

 getCategoryDescriptors() 2 100.00% 3 100.00%

 getCategoryDescriptor(java.lang

.String)
3 75.00% 7 100.00%

 getRootCategories() 2 66.67% 5 100.00%

 getParent() 2 50.00% 6 85.71%

 getChildCategories() 2 50.00% 7 100.00%

 getAssociatedDriverTypes() 1 25.00% 6 85.71%

 getId() 1 100.00% 1 100.00%

 getParentCategory() 1 100.00% 1 100.00%

 getElement() 1 100.00% 1 100.00%

 getName() 3 100.00% 5 100.00%

 getDescription() 2 100.00% 3 100.00%

 compareTo(java.lang.Object) 2 100.00% 3 100.00%

 toString() 1 100.00% 1 100.00%

 CategoryDescriptor(org.eclipse.c

ore.runtime.IConfigurationElem
ent)

1 100.00% 1 100.00%

 createCategoryDescriptors(org.e

clipse.core.runtime.IConfigurati

onElement[])
3 60.00% 7 77.78%

 Class Coverage 27 71.05% 57 93.44%

 TemplateDescriptor

 getParent() 2 66.67% 5 100.00%

 getName() 3 100.00% 5 100.00%

 compareTo(java.lang.Object) 2 100.00% 3 100.00%

 getDriverTemplateDescriptors() 1 50.00% 2 66.67%

JUnit & Coverage Assessment for Project: DTP Page 10 of

12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

 getDriverTemplateDescriptor(ja

va.lang.String)
2 50.00% 7 100.00%

 getJarList() 2 25.00% 4 44.44%

 getCreateDefaultFlag() 2 100.00% 3 100.00%

 getEmptyJarListIsOKFlag() 2 100.00% 3 100.00%

 getProperties() 3 100.00% 5 100.00%

 getPropertyValue(java.lang.Strin

g)
4 100.00% 7 100.00%

 getPropertyIDFromName(java.la

ng.String)
4 100.00% 7 100.00%

 hasVisibleProperties() 5 83.33% 11 100.00%

 TemplateDescriptor(org.eclipse.

core.runtime.IConfigurationEle
ment)

1 100.00% 1 100.00%

 createDriverTemplateDescriptor

s(org.eclipse.core.runtime.IConfi

gurationElement[])
3 60.00% 7 77.78%

 getId() 1 100.00% 1 100.00%

 getParentCategory() 1 100.00% 1 100.00%

 getElement() 1 100.00% 1 100.00%

 getDescription() 2 100.00% 3 100.00%

 Class Coverage 41 75.93% 76 90.48%

Package Coverage 68 73.91% 76 91.72%

JUnit & Coverage Assessment for Project: DTP Page 11 of

12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

org.eclipse.datatools.

connectivity.internal

 ConnectivityPlugin

 getDefault() 1 100.00% 1 100.00%

 Class Coverage 1 100.00% 1 100.00%

Package Coverage 1 100.00% 1 100.00%

org.eclipse.datatools.

connectivity

96 57.83% 195 80.25%

JUnit & Coverage Assessment for Project: DTP Page 12 of

12

Package Class Method # Tested

Paths

% Path

Cov

Tested

Branches

% Branch

Cov

org.eclipse.datatools.

connectivity.internal

.ui

 ConnectionProfileM

anagerUI

 getInstance() 1 100.00% 1 100.00%

 getWizardCategories() 1 50.00% 2 66.67%

 getNewWizards() 1 50.00% 2 66.67%

 getWizardCategory(java.lang.Str

ing)
0 0.00% 1 100.00%

 getNewWizard(java.lang.String) 2 100.00% 3 100.00%

 Class Coverage 5 62.50% 9 81.82%

 ConnectivityUIPlugi

n

 getDefault() 1 100.00% 1 100.00%

 Class Coverage 1 100.00% 1 100.00%

Package Coverage 6 66.67% 1 83.33%

org.eclipse.datatools.

connectivity.ui

6 66.67% 10 83.33%

Total

102 58.29% 205 80.39%

