Draft: Please do not circulate

Composition Language Strawman Draft

Harold Ossher

1 Introduction

This is a very early draft of the beginnings of a strawman proposal for a user-level composition language (what at one point we were calling Hyper/J2). I haven’t had time to write much in the way of explanations, so it is imprecise and likely to be hard to understand – certainly I would not yet consider it readable by anyone without a reasonable understanding of composition issues, ideally Hyper/J and CCC/Plainway. There are also many issues yet to be thought through, some noted at the end, some not. Enough disclaimers?

Some of my thinking was motivated by discussions with Juri Memmert, and by the paper he wrote with Thomas Stets: “CME: Suggestions for a Query and Composition Language.” The examples given below are derived from that paper. However, this document deals with the composition language only, assuming a query language.
2 Structure

The structure of a composition specification according to this proposal is:

Composition Specification

· composition relationship +

· name (possibly treat the same as modifier, allowing parameters?)
· modifier[(value+)] *

· correspondence, specifying the inputs and the output name

· input *

· [label]

· query specifying input element

· structure of output corresponding to this input (facet, etc.)

· output name

· attribute=value *

Examples of “name” are “merge” and “override.” The modifiers provide further details, such as “unordered” or details of a graph to be used. Parameters are needed in some cases, such as to instantiate generic graphs, but so far, I haven’t shown any examples using them. A correspondence is a tuple of optionally-labeled queries specifying a coordinated n-tuple of inputs. The queries can contain “bound variables”, which can also be used in the output name. The attributes can provide any additional information not provided by the modifiers (since modifiers can be parameterized, they can handle this, so perhaps attributes should be omitted, or perhaps modifiers should just be simple tokens, as elsewhere in the CME, and parameterized modifiers should be rendered as attributes with compound values instead).
3 Syntax

We need some flexible syntax corresponding to this structure, though special-purpose languages with more tailored syntax would be more pleasant in some domains, and could also be supported (with relatively little effort, given the underlying support needed for this structure).
A possible syntax (quick and dirty), used in the examples below, is:

<composition spec>
::= <composition rel>+

<composition rel>
::= <name> <modifier>* <correspondence>

[using <modifier>+] [with <attribute>+]
<modifier>

::= [!] <modifierName> [(<value>+)]

<attribute>

::= [!] <attributeName> = <value>

<correspondence>
::= (<input>+) [as <name>]

<input>

::= <label># <query> [as <structureName>]

Example: merge ordered concern (C1, C2 as copy) as C

Notes:

· The “+” as used here also implies appropriate separators, such as commas

· <label> and all names are identifiers

· <value> is something suitable, TBD

· There is no difference between modifiers listed early and modifier after “using.” I think it is more natural for some to come before the correspondence and others after, so I tossed this in.

· As noted earlier, it’s possible that <modifier> should not have parameters.

· The specifications are intended to be declarative.

· Some form of “except” clause is needed. TBD.

4 Semantics
The composition specifications need to be translated into the terms of the CCC composition model. That model provides a variety of choices in several largely-orthogonal areas, as described in documentation of CCC and Plainway. The general approach of this proposal is to map every relation name, modifier and attribute to one a set of such choices, or a generator of such as set (code that can compute the set based on the context, such as the parameters to the modifier). All the choices made for a composition relationship and all its modifiers and attributes are accumulated to determine the composition details. It’s easy to check that enough details are provided, and that provided details don’t clash (though there are subtleties here). In an implementation, these mappings could be accomplished via handlers registered with the core support, allowing the set of relation names, modifiers and attributes to be open-ended. This is good, but finding a good starting set is key to an acceptable composition language. The examples below suggest some, but this needs more work.
This is not quite sufficient, however, because sometimes additional processing is needed beyond what can be specified by the CCC options, or, perhaps, beyond what CCC itself does. For example, come compositions require that default constructors (no arguments, just call super and do nothing else) in certain concerns be removed. This can be done by “prevent” CCC directives, and so generation of these must be triggered. That is done in two steps:

· Compositions requiring such additional processing set auxiliary modifiers/attributes in the composition relationship, in this case a “defaultConstructorHandling” attribute.
· The handler for the new modifier/attribute does the processing, in this case generating the “prevent” directives.

The advantage of this two-phase approach is that it allows language extenders (the people who introduce modifiers/attributes and write the handlers for them) to enlarge the concept space in a way that others can easily make use of, and to keep the processing in small, ideally orthogonal, pieces. There are a number of issues to be worked out, such as:

· Just what the handlers are allowed to do

· Introduce more modifiers and attributes into the same composition relationship

· Create more composition relationships

· Providing/selecting CCC Rectifier components/choices

· Post-processing of the composed result?

· Other?

· Registration details. It will probably be useful to do a form of multiple dispatch, registering and choosing on the basis of a variety of contextual information other than just the modifier/attribute name.

· Combination/resolution of handler results. What if different handlers supply different values for the same attribute, for example.

· Simplicity. This could all get very complex. I think a key goal is to keep it simple and free of surprises, at least for common uses. This might mean that certain combinations are not permitted, requiring special-purpose, “larger” modifiers/attributes.
The rest of this section briefly lists the CCC concepts, and the auxiliary attributes introduced for the purposes of the examples. Readers might wish to look at the examples in Section 5 first.
4.1 CCC Concepts

Structure (based on paper we are writing rather than code). See CCC/Plainway documentation (and, eventually, the paper) for details. Note that the “Weaving Model” is a pedagogical concept; it is not in the interfaces, but subcomponents are.
· Weaving Directive *

· Correspondence

· Weaving Model

· (Selection, Ordering *) *

· Structure (per input)

· Opacity

· Encapsulation

=>

Rephrasing of structure, to take care of per-input structure component:
· Weaving Directive *

· ([label1#]i1 [as structure1], ([label2#]i2 [as structure2], …)

· Weaving Model

· (Selection, Ordering *) * referring to labels
· Opacity

· Encapsulation

Structure choices

· facet, copy, copyobject, ignore, prevent, aspect, associate, affiliate, attachment

Order choices

· label, order, graph

Selection choices

· solitary, solitarymember

· override, overridemember

· any, anymember

· merge

Opacity choices

· opaque, exposed
Encapsulations choices

· space, type, member
4.2 Some Auxiliary Attributes/Modifiers

· implicit matching (= CCC encapsulation)

· defaultConstructorHandling = [keep | remove]. Abbreviated defaultConstr
· compatibility = binary(list of concerns), …

· The listed concerns are those with which the result must be binary compatible
· This is complex, and is put in to describe the “instruments” operation. Possibly it really breaks down into a number of separate issues that should be handled separately.

· extension(list of concerns). The listed concerns are designated as “extension concerns,” i.e., not the base. This information is used by some of the other attributes.
5 Examples

After presenting some defaults, the rest of this section goes through the examples in Juri and Thomas’s section 6.4 (in subsections numbered based on that paper), showing how they might be written using the approach above, and what each token means.

In each case, the table shows the meaning of the relationships/modifiers/attributes used in terms of CCC concepts or the auxiliary attributes noted above.

Defaults

User picks one or defines her own. These apply unless overridden (indicated by the bracket; absence of brackets means multiple definitions are erroneous).

	blackBox
	encapsulation
	[space]
	

	
	opacity
	[opaque]
	

	whiteBox
	encapsulation
	[member]
	

	
	opacity
	[exposed]
	

6.4.1 merge
merge concern (C1, C2) as C;
merge ordered concern (C1, C2) as C;

· Or, but probably not: ordered merge concern (C1, C2) as C;

merge unordered concern (C1, C2) as C;

· Or: merge !ordered concern (C1, C2) as C;
merge class (C1:S1, C2:S2, C3:S3) as C:S;
merge ordered class (C1:S1, C2:S2, C3:S3) as C:S;

	merge
	selection
	merge
	

	
	order
	[arbitrary]
	

	
	structure
	facet
	Perhaps dependent on arity

	ordered
	selection
	
	

	
	order
	order
	

	
	structure
	
	

	!ordered
	selection
	
	

	
	order
	arbitrary
	

	
	structure
	
	

For more on the comment “Perhaps dependent on arity”, see 6.4.7 (compose).
6.4.2 extend
extend [subclasses | topclasses | bottomclasses | allclasses] concern (C1, C2);
· Or: extend […] concern C1 with C2;
· Watch clash with “with” for attributes

	extend
	selection
	merge
	

	
	order
	order
	

	
	structure
	facet
	Perhaps dependent on arity

	
	extension
	(C2, …)
	tag extension concerns

	
	defaultConstr
	remove
	if in extension (could get more complex)

	subclasses
	selection
	solitary
(or: first)
	if not subclass

	
	order
	
	

	
	structure
	
	

	etc.
	selection
	solitary
	…

	
	order
	
	

	
	structure
	
	

6.4.3 Non-Corresponding Merge
merge concern (C1, C2) as C with implicitMatching=none;

· Or: merge concern (C1, C2) as C with encapsulation=space
	implicitMatching = none
	encapsulation
	space
	

	= types
	encapsulation
	type
	

	= all
	encapsulation
	member
	

6.4.4 override
override concern (C1, C2);

	override
	selection
	overridemember
	

	
	order
	order
	

	
	structure
	facet
	Perhaps dependent on arity

	
	extension
	(C2, …)
	tag extension concerns

	
	defaultConstr
	remove
	if in extension (could get more complex)

6.4.5 instrument
instrument concern (C1, C2);

	instrument
	selection
	merge
	

	
	order
	order
	

	
	structure
	facet
	Perhaps dependent on arity

	
	extension
	(C2, …)
	tag extension concerns

	
	defaultConstr
	remove
	if in extension (could get more complex)

	
	compatibility
	binary(C1)
	

6.4.6 equate
“equate” is done with “merge”

6.4.7 compose
“compose” is like merge, but uses copy instead of facet.
merge class (C1:S1*, C2:S2 as copy);
Issues

· Is this a satisfactory way to specify?

· I think there an option of making this implicit based on number of correspondence (n-1 vs. 1-1)?

6.4.8 rename
rename class C:S as C1:S1;

	rename
	selection
	solitary
	

	
	order
	-
	

	
	structure
	facet
	

6.4.9 advise (was “bracket”)
advise (C1:S1.m*(), before#C2:S2.b(), after#C2.S2.a())

· ‘#’ is used here, because the more natural ‘:’ is already used for spaces

· Or: advise C1:S1.m*() with before#C2:S2.b(), after#C2.S2.a();

· In general, more flexible, distributed way to write correspondences?

	advise
	selection
	merge
	

	
	order
	before/after

graph
	if labels in {“before”, “after”}

	
	
	before/after/throwing

graph
	if labels include “afterThrowing”

	
	structure
	facet

copy
	if unlabelled

if before or after

Control over exception throws: The standard before/after graph catches and ignores any exceptions thrown in the advice itself.
Issues:

· Parameter passing, including pseudo-variables

6.4.10 Summary Function

merge method (…) with summary = and;
merge method (…) with summary = org.eclipse.cme.rt.SummaryFunctions.booleanAnd;
let andGraph = summary(org.eclipse.cme.rt.SummaryFunctions.booleanAnd);

merge andGraph method (…)

merge method (…) using andGraph

	summay = s
	selection
	
	require merge

	
	order
	generated graph with s as summary
	

	
	structure
	
	

Some Issues

1. When different elements specify different values for the same attribute, when is that legal and which one prevails?

· I think there should be a pretty simple model here, such as default designations and explicit “except” clauses and clear scoping rules, with errors in all other cases, to minimize confusion.

2. Chaining of operations, treating operations as functions

3. Multiple pieces of advice applied to the same join point

4. Renaming input artifacts

· Possibly have notion of “compositionName”, a context-dependent attribute

5. etc.
