
Exit Print View

Troubleshooting Guide for Java SE 7 Desktop Technologies

Document Information

Preface

1. Introduction

2. AWT

2.1 Debugging Tips for AWT

2.2 Problems With Layout

2.3 Key Events

2.3.1 General Unresolved Keyboard Issues

2.3.2 Linux and Solaris 10 OS x86 Keyboard Issues

2.4 Modality

2.4.1 UNIX Window Managers

2.4.2 Using Modal Dialogs from Applets

2.4.3 Other Modal Problems

2.5 Memory Leaks

2.5.1 Troubleshooting Memory Leaks

2.5.2 Memory Leak Issues

2.6 Crashes

2.6.1 How to Distinguish an AWT Crash

2.6.2 How to Troubleshoot a Crash in AWT

2.7 Problems With Focus

2.7.1 How to Trace Focus Events

2.7.2 Communication With Native Focus System

2.7.3 Focus System in the Plugin

2.7.4 Focus Models Supported by X Window Managers

Seite 1 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

2.7.5 Miscellaneous Problems With Focus

2.8 Drag and Drop

2.8.1 Debugging Drag and Drop Applications

2.8.2 Frequent Issues With Drag and Drop

2.9 Other Issues

2.9.1 Splash Screen Issues

2.9.2 Tray Icon Issues

2.9.3 Popup Menu Issues

2.9.4 Background/Foreground Color Inheritance

2.9.5 AWT Panel Size Restriction

2.9.6 Hangs when debugging popup menus and similar components on X11

2.9.7 Window.toFront()/toBack() behavior on X11

2.10 Heavyweight/Lightweight Components Mixing

2.10.1 The requirement of validating the component hierarchy

2.10.2 Validate roots

2.10.3 Swing painting optimizations

2.10.4 Non-opaque lightweight components

2.10.5 Disabling the default hw/lw mixing feature implementation

3. Java 2D

4. Swing

5. Internationalization

6. Java Sound

7. Applets and Java Web Start Applications

8. Submitting Bug Reports

A. Java 2D Properties

B. Fatal Error Log

Chapter 2

Seite 2 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

AWT

This chapter provides information and guidance on some specific procedures for troubleshooting
some of the most common issues that might be found in the Java SE AWT API:

2.1 Debugging Tips for AWT•

2.2 Problems With Layout•

2.3 Key Events•

2.4 Modality•

2.5 Memory Leaks•

2.6 Crashes•

2.7 Problems With Focus•

2.8 Drag and Drop•

2.9 Other Issues•

2.10 Heavyweight/Lightweight Components Mixing•

2.1 Debugging Tips for AWT

The following AWT debugging tips can be helpful:

Solaris OS and Linux only: To trace X11 errors, set the sun.awt.noisyerrorhandler

system property to true. In Java SE 6 and before, the NOISY_AWT environment variable was

used for this purpose.

•

To dump the AWT component hierarchy, press Ctrl+Shift+F1.•

If the application hangs, get a stack trace with Ctrl+\ (SIGQUIT) on Solaris OS and Linux
or Ctrl+Break on Windows.

•

Prior to Java SE 7, exceptions thrown in the AWT Event Dispatch Thread (EDT) could be caught
by setting the system property sun.awt.exception.handler to the name of a class that
implements a public void handle(Throwable) method. This mechanism has been updated in

Java SE 7 to use the standard Thread.UncaughtExceptionHandler interface.

Loggers can produce helpful output when debugging AWT problems. For information on using
loggers, consult the Java Logging Overview and the java.util.logging package description.

The following loggers are available:

java.awt•
java.awt.focus•
java.awt.event•
java.awt.mixing•
sun.awt•
sun.awt.windows•
sun.awt.X11•

Seite 3 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

2.2 Problems With Layout

This section describes some possible problems with layout and provides workarounds when
available.

Issue: Call to invalidate() and validate() increases Component size.

Cause: Due to some specifics of the layout manager GridBagLayout, if ipadx or ipady is

set, and if invalidate() and validate() are called, then Component size increases to the
value of ipadx or ipady. This happens because the layout manager GridBagLayout
iteratively calculates the amount of space needed to store the component within the
container.

Workaround: The JDK does not provide a reliable and simple way to detect if the layout
manager should rearrange components or not in such a case, but there is a very simple
workaround. Use components with the overridden method getPreferredSize(), which
always returns the current needed size.

public Dimension getPreferredSize(){

return new Dimension(size+xpad*2+1, size+ypad*2+1);

}

Issue: Infinite recursion with validate() from any Container.doLayout() method.

Cause: Invoking validate() from any Container.doLayout() method can lead to
infinite recursion because AWT itself invokes doLayout() from validate().

2.3 Key Events

This section describes issues with key events.

2.3.1 General Unresolved Keyboard Issues

The following keyboard issues are currently unresolved.

On some non-English keyboards certain accented keys are engraved on the keytop and
therefore are primary layer characters. Nevertheless, they cannot be used for mnemonics
because there is no corresponding Java keycode.

•

Changing the default locale at runtime does not change the text that is displayed for the
menu accelerator keys.

•

On a standard 109-key Japanese keyboard, the yen key and the backslash key both generate
a backslash, because they have the same charCode for the WM_CHAR message. AWT
should distinguish them. This will be fixed in a future release.

•

2.3.2 Linux and Solaris 10 OS x86 Keyboard Issues

The following keyboard issues concern the Linux and Solaris 10 OS x86 systems.

Keyboard input in these systems is usually based on XKEYBOARD X Window extension.
Users can configure only one keyboard layout (for instance, Danish: dk) or several layouts
to switch between (for example, us and dk).

•

Seite 4 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

With some keyboard layouts, for instance sk, hu, and cz, pressing the NumPad decimal

separator not only enters a delimiter but also deletes the previous character. This is due to a
native bug. A workaround is to use two layouts, for example, us and sk. In this case the
numeric keypad works correctly in both layouts.

•

On UNIX systems that support dynamic keyboard changes, a running Java application does
not recognize such a change. For instance, changing the keyboard from US to German does
not change the keyboard mapping. Although the X server detects the change and sends out a
MappingNotify event to interested clients, AWT does not refresh its notion of the keycode-

keysym mapping.

•

2.4 Modality

With the Java SE 6 release, many problems were fixed and many improvements were
implemented in the area of AWT modality. If you observe a modality problem with Java SE 1.5 or
an earlier release, first upgrade to the latest Java SE release to see if the problem has been already
fixed. Some of the problems that were fixed in Java SE 6 are the following:

Modal dialog goes behind a blocked frame.•

Two modal dialogs with the same parent window opened at the same time.•

2.4.1 UNIX Window Managers

Many of the modality improvements are unavailable in some Solaris OS or Linux environments,
for example, when using CDE window managers. With Java SE 6 or later, to see if a modality
type or modal exclusion type is supported in particular configuration, use the methods
Toolkit.isModalityTypeSupported() and Toolkit.isModalExclusionTypeSupported().

Another problem exists when running Java modal dialogs on Solaris OS or Linux. When a modal
dialog appears on the screen, the window manager might hide some of the Java top-level windows
in the same application from the task bar. This can confuse end users, but it does not affect their
work much, because all the hidden windows are modal blocked and cannot be operated.

2.4.2 Using Modal Dialogs from Applets

When your application runs as an applet in a browser and shows a modal dialog, the browser
window might become blocked. The implementation of this blocking varies in different browsers
and operating systems. For example, on Windows, both Internet Explorer and Mozilla work
correctly, and on Solaris OS and Linux, Mozilla windows are not blocked. This will be corrected
in a future release.

2.4.3 Other Modal Problems

The The AWT Modality document for Java SE 7 describes the modality-related features and how
to use them. One of the sections in this document describes some areas that might be related to or
affected by modal dialogs: always-on-top property, focus handling, window states, and so forth.
Application behavior in such cases is usually unspecified or depends on the platform; therefore, do
not rely on any particular behavior.

Seite 5 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

2.5 Memory Leaks

This section first describes how to troubleshoot memory leaks. It then presents some possible
sources of memory leaks and provides workarounds.

2.5.1 Troubleshooting Memory Leaks

To get more information on a memory leak, execute java with the heap profiler active. Specify

that the output should be generated in binary format so that you can use the jhat utility to read the
output.

$ java -agentlib:hprof=file=snapshot.hprof,format=b application

See the Troubleshooting Guide for Java SE 7 with HotSpot VM for more detailed information on
troubleshooting memory leaks, as well as descriptions of the jhat utility and other

troubleshooting tools that are available.

2.5.2 Memory Leak Issues

Issue: Memory leak in application.

Cause: Frames and Dialogs are sometimes not being garbage-collected. This bug will be corrected
in a future version of Java SE.

Workaround: Known memory leaks occur in cases when the system starts to transfer focus to a
focusable top-level element (window, dialog, frame), but the element is closed, hidden, or
disposed of before the focus transfer is complete. Therefore, the application must wait for the
focus transfer operation to finish before closing, hiding, or disposing of the element.

Note that this problem normally occurs only when these actions are performed programmatically,
since the user typically cannot physically perform these actions fast enough to cause the problem.

2.6 Crashes

This section describes how to determine if a crash is related to AWT, as well as how to
troubleshoot such crashes.

2.6.1 How to Distinguish an AWT Crash

When a crash occurs, an error log is created with information and the state obtained at the time of
the fatal error. See Appendix B, Fatal Error Log for detailed information about this log file.

A line near the top of the file indicates the library where the error occurred. The example below
shows that the crash was related to the AWT library.

...

Java VM: Java HotSpot(TM) Client VM (1.6.0-beta2-b76 mixed mode, sharing)

Problematic frame:

C [awt.dll+0x123456]

...

However, the crash can happen somewhere deep in the system libraries, although still caused by
AWT. In such cases the indication awt.dll does not appear as a problematic frame, and you need
to look further in the file, in the section Stack: Native frames: Java frames. Below is an

example.

Seite 6 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

Stack: [0x0aeb0000,0x0aef0000), sp=0x0aeefa44, free space=254k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

C 0x00abc751

C [USER32.dll+0x3a5f]
C [USER32.dll+0x3b2e]

C [USER32.dll+0x5874]

C [USER32.dll+0x58a4]

C [ntdll.dll+0x108f]

C [USER32.dll+0x5e7e]
C [awt.dll+0xec889]

C [awt.dll+0xf877d]
j sun.awt.windows.WToolkit.eventLoop()V+0

j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11

v ~StubRoutines::call_stub

V [jvm.dll+0x83c86]

V [jvm.dll+0xd870f]

V [jvm.dll+0x83b48]
V [jvm.dll+0x838a5]

V [jvm.dll+0x9ebc8]

V [jvm.dll+0x108ba1]

V [jvm.dll+0x108b6f]
C [MSVCRT.dll+0x27fb8]

C [kernel32.dll+0x202ed]

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j sun.awt.windows.WToolkit.eventLoop()V+0
j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11
v ~StubRoutines::call_stub

If the text awt.dll appears somewhere in the native frames, then the crash might be related to
AWT.

2.6.2 How to Troubleshoot a Crash in AWT

Most of the AWT crashes occur on the Windows platform and are caused by thread races. Many
of these problems were fixed in Java SE version 6, so if your crash occurred in an earlier release,
first try to determine if the problem is already fixed in the latest release.

One of the possible causes of crashes is that many AWT operations are asynchronous. For
example, if you show a frame with a call to frame.setVisible(true), then you cannot be sure

that it will be an active window after the return from this call.

Another example concerns native file dialogs. It takes some time for the operating system to
initialize and show these dialogs, and if you dispose of them immediately after the call to
setVisible(true), then a crash might occur. Therefore, if your application contains some AWT
calls running simultaneously or immediately one after another, it is a good idea to insert some
delays between them or add some synchronization.

2.7 Problems With Focus

This section includes the following information:

How to trace focus events•

Description of the focus system in the plugin•

Focus models supported by X Window managers•

Seite 7 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

Focus traversal•

Miscellaneous problems that can occur with focus•

2.7.1 How to Trace Focus Events

To troubleshoot a problem with the focus, you can trace focus events. Start with just adding a
focus listener to the toolkit, as shown here.

Toolkit.getDefaultToolkit().addAWTEventListener(new AWTEventListener(

public void eventDispatched(AWTEvent e) {

System.err.println(e);

}
), FocusEvent.FOCUS_EVENT_MASK | WindowEvent.WINDOW_FOCUS_EVENT_MASK |

WindowEvent.WINDOW_EVENT_MASK);

The System.err stream is used here because it does not buffer the output.

Remember that the correct order of focus events is the following:

FOCUS_LOST on component losing focus•

WINDOW_LOST_FOCUS on top-level losing focus•

WINDOW_DEACTIVATED on top-level losing activation•

WINDOW_ACTIVATED on top-level becoming active widow•

WINDOW_GAINED_FOCUS on top-level becoming focused window•

FOCUS_GAINED on component gaining focus•

When focus is transferred between components inside the focused window, only FOCUS_LOST and

FOCUS_GAINED events should be generated. When focus is transferred between owned windows of
the same owner or between an owned window and its owner, then the following events should be
generated:

FOCUS_LOST•

WINDOW_LOST_FOCUS•

WINDOW_GAINED_FOCUS•

FOCUS_GAINED•

Note that events of losing focus or activation should come first.

2.7.2 Communication With Native Focus System

Sometimes a problem may be caused by the native platform. To check this, investigate the native
events that are related to focus. Make sure that the window you want to be focused gets activated
and the component you want to focus receives the native focus event.

On the Windows platform, the native focus events are the following:

Seite 8 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

WM_ACTIVATE for a top-level. WPARAM is WA_ACTIVE when activating and WA_INACTIVE when

deactivating.

•

WM_SETFOCUS and WM_KILLFOCUS for a component.•

On the Windows platform, a concept of “synthetic focus” has been implemented. It means that a
focus owner component only emulates its focusable state whereas real native focus is set to a
“focus proxy” component. This component receives key and input method native messages and
dispatches them to a focus owner. Prior to JDK7 a focus proxy component was a dedicated hidden
child component inside a frame/dialog. In JDK7 a frame/dialog itself serves as a focus proxy.
Now it proxies focus not only for components in an owned window but for all child components
as well. A simple window never receives native focus and relies on focus proxy of its owner. This
mechanism is transparent for a user but should be taken into account when debugging.

On Solaris OS and Linux, XToolkit uses a focus model that allows AWT to manage focus itself.
With this model the window manager does not directly set input focus on a top-level window, but
instead it sends only the WM_TAKE_FOCUS client message to indicate that focus should be set. AWT
then explicitly sets focus on the top-level window if it is allowed.

Note that X server and some window managers may nevertheless send focus events to a window.
However all such events are discarded by AWT.

AWT does not generate the hierarchical chains of focus events when a component inside a top-
level gains focus. Moreover, the native window mapped to the component itself does not get any
native focus event. On the Solaris OS and Linux platforms, as well as on the Windows platform,
AWT uses the focus proxy mechanism. Therefore, focus on the component is set by synthesizing a
focus event, whereas the invisible focus proxy has native focus.

A native window that is mapped to a Window object (not a Frame or Dialog object) has the
override-redirect flag set. Thus the window manager does not notify the window about focus
change. Focus is requested on the window only in response to a mouse click. This window will
not receive native focus events at all. Therefore, you can trace only FocusIn or FocusOut events
on a frame or dialog. Since the major processing of focus occurs at the Java level, debugging
focus with XToolkit is simpler than with WToolkit.

2.7.3 Focus System in the Plugin

An applet is embedded in a browser as a child (though not a direct child) of an EmbeddedFrame.
This is a special Frame that has the ability to communicate with the plugin. From the applet's
perspective the EmbeddedFrame is a full top-level Frame. Managing focus for an EmbeddedFrame

requires special additional actions. When an applet first starts, the EmbeddedFrame does not get

activated by default by the native system. The activation is performed by the plugin that triggers a
special API provided by the EmbeddedFrame. When focus leaves the applet, the EmbeddedFrame is

also deactivated in a synthesized manner.

2.7.4 Focus Models Supported by X Window Managers

The following focus models are supported by X window managers:

click-to-focus is a commonly used focus model. (For example, Microsoft Windows uses

this model.)

•

focus-follows-mouse is a focus model in which focus goes to the window that the mouse

hovers over.

•

Seite 9 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

The focus-follows-mouse mode is not detected in XAWT in Java SE 7, and this causes

problems for simple windows (objects of java.awt.Windowclass). Such windows have the
override-redirect property, which means that they can be focused only when the mouse button is
pressed, and not by hovering over the window. As a workaround, set MouseListener on the

window and request focus on it when mouse crosses the window borders.

2.7.5 Miscellaneous Problems With Focus

This section describes some issues that can arise with focus in AWT and suggests solutions.

Issue: Linux + KDE, XToolkit. Focus cannot be switched between two frames when frame's

title is clicked.

Clicking a component inside a frame causes focus to change.

Solution: Check the version of your window manager and upgrade it to 3.0 or greater.

Issue: You want to manage focus using KeyListener to transfer focus in response to

Tab/Shift+Tab, but no key events appear.

Solution: To catch traversal key events, you must enable them by calling
Component.setFocusTraversalKeysEnabled(boolean).

Issue: A window is set modal excluded with Window.setModalExclusionType

(ModalExclusionType).

The frame, its owner, is modal blocked. In this case the window will also remain modal
blocked.

Solution: A window cannot become the focused window when its owner is not allowed to
get focus. The solution is to exclude the owner from modality.

Issue: MS Windows. A component requests focus and is concurrently removed from its
container.

Sometimes java.lang.NullPointerException: null pData is thrown.

Solution: The easiest way to avoid throwing the exception is to do the removal along with
requesting focus on EDT. Another, more complicated, approach is to synchronize
requesting focus and removal if you need to perform these actions on different threads.

Issue: When focus is requested on a component and the focus owner is immediately

removed, focus goes to the component after the removed component.

For example, Component A is the focus owner. Focus is requested on Component B, and
immediately after this Component A is removed from its container. Eventually focus goes to
Component C, which is located after Component A in the container, but not to Component
B.

Solution: In this case, ensure that the requesting focus is executed after Component A is
removed, not before.

Issue: MS Windows. When a window is set alwaysOnTop in an inactive frame, the window

cannot receive key events.

Seite 10 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

For example, a frame is displayed, with a window that it owns. The frame is inactive, so the
window is not focused. Then the window is set to alwaysOnTop. The window gains focus,
but its owner remains inactive. Therefore, the window cannot receive key events.

Solution: Bring the frame to front (Frame.toFront() method) before setting the window to
alwaysOnTop.

Issue: When a SplashScreen is shown and a frame is shown after the SplashScreen window

closes, the frame does not get activated.

Solution: Bring the frame to front (Frame.toFront() method) after showing it
(Frame.setVisible(true) method).

Issue: The WindowFocusListener.windowGainedFocus(WindowEvent) method does not

return the frame's most recent focus owner.

For example, a frame is the focused window, and one of its components is the focus owner.
Another window is clicked, and then the frame is clicked again. WINDOW_GAINED_FOCUS
comes to the frame and the WindowFocusListener.windowGainedFocus(WindowEvent)

method is called. However, inside of this callback you cannot determine the frame's most
recent focus owner, because Frame.getMostRecentFocusOwner() returns null.

Solution: You can get the frame's most recent focus owner inside the
WindowListener.windowActivated(WindowEvent) callback. However, by this time the
frame will have become the focused window only if it does not have owned windows. Note
that this approach does not work for the window, only for the frame or dialog.

Issue: An applet steals focus when it starts.

Solution: This behavior is the default since JDK 1.3. However you might need to prevent
the applet from getting focus on startup, for example, if your applet is invisible and does not
require focus at all. In this case, you can set to false the special parameter initial_focus
in the HTML tag, as follows:

<applet code="MyApplet" width=50 height=50>
<param name=initial_focus value="false">
</applet>

Issue: A window is disabled with Component.setEnabled(false), but does not get totally

unfocusable.

Solution: Do not assume that the condition set by calling Component.setEnabled(false)
or Component.setFocusable(false) will be maintained unfocusable along with all its
content. Instead, use the Window.setFocusableWindowState(boolean) method.

2.8 Drag and Drop

This section discusses possible problems with Drag and Drop and the clipboard.

2.8.1 Debugging Drag and Drop Applications

It is difficult to use a debugger to troubleshoot Drag and Drop, because during the drag–and–drop
operation all input is grabbed. Therefore, if you place a breakpoint during drag–and–drop, you
might need to restart your X server. Try to use remote debugging instead.

Seite 11 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

Two simple methods can be used to troubleshoot most issues with Drag and Drop:

Printing all DataFlavor instances•

Printing received data•

An alternative to remote debugging is the System.err.println() function, which prints output
without delay.

2.8.2 Frequent Issues With Drag and Drop

This section describes some issues that frequently arise with Drag and Drop in AWT and suggests
troubleshooting solutions.

Problem: Pasting a huge amount of data from the clipboard takes too much time.

Using the Clipboard.getContents() function for a paste operation sometimes causes the

application to hang for a while, especially if a rich application provides the data to paste.

The Clipboard.getContents() function fetches clipboard data in all available flavors (for
example, some text and image flavors), and this can be expensive and unnecessary.

Solution: Use the Clipboard.getData() method to get only specific data from the
clipboard. If data in only one or a few flavors are needed, use one of the following
Clipboard methods instead of getContents():

DataFlavor[] getAvailableDataFlavors()•

boolean isDataFlavorAvailable(DataFlavorflavor)•

Object getData(DataFlavorflavor)•

Problem: When a Java application uses Transferable.getTransferData() for DnD

operations, the drag seems to take a long time.

In order to initialize transferred data only if it is needed, initialization code was put in
Transferable.getTransferData().

Transferable data is expensive to generate, and during a DnD operation
Transferable.getTransferData() is invoked more than once, causing a slowdown.

Solution: Cache the Transferable data so that is generated only once.

Problem: Files cannot be transferred between a Java application and the GNOME/KDE

desktop and file browser.

On Windows and some window managers, transferred file lists can be represented as
DataFlavor.javaFileListFlavor data flavor. But not all window managers represent
lists of files in this format. For example, the GNOME window manager represents a file list
as a list of URIs.

Workaround: To get files, request data of type String, and then translate the string to a
list of files according to text/uri-list format described in RFC 2483. To enable dropping files
from a Java application to GNOME/KDE desktop and file browser, export data in the
text/uri-list format. For a code example, see the Work Around section of this bug report:

Seite 12 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4899516

Problem: An image is passed to one of the startDrag() methods of DragGestureEvent or

DragSource, but the image is not displayed during the subsequent DnD operation.

Solution:Move a Window with an image rendered on it as the mouse cursor moves during a
DnD operation. See the code example in the Work Around section of the following RFE:

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4874070

Problem: There is no way to transfer an array using Drag and Drop.

The DataFlavor class has no constructor which handles arrays. The mime type for array

contains characters which should be escaped. For example, the following code throws an
IllegalArgumentException:

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +

"; class=" +

(new String[0]).getClass().getName())

Solution: Quote the value of the representation class parameter, as shown in the following
code, where the quotation marks are escaped:

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +

"; class=" +

"\"" +

(new String[0]).getClass().getName() +

"\"")

For more information, see the following bug report:

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4276926

Problem: There are problems using AWT Drag and Drop support with Swing components.

Various problems can arise, for example, odd events are fired during a DnD operation,
multiple items cannot be dragged and dropped, an InvalidDnDOperationException is
thrown.

Solution: Use Swing's DnD support with Swing components. Although the Swing DnD
implementation is based on the AWT DnD implementation, you cannot mix Swing and
AWT drag–and–drop. Refer to the following documentation:

Swing Tutorial•

Swing guide•

Problem: There is no way to change the state of the source to depend on the target.

In order to change the state of the source to depend on the target, you need to have
references to the source and target components in the same area of code, but this is not
currently implemented in the Drag and Drop API.

Workaround: One workaround is to add flags to the transferable object that allow you to
determine the context of the event.

For the transfer of data within one Java VM, the following workaround is proposed:

Seite 13 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

Implement your target component as DragSourceListener.•

In DragGestureRecognizer.dragGestureRecognized() add the target at drag

source listener, as follows:

•

public void dragGestureRecognized(DragGestureEvent dge) {

dge.startDrag(null, new StringSelection("SomeTransferedText")

dge.getDragSource().addDragSourceListener(target);

}

Now you can get the target and the source in the dragEnter(), dragOver(),
dropActionChanged(), and dragDropEnd() methods of DragSourceListener().

•

Problem: Transferring of objects in an application takes a long time.

The transferring of a big bundle of data or the creation of transferred objects takes too long.
The user must wait a long time for the data transfer to complete.

This expensive operation makes transferring too long because you must wait until
Transferable.getTransferData() finishes.

Solution: This solution is valid only for transferring data within one Java VM. Create or get
expensive resources before the drag operation. For example, obtain file content when you
create transferable, so that Transferable.getTransferData() will not be too long.

2.9 Other Issues

This section describes other issues in troubleshooting AWT.

2.9.1 Splash Screen Issues

This section describes some issues that can arise with the splash screen in AWT with the Java SE
7 release, and suggests solutions.

Issue: The user specified a jar file with an appropriate MANIFEST.MF in -classpath, but the

splash screen does not work.

Solution: See next solution.

Issue: It is not clear which of several jar files in an application should contain the splash

screen image.

Solution: The splash screen image will be picked from a jar file only if the jar file is used
with the -jar command line option. This jar file should contain both the “SplashScreen-
Image” manifest option and the image file. Jar files in -classpath will never be checked
for splash screens in MANIFEST.MF. If you do not use -jar, you can still use -splash to
specify the splash screen image in the command line.

Issue: Translucent png splash screens do not work on Solaris OS and Linux.

Solution: This is a native limitation of X11. On Solaris OS and Linux, the alpha channel of
a translucent image will be compared with 50% threshold. Alpha values above 0.5 will
make opaque pixels and pixels with alpha below 0.5 completely transparent. Translucency
support might improve in future versions of Java SE.

Seite 14 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

2.9.2 Tray Icon Issues

With the Java SE 6 release on the Windows 98 platform, the method TrayIcon.displayMessage

() is not supported because the native service to display a balloon is not supported on Windows

98.

If a SecurityManager is installed, the value of AWTPermission must be set to

accessSystemTray in order to create a TrayIcon object.

2.9.3 Popup Menu Issues

In the JPopupMenu.setInvoker() method, the invoker is the component in which the popup
menu is to be displayed. If this property is set to null, the popup menu does not function correctly.

The solution is to set the popup's invoker to itself.

2.9.4 Background/Foreground Color Inheritance

Many AWT components use their own defaults for background and foreground colors instead of
using the colors of their parents.

This behavior is platform-dependent: the same component can behave differently on different
platforms. In addition, some components use the default value for one of the background or
foreground colors, but take the value from the parent for another color.

To ensure the consistency of your application on every platform, use explicit color assignment
(both foreground and background) for every component or container.

2.9.5 AWT Panel Size Restriction

The AWT Container has a size limitation. On most platforms, this limit is 32767 pixels. This
means that, for example, if the canvas objects are 25 pixels high, a Java AWT panel cannot
display more than about 1400 objects.

Unfortunately there is no way to change this limit, either with Java code or with native code. The
limit depends on what data type the operating system uses to store a widget size. For example, the
Windows 2000/XP operating system and the Linux X operating system use integer type and are
therefore limited to the maximum size of an integer. Other operating systems might use different
types, such as long, and in this case the limit could be higher.

Refer to the documentation for your platform for information.

The following are examples of workarounds for this limit that might be helpful:

Display components page by page.•

Use tabs to display a few components at a time.•

2.9.6 Hangs when debugging popup menus and similar components on X11

Certain GUI actions require grabbing all the input events in order to determine when the action
should terminate (e.g. navigating popup menus). While the grab is active, no other applications
receive input events. If a Java application is being debugged, and reached a breakpoint while the
grab has been active, the operating system appears hanged. This happens because the Java

Seite 15 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

application holding the grab is stopped by the debugger and can't process any input events, and
other applications simply don't receive the events due to the installed grab. In order to allow
debugging such applications, the following system property should be set when running the
application from the debugger:

-Dsun.awt.disablegrab=true

This effectively turns off setting the grab, and as such doesn't hang the system. However, with this
option set, in some cases this may lead to inability to terminate a GUI actions that would normally
be terminated. For example, popup menus may not be dismissed when clicking window's titlebar.

2.9.7 Window.toFront()/toBack() behavior on X11

Due to restrictions enforced by third-party software (in particular, by window managers such as
the Metacity), the toFront()/toBack() methods may not always work as expected and cause the
window to not change its stacking order in relation to other top-level windows. More details are
available in the CR 6472274.

If an application ultimately wants to bring a window to top, it can try to workaround the issue by
temporarily making the window "always on top" calling the Window.setAlwaysOnTop(true) and
then calling setAlwaysOnTop(false) to reset the "always on top" state. Note that this

workaround isn't guaranteed to work either because window managers can enforce more
restrictions in the future. Also please note that setting a window "always on top" is available to
trusted applications only. An unsigned applet or an unsigned web-start application running in a
sandbox can't use this API, and thus is unable to workaround the issue.

However, native applications experience similar issues, and as such this peculiarity makes Java
applications behave similar to native applications. Therefore this issue cannot be considered as a
bug.

2.10 Heavyweight/Lightweight Components Mixing

This section discusses possible issues with the heavyweight/lightweight (HW/LW) mixing feature.

2.10.1 The requirement of validating the component hierarchy

Changing any layout-related properties of a component, such as its size, location, or font,
invalidates the component as well as its ancestors. In order for the HW/LW Mixing feature to
function correctly, the component hierarchy must be validated after making such changes. By
default, invalidation stops on the top-most container of the hierarchy (for example, a Frame

object). Therefore, to restore the validity of the hierarchy the application should call the
Frame.validate() method. For example:

component.setFont(myFont);

frame.validate();

where frame refers to a frame which contains component. Note that Swing applications and the

Swing library itself often use the following pattern:

component.setFont(myFont);

component.revalidate();

The revalidate() call is not sufficient because it validates the hierarchy starting from the

nearest validate root of the component only, thus leaving the upper containers invalid. In that case,

Seite 16 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

the HW/LW feature may not calculate correct shapes for heavyweight components, and visual
artifacts may be seen on the screen.

To verify the validity of the whole component hierarchy a user can use the key combination
Ctrl+Shift+F1 as described in 2.1 of this document. A component marked 'invalid' may indicate a
missing validate() call somewhere.

2.10.2 Validate roots

The concept of validate roots mentioned in 2.10.1 has been introduced in Swing in order to speed
up the process of validating component hierarchies because it may take a significant amount of
time. While such optimization leaves upper parts of hierarchies invalid, this didn't bring any issues
because the layout of components inside a validate root doesn't affect the layout of outside
component hierarchy (that is, the siblings of the validate root). However, when HW and LW
components are mixed together in a hierarchy, this statement is no longer true. That's why the
feature requires the whole component hierarchy to be valid.

Calling frame.validate() may be inefficient as well, and as such AWT supports an alternative,
optimized way of handling invalidation/validation of component hierarchies. This feature is
enabled with a system property:

-Djava.awt.smartInvalidate=true

Once this property is specified, the invalidate() method will stop invalidation of the hierarchy

when it reaches the nearest validate root of a component the invalidate() method has been
invoked on. Afterwards the application should simply call:

component.revalidate();

to restore the validity of the component hierarchy. Note that in this case calling frame.validate
() would be effectively a no-op because frame is still valid. Since some applications rely on
calling validate() directly on a component upper than the validate root of the hierarchy (for
example, a frame), this new optimized behavior may cause incompatibility issues, and hence it's
available only when specifying the system property.

If an application experiences any difficulties running in this new optimized mode, a user can use
the key combination Ctrl+Shift+F1 as described in 2.1 of this document to investigate what parts
of the component hierarchy are left invalid, and thus possibly cause the problems.

2.10.3 Swing painting optimizations

By default, Swing library assumes that there are no heavyweight components in the component
hierarchy, and therefore uses optimized drawing techniques to boost performance of the Swing UI.
If a component hierarchy contains hw components, the optimizations must be turned off. This is
relevant for Swing JScrollPanes in the first place. You can change the scrolling mode by using

the JViewPort.setScrollMode(int) method.

2.10.4 Non-opaque lightweight components

Non-opaque lightweight components are not supported by the hw/lw mixing feature
implementation by default. In order to enable mixing non-rectangular lw components with hw
components, the application must use the
com.sun.awt.AWTUtilities.setComponentMixingCutoutShape() non-public API.

Seite 17 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

Note that non-rectangular lw components should still paint themselves using either opaque (alpha
== 1.0) or transparent (alpha == 0.0) colors. Using translucent colors (with 0.0 < alpha < 1.0) is
not supported.

2.10.5 Disabling the default hw/lw mixing feature implementation

In the past, some developers have implemented their own support for cases when hw and lw
components must be mixed together. The built-in implementation of the feature available since
JDK 6 update 12 and JDK 7 may cause problems with custom workarounds. In order to disable
the built-in feature the application must be started with the following system property:

-Dsun.awt.disableMixing=true

Copyright ©1995, 2011, Oracle and/or its affiliates. All rights reserved. Legal Notices

Seite 18 von 18AWT - Troubleshooting Guide for Java SE 7 Desktop Technologies

11.05.2012http://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-Desktop/html/awt.html

