
 □ 1

Creating IEC 61499 Function Block Applications in 4diac
This tutorial demonstrates how to design your first function block application in 4diac. 4diac is an acronym for For
Distributed Industrial Control, the open source framework to develop, deploy and visualize industrial applications for
distributed automation and control. It is based on the IEC 61499 Function Block Reference Software Architecture
standards. The home for 4diac is at https://www.eclipse.org/4diac/

The 4diac framework provides:

• The 4diac-ide Integrated Development Environment (IDE) that is built
upon the Eclipse development framework. 4diac-ide provides a set of
design surfaces that allow you to design new function block
applications by wiring together pre-existing function block from a
library. You can also create your own functions blocks and wire them into your applications.

• The FORTE runtime environment is a small portable implementation of
the standard IEC 61499 runtime environment specified in the IEC
standards. It targets 16-bit and 32-bit embedded control devices
implemented in C++. It supports online-reconfiguration of its
applications and the real-time execution of all function block types
provided by the IEC 61499 standard. FORTE provides a scalable architecture which allows 4diac FORTE to
adapt to the needs of your application. Applications can consist of any IEC 61499 standard element
including Basic Function Blocks (BFBs), Composite Function Blocks (CFBs), and Service Interface Function
Blocks (SIFBs). It also supports custom adapters and IEC 61499 subapplications.

What this tutorial covers

This tutorial complements the 4diac tutorials available at https://www.eclipse.org/4diac/en_help.php. By the end of
this tutorial you should be able to:

• Create a function block application using the 4diac IDE. This tutorial creates a small Alarm Clock function
block application to illustrate the design and development steps.

• Identify and use the most useful pre-built function block types available from the 4diac Type Library.
• Create a new function block, based on one of the primitive IEC 61499 function block types.
• Export your function block types as C++ classes and add them to the 4diac Type Library.
• Use CMake-gui to create the C++ Makefile required to compile your application.
• Use C++ commands to test and debug your application.

How to get the best out of this tutorial

The 4diac on-line documentation is a great place to learn how to use 4diac This tutorial uses the first parts of that
documentation which provide a valuable introduction to IEC 61499, 4diac, and FORTE. It is important to understand
the fundamental concepts first and the 4diac site provides an up-to-date reference to the latest 4diac IDE features.

This tutorial is divided into a number of sections that you should complete in the suggested order. However, in the
AUT EMSOFT laboratory, we have developed an alternative 4diac C++ Tool Chain that makes it easier to manage
multiple, simultaneous projects on the same development machine. This requires you to configure the C++ Makefiles
differently. By the time you get to that part of the tutorial, the reasons for using this alternative tool chain will be a
lot clearer.

https://www.eclipse.org/4diac/
https://www.eclipse.org/4diac/en_help.php

 □ 2

Step 1 – Introducing IEC 61499

This section is an introduction to programming Programmable Logic Controllers using IEC 61499. It explains what a
function block is and how you can recognise the Event and Data interfaces on a function block type.

https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/iec61499.html

Step 2 – Introducing 4diac and FORTE

This section explains the relationship between the 4diac IDE and the FORTE runtime.

https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/4diacFramework.html

Step 3 – Installing a 4diac development environment

The 4diac documentation explains how to install 4diac and FORTE on a development computer. That can be complex
and time-consuming if you are unfamiliar with the CMake tools and the GCC C++ complier. An easier way to start
developing more quickly is to install the pre-built development environment image that was created by AUT
EMSOFT.

Most embedded system projects run under Linux. The pre-built image contains an Oracle Virtual Box virtual machine
that runs Ubuntu 20.04.

 to be completed …

https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/iec61499.html
https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/4diacFramework.html

 □ 3

Step 4 – Creating the Alarm Clock function block application

This section explains how to create a new function block application project in 4diac. The new blocks needed to
implement a simple Alarm Clock application are then created. Some blocks are already available in the Type Library
and can be reused. While creating the alarm clock, you will learn how connect blocks together and how to navigate
around the 4diac IDE.

This section concentrates only on design. The next section, Step 5, demonstrates how to export the function blocks
as C++ classes and compile them so the application can be run.

Thinking about the functional requirements for the Alarm Clock

We are software engineers; we create requirements before we do anything else ����. A simple sketch of what we
want the alarm clock to do is useful. Software requirements are supposed to focus on the what, not the how of the
application, but it is hard not to think about how the function block would meet the requirements when you are
writing requirements. That is a common characteristic of embedded system design; it’s just how engineer’s think.

- The time is set on a data input.
- The time we want the alarm to ring is set on another data input
- There is an event called Tick that fires every second to make the clock tick.
- The time is output from a data output port.

At this stage, the names of the data inputs, outputs and events have not been assigned. That will come in the next
design stage. You will probably have some other questions after thinking about this:

- What other requirements do we need?

- What other function blocks do we need to add to make this block work?

- What is a good naming convention for the data inputs, outputs and events?

Sketching a draft state or Execution Control Chart will help you to think about the states and algorithms you need to
make the clock tick properly. We will also have to check the time and the alarm time regularly.

One important point about this example is that it is not a REAL clock. Specifying a static Set Time means that while
you are coding and testing it, you do not need to reset the time to make it work each time you run it. That makes it
easier since the runs are repeatable. In the sketch above, you can see that it will always be 10:28 am in the morning
every time you start the function block application.

 □ 4

Creating a new AlarmClock project

• Start 4diac by single-clicking the icon on the toolbar:

 Start a new 4diac IDE Project with the menu option File | New |Project and click Next. Name the project
AlarmClock. Choose a Location for the project if it does not suggest a default location then click Finish.

• 4diac will then create the project and open the two IDE design surfaces you need:

The AlarmClock design surface is where you select, arrange, and connect function blocks together. The
second design surface is called AlarmClockApp. This one is needed later when you are ready to deploy your
application before you run it.

Creating the Clock Function Block

Most of the clock and alarm functionality we need can be provided by a single, new function block. If you look in the
Type Library branch of the tree in the left-hand System panel, you will see a library of existing function blocks.

 □ 5

However, none of them are exactly what we want for our clock. So, we need to create a new function block type
called Clock using File | New |Type:

• Select the location of the
new function block type
as the root of the Type
Library.

• The Type Name is Clock

• Select the Function Block
template type as Basic
with empty ECC. This will
create a function block
skeleton with a simple
Execution Control Chart
(ECC) that we can modify
ourselves.

• Click Finish.

 □ 6

4diac opens a new design surface that allows you to customise the Clock function block. You can add documentation
such as a Comment and a Description which will be saved with the block in the library. That makes the Clock block
easier to reuse in other projects.

If the Clock block does not appear, then locate in the System Explorer Type Library branch and click on it to open it
on a new design surface.

 □ 7

Adding data inputs, data outputs and events to the Clock Function Block

Data inputs, outputs, and events
are created by right-clicking the
corner of the block.

Specify the data type using the
submenu.

When you highlight an input or event, the property box Interface tab will allow you to change the properties.

In the example below, the set_alarm_time data input is read when the input event INIT is triggered.

 □ 8

Writing the Execution Control Chart and the Clock algorithms

The Execution Control Chart (ECC) controls what the function block does when each event is triggered

Two algorithms are used:

 □ 9

These algorithms are written in C++. Set the Language box to be AnyText so that 4diac knows you are using C++ code
and not IEC 61499 Structured Text.

If you need to include other C++ libraries, specify the library name in the box Header in the Interface tab.

The Clock_Header file contains these include statements and using
declarations.

 □ 10

Wiring the application together with function blocks.

A function block application is created by dragging the function blocks you created onto the design surface. The
E_CYCLE block is a standard 4diac library block. It outputs an event at the frequency specified on its DT data input.
The setting T#1s causes the E0 event to trigger once every second.

 □ 11

Mapping the function block application to an embedded system

Create and embedded controller to run the function block application on. To run it within Linux, drag a FORTE PC
controller to the System Configuration design surface. You can change its colour in the Properties window.

You need to add some Ethernet resources to give your embedded controller network capabilities. Drag an Ethernet
component to the System Configuration. Then connect them by clicking on the Ethernet component and dragging a
connection to the FORTE PC.

 □ 12

Then map each function block in the AlarmClock app to the FORTE PC EMB_RES

The app is now just about ready to be deployed and run:

 □ 13

Wire the Start function block into the Embedded Resource

Create the FORTE forte.fboot configuration file

 □ 14

 □ 15

Step 5 – Deploying the completed Alarm Clock function block application

When all the function blocks have been designed and wired together, the completed application can be deployed
and run. Deployment includes these tasks:

Exporting your function block types

The File | Export menu starts the 4diac Export wizard to convert the function blocks you have written into C++
classes. These will be compiled and linked into the FORTE runtime in a later step.

When selecting the function blocks to export, be careful not to select all the blocks in the Type Library by
accidentally ticking the box. If you do, you will fill the export folder with many, many unnecessary blocks.

The GCC compiler and linker need to find your function blocks. It looks for custom function blocks in folders below
the FORTE source code folder /home/<your ID>/ forte-incubation_1.14.0/ExportedFBs. Create a folder for your
custom function blocks called AlarmClock to match your project name. Then select the Export Destination using the
Browse button.

Tick the Export CMakeLists.txt check box before you click Finish. This creates a list of your function blocks for the
GCC compiler and linker to process. The AlarmClock folder will contain the C++ source files after the export
completes:

 □ 16

Creating the C++ Makefile using CMake-gui

 □ 17

 □ 18

 □ 19

	Creating IEC 61499 Function Block Applications in 4diac

