
JFROG eclipse milo security issues

Parent Dependency: org.eclipse.milo:sdk-core:jar:0.6.3:compile
Version used: 0.6.3

<dependency>
 <groupId>org.eclipse.milo</groupId>
 <artifactId>sdk-core</artifactId>
 <version>0.6.3</version>
</dependency>

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

Summary Severity Component Infected
Version

Fix Version

Netty codec/
src/main/
java/io/netty/
handler/
codec/
compr
ession/
Lz4FrameEn
coder.java
Lz4FrameEn
coder::finish
Encode()
Function
Buffer
Overflow

Critical io.netty:nett
y-codec

<
4.1.66.Final

4.1.66.Final

The Snappy
frame
decoder
function
doesn't
restrict the
chunk length
which may
lead to
excessive
memory
usage.
Beside this it
also may
buffer
reserved
skippable
chunks until
the whole
chunk was
received
which may
lead to
excessive
memory
usage as
well. This
vulnerability
can be
triggered by
supplying
malicious
input that
decompress
es to a very
big size (via
a network
stream or a
file) or by
sending a
huge
skippable
chunk.

High io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

The Bzip2
decompressi
on decoder
function
doesn't
allow setting
size
restrictions
on the
decompress
ed output
data (which
affects the
allocation
size used
during
decompressi
on). All
users of
Bzip2Decod
er are
affected.
The
malicious
input can
trigger an
OOME and
so a DoS
attack

High Io.netty:nett
y-codec

<
4.1.68.Final

4.1.68.Final

Netty is an
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients.
Netty prior
to version
4.1.7.1.Final
skips control
chars when
they are
present at
the
beginning /
end of the
header
name. It
should
instead fail
fast as these
are not
allowed by
the spec and
could lead to
HTTP
request
smuggling.
Failing to do
the
validation
might cause
netty to
"sanitize"
header
names
before it
forward
these to
another
remote
system
when used
as proxy.
This remote
system can't
see the
invalid usage
anymore,
and
therefore
does not do
the
validation
itself. Users
should
upgrade to
version
4.1.7.1.Final
to receive a
patch.

Medium io.netty:nett
y-codec-
http

< 4.1.71.Final 4.1.71.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-handler

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-common

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty before
version
4.1.59.Final
there is a
vulnerability
on Unix-like
systems
involving an
insecure
temp file.
When
netty's
multipart
decoders
are used
local
information
disclosure
can occur
via the local
system
temporary
directory if
temporary
storing
uploads on
the disk is
enabled. On
unix-like
systems, the
temporary
directory is
shared
between all
user. As
such, writing
to this
directory
using APIs
that do not
explicitly set
the file/
directory
permissions
can lead to
information
disclosure.
Of note, this
does not
impact
modern
MacOS
Operating
Systems.
The method
"File.createT
empFile" on
unix-like
systems
creates a
random file,
but, by
default will
create this
file with the
permissions
"-rw-r--r--".
Thus, if
sensitive
information
is written to
this file,
other local
users can
read this
information.
This is the
case in
netty's
"AbstractDis
kHttpData"
is
vulnerable.
This has
been fixed in
version
4.1.59.Final.
As a
workaround,
one may
specify your
own
"java.io.tmp
dir" when
you start the
JVM or use
"DefaultHttp
DataFactory.
setBaseDir(..
.)" to set the
directory to
something
that is only
readable by
the current
user.

Medium io.netty:nett
y-codec-
http

<
4.1.59.Final

4.1.59.Final

Netty is an
open-
source,
asynchronou
s event-
driven
network
application
framework
for rapid
development
of
maintainable
high
performance
protocol
servers &
clients. In
Netty
(io.netty:nett
y-codec-
http2)
before
version
4.1.60.Final
there is a
vulnerability
that enables
request
smuggling. If
a Content-
Length
header is
present in
the original
HTTP/2
request, the
field is not
validated by
`Http2Multip
lexHandler`
as it is
propagated
up. This is
fine as long
as the
request is
not proxied
through as
HTTP/1.1. If
the request
comes in as
an HTTP/2
stream, gets
converted
into the
HTTP/1.1
domain
objects
(`HttpReque
st`,
`HttpConten
t`, etc.) via
`Http2Strea
mFrameToHt
tpObjectCod
ec `and then
sent up to
the child
channel's
pipeline and
proxied
through a
remote peer
as HTTP/1.1
this may
result in
request
smuggling.
In a proxy
case, users
may assume
the content-
length is
validated
somehow,
which is not
the case. If
the request
is forwarded
to a backend
channel that
is a HTTP/1.1
connection,
the Content-
Length now
has meaning
and needs to
be checked.
An attacker
can smuggle
requests
inside the
body as it
gets
downgraded
from HTTP/2
to HTTP/1.1.
For an
example
attack refer
to the linked
GitHub
Advisory.
Users are
only
affected if all
of this is
true:
`HTTP2Multi
plexCodec`
or
`Http2Frame
Codec` is
used,
`Http2Strea
mFrameToHt
tpObjectCod
ec` is used
to convert to
HTTP/1.1
objects, and
these HTTP/
1.1 objects
are
forwarded to
another
remote peer.
This has
been
patched in
4.1.60.Final
As a
workaround,
the user can
do the
validation by
themselves
by
implementin
g a custom
`ChannelInb
oundHandler
` that is put
in the
`ChannelPip
eline`
behind
`Http2Strea
mFrameToHt
tpObjectCod
ec`.

Medium io.netty:nett
y-codec-
http

<
4.1.60.Final

4.1.60.Final

