Creating IEC 61499 Function Block Applications in 4diac

This tutorial demonstrates how to design your first function block application in 4diac. 4diac is an acronym for For
Distributed Industrial Control, the open source framework to develop, deploy and visualize industrial applications for
distributed automation and control. It is based on the IEC 61499 Function Block Reference Software Architecture
standards. The home for 4diac is at https://www.eclipse.org/4diac/

The 4diac framework provides:

e The 4diac-ide Integrated Development Environment (IDE) that is built -
upon the Eclipse development framework. 4diac-ide provides a set of ’
design surfaces that allow you to design new function block =h dIOC
applications by wiring together pre-existing function block from a
library. You can also create your own functions blocks and wire them into your applications.

e The FORTE runtime environment is a small portable implementation of
the standard IEC 61499 runtime environment specified in the IEC
standards. It targets 16-bit and 32-bit embedded control devices
implemented in C++. It supports online-reconfiguration of its

applications and the real-time execution of all function block types
provided by the IEC 61499 standard. FORTE provides a scalable architecture which allows 4diac FORTE to
adapt to the needs of your application. Applications can consist of any IEC 61499 standard element
including Basic Function Blocks (BFBs), Composite Function Blocks (CFBs), and Service Interface Function
Blocks (SIFBs). It also supports custom adapters and IEC 61499 subapplications.

What this tutorial covers

This tutorial complements the 4diac tutorials available at https://www.eclipse.org/4diac/en _help.php. By the end of
this tutorial you should be able to:

e Create a function block application using the 4diac IDE. This tutorial creates a small Alarm Clock function
block application to illustrate the design and development steps.

e Identify and use the most useful pre-built function block types available from the 4diac Type Library.

e Create a new function block, based on one of the primitive IEC 61499 function block types.

e Export your function block types as C++ classes and add them to the 4diac Type Library.

e Use CMake-gui to create the C++ Makefile required to compile your application.

e Use C++ commands to test and debug your application.

How to get the best out of this tutorial

The 4diac on-line documentation is a great place to learn how to use 4diac This tutorial uses the first parts of that
documentation which provide a valuable introduction to IEC 61499, 4diac, and FORTE. It is important to understand
the fundamental concepts first and the 4diac site provides an up-to-date reference to the latest 4diac IDE features.

This tutorial is divided into a number of sections that you should complete in the suggested order. However, in the
AUT EMSOFT laboratory, we have developed an alternative 4diac C++ Tool Chain that makes it easier to manage
multiple, simultaneous projects on the same development machine. This requires you to configure the C++ Makefiles
differently. By the time you get to that part of the tutorial, the reasons for using this alternative tool chain will be a
lot clearer.

ol

https://www.eclipse.org/4diac/
https://www.eclipse.org/4diac/en_help.php

Step 1 —Introducing IEC 61499

This section is an introduction to programming Programmable Logic Controllers using IEC 61499. It explains what a
function block is and how you can recognise the Event and Data interfaces on a function block type.

https://www.eclipse.org/4diac/en help.php?helppage=html|/before4DIAC/iec61499.html|

Step 2 — Introducing 4diac and FORTE

This section explains the relationship between the 4diac IDE and the FORTE runtime.

https://www.eclipse.org/4diac/en help.php?helppage=html|/before4DIAC/4diacFramework.html

Step 3 —Installing a 4diac development environment

The 4diac documentation explains how to install 4diac and FORTE on a development computer. That can be complex
and time-consuming if you are unfamiliar with the CMake tools and the GCC C++ complier. An easier way to start
developing more quickly is to install the pre-built development environment image that was created by AUT
EMSOFT.

Most embedded system projects run under Linux. The pre-built image contains an Oracle Virtual Box virtual machine
that runs Ubuntu 20.04.

to be completed ...

https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/iec61499.html
https://www.eclipse.org/4diac/en_help.php?helppage=html/before4DIAC/4diacFramework.html

Step 4 — Creating the Alarm Clock function block application

This section explains how to create a new function block application project in 4diac. The new blocks needed to
implement a simple Alarm Clock application are then created. Some blocks are already available in the Type Library
and can be reused. While creating the alarm clock, you will learn how connect blocks together and how to navigate
around the 4diac IDE.

This section concentrates only on design. The next section, Step 5, demonstrates how to export the function blocks
as C++ classes and compile them so the application can be run.

Thinking about the functional requirements for the Alarm Clock

We are software engineers; we create requirements before we do anything else @ A simple sketch of what we
want the alarm clock to do is useful. Software requirements are supposed to focus on the what, not the how of the
application, but it is hard not to think about how the function block would meet the requirements when you are
writing requirements. That is a common characteristic of embedded system design; it’s just how engineer’s think.

Tick
Init

Alarm
— Clock tick

Set Time 10:28
Alarm time 10:30

— Time HH:MM 10:30... 10:31 ... 10:32...

- Thetime is set on a data input.

- The time we want the alarm to ring is set on another data input

- There is an event called Tick that fires every second to make the clock tick.
- The time is output from a data output port.

At this stage, the names of the data inputs, outputs and events have not been assigned. That will come in the next
design stage. You will probably have some other questions after thinking about this:

- What other requirements do we need?

- What other function blocks do we need to add to make this block work?

- Whatis a good naming convention for the data inputs, outputs and events?

Sketching a draft state or Execution Control Chart will help you to think about the states and algorithms you need to
make the clock tick properly. We will also have to check the time and the alarm time regularly.

One important point about this example is that it is not a REAL clock. Specifying a static Set Time means that while
you are coding and testing it, you do not need to reset the time to make it work each time you run it. That makes it
easier since the runs are repeatable. In the sketch above, you can see that it will always be 10:28 am in the morning
every time you start the function block application.

Creating a new AlarmClock project

e Start 4diac by single-clicking the icon on the toolbar:

= Start a new 4diac IDE Project with the menu option File | New |Project and click Next. Name the project
AlarmClock. Choose a Location for the project if it does not suggest a default location then click Finish.

Select a wizard

Wizards:
type filter text
b (= General

¥ (= 4diac IDE

bﬁ.
b = Xtend
» =Examples

Show All Wizards.

New Project o .

Creates a new 4diac IDE Project

Cancel

New 4diacProject

New 4diacProject

Creates a new 4diacProject

Project name: = AlarmcClock

Use default location

Location: /home/badger/Dev/ddiac/alarmClock
Initial system name = AlarmcClock

Initial application name | AlarmClockApp

Advanced >>

(‘;7) < Back Cancel

Browse...

e Adiac will then create the project and open the two IDE design surfaces you need:

=S % ET = O

S =

@00

+ & AlarmClock
» 2 AlarmClock
» 1% Type Library
» & First
» & HVACsim

Z= outline =2 = g8

0items selected

4diac - AlarmcClock/AlarmClock.sys - 4diac IDE - o @®
File Edit Source Navigate Search Project Run Debug Window Help
i T EEE] 4
Q im (&
& alarmcClock =2 = B8
& AlarmcClock » Ej AlarmClockaApp
q
[Properties 2 [Virtual DNS: HVACsim [Deployment Console [%! Problems " § = B8
Properties are not available.
= e

The AlarmClock design surface is where you select, arrange, and connect function blocks together. The
second design surface is called AlarmClockApp. This one is needed later when you are ready to deploy your

application before you run it.

Creating the Clock Function Block

Most of the clock and alarm functionality we need can be provided by a single, new function block. If you look in the
Type Library branch of the tree in the left-hand System panel, you will see a library of existing function blocks.

However, none of them are exactly what we want for our clock. So, we need to create a new function block type
called Clock using File | New |Type:

e Select the location of the

new function block type
as the root of the Type | Create new Type

Library. g Create a new type froma template type
e The Type Name is Clock Enter or select the parent folder:
1 | Alarmclock/Type Library
e Select the Function Block 1 o o
template type as Basic « & AlarmClock

with empty ECC. This will | |

create a function block = convert
skeleton with a simple (= devices
Execution Control Chart (= events
(ECC) that we can modify b Biect1131-3
b =io

ourselves.

=math

=net

[] Click Finish. fE=Rrpp— Fimuiea [.

Type Name: Clock

Select Type:

Name Description

Adapter Adapter Interface
B |sascrowthempyecc
Composite Composite FB wrapping other FBs
Servicelnterface Service Interface Function Block Type
simple simple FB with one algorithm

Struct ATemplate for a Data Type

SubApp Subapplication Type

TemplateBasic Template for a Basic Function Block Type
Templatesimple Example for a Simple Function Block Type

Advanced >>

®

File Edit
O-E R W@

Source Navigate

=

= System Ex I 3 Type Navig

- & AlarmClock
» & AlarmClock
~ 1& Type Library
£
= convert
(= devices
= events
(= iec61131-3
=io

v v v w w w

= math

(= net

(= reconfiguration
(= resources

(= rtevents

(= segments

= utils

» L First

» [HVACsim

v v v w

-

1

|= Type Info
4 Identification
4 Version Info AZ
& Interface List
4 Service:
~ @ ECC
s START

8= Outline 52 =

Search Project

8

a
2
8

4diac - AlarmClock/Type Library/Clock.fbt - 4diac IDE

Run
o ow

B AlarmcClock

G Interface| €\ ECC| ¥ Service [FBTester

Debug Window Help

= <&
*Clock 52
7 & clock
1.8

E—

= Properties 32 [Virtual DNS: HVACsim [+ Deployment Console [2 Problems

& Type Info
Edit Events
Edit Data
Edit Adapters

Type Name: | Clock
Comment:

Identification

Standard:
Classification:
Application Domain:
Function:

Type:

Description:

Alarm Clock Function Block

61499-2

Provides the main clock and alarm Functionality.|

. Palette

[= EventTypes
B Event

(= DataTypes
B ANY
B ANY BIT
= ..

= Adapters
B ARTimeOut
B ATimeOut

| IR 4

Version Info

-

Compiler Info
Header:

Classdef:

Fortiss {

4diac opens a new design surface that allows you to customise the Clock function block. You can add documentation
such as a Comment and a Description which will be saved with the block in the library. That makes the Clock block
easier to reuse in other projects.

If the Clock block does not appear, then locate in the System Explorer Type Library branch and click on it to open it

on a new design surface.

Adding data inputs, data outputs and events to the Clock Function Block

Data inputs, outputs, and events Event
are created by right-clicking the Event
corner of the block.

Specify the data type using the STRING

submenu. STRING

INIT
TICK

—gaset time

'SHOW_TIMEs
RING ALARM

& Clock

set alarm time

show time

Event -
Event -
STRING E
X Delete
Create Input Event
Create Output Event

Create Data Input
Create Data Output
Create Socket

Create Plug

Event
Event

Show

- T v w

When you highlight an input or event, the property box Interface tab will allow you to change the properties.

In the example below, the set_alarm_time data input is read when the input event INIT is triggered.

.ise the clock at the start. - Event
¢ of the clock every second. - Event
or to set the time in HH.MM - STRING
iet the alarm time in HH:MM - STRING

15 Interface | @) ECC|:}F Service | | FBTester

O Properties 8 [Virtual DNS: HVACsim [+ Deployment Console [£] Problems

ik Data Name: set_alarm_time
Comment: Static input parameter to set the alarm time in HH:MM
Type: STRING ~ en Type in Ec
Array Size:
Initial Value:

INIT SHOW TIME

TICK RING ALARM
1 && Clock

1.0
=set time show_time

set alarm time

Event
Event

STRING

With
Event

INIT
TICK

s Event to signal that the {
: Event to signal that the g

- Show the time in

)

HH : MM

8 = E

Data Type

Event
Event

Writing the Execution Control Chart and the Clock algorithms

The Execution Control Chart (ECC) controls what the function block does when each event is triggered

START — 1+ INIT — INIT
1
l /TIEK \
TICKING TICK — TICK SHOW TIME

N

Two algorithms are used:
Algorithm INIT

Language AnyText ~- | Comment Initialises the clock

// initialise the current time
string param =st_set_time().getValue();
int ptr = param.find(™:");
if (ptr=0){
st_current_hour() = sktoi(param.subskr(0, ptr));
st_current_minute() = stoi(param.substr(ptr + 1, param.length() + 1));

cout =< "alg_INIT() " <= st_current_hour() <<":" << st_current_minute() =< ":" << st _current_second() <<"\n";

Algorithm TICK

Language AnyText -~ @ Comment Updates the time oneach clock tick

J// This algorithmn is called each time the clock ticks. It updates
/[the time, rolling it over when a minute or hour completes.
st_current_second() =skt_current_second() + 1;
if (st_current_second() = 59) {
st_current_second() =0,
st current_minute() =st_current_minute() + 1;
if (st_current_minute() = 59) {
st_current_minute() =0;
st_current_hour() =st_current_hour() + 1;
if (st_current_hour() = 12) {
st_current_hour() =1;
}
}
}

cout << "alg_TICK() " << st_current_hour() << ":" << st_current_minute() <= "." << st_current_second() <= "\n";

[

These algorithms are written in C++. Set the Language box to be AnyText so that 4diac knows you are using C++ code
and not IEC 61499 Structured Text.

If you need to include other C++ libraries, specify the library name in the box Header in the Interface tab.

Initialise the clock|at the start. - Event INIT SHOW_TIME: Event Event to signal that the time has changed
Event to signal a tick of the clock every second. - Event TICK RING ALARM Event Event to signal that the alarm is ringing
B& Clock
1.8
Static input parameter to set the time in HH.MM - STRING set_time show_time: STRING Show the time in HH:MM
static input parameter to set the alarm time in HH:MM = STRING set_alarm time
I@ Interface “UfEcC JF Service | FBTester
[Virtual DNS: HVACsim [Deployment Console [2] Problems 3
Version Info
& Type info Type Name: | Clock
Edit Events = & Version Organization Authc Date Remarks
Edit Data Comment: | Alarm Clock Function Block
1.0 AUT EMSOFT BRD 01Dec20
Edit Adapters Identification
Standard: 61499-2

Classification: Compiler Info
Application Domain: Header: | #include "Clock_Header"

Function: Classdef:

The Clock_Header file contains these include statements and using

. 1 #include <iostream=
declarations.

2 #include <stdio.h=

3 #include =string.h=

4

5 using std::cout;

6 using std::string;

7 using std::to_string;

Wiring the application together with function blocks.

A function block application is created by dragging the function blocks you created onto the design surface. The
E_CYCLE block is a standard 4diac library block. It outputs an event at the frequency specified on its DT data input.
The setting T#1s causes the EO event to trigger once every second.

4diac - AlarmClock/AlarmClock.sys - 4diac IDE

File Edit Source Mavigate Search Project Run Debug Window Help

o~ T & vl rovyoy MG 100% -
= | % System Explorer ©2 1% Type Navigator - % 8 = 0 Ealarmclock 2 B Clock
o= v & AlarmcClock i Alarmclock » B AlarmClockApp »

b 22 AlarmClock

~ 1% Type Library
» Bk Clock [Alarm Clock Function Block]
P = convert

b (= devices Elock
mINIT SHOW TIME

v @ avents _ . wTICK RING ALARM
» & ARTimeOut [Interface for a resetable time out service] “ & clock
b & ATimeOut [Interface 10:58kset time] show time-I
» BRE_CTD[Eve 10:30mset alarm time
» BRE CTU[E ter]
[E_CTUD [Event-Dr L VI E_CYCLE

time oukt service roughly based

WSTART EO
b BB E_CYCLE[/ R ik

. TV &E cvcLe
» B E_DELAY [Dela]
» B& E_DEMUX [Event

T#1smDT l
» &% E_F_TRIG [Boolean falling edge detection]

» 5§ E_MERGE [Merge (OR) of two input events] [Properties 52 [Virtual DNS: HVACsim [+ Deployment Console [£] Proble
» &% E_N_TABLE [Generation of a finite train of sperate events]

» &% E_PERMIT [permissive propagation of an event]

» % E_R_TRIG [Boolean rising edge detection] Pin = Clock. set_time
» £} E_RDELAY [Reloadable delayed propagation of an event-C
» &% E_REND [Rendezvous (AND) of two events]

» E% E_RESTART [Service Interface Function Block Type]

» &% E_RS [Event-driven bistable]

» &% E_RTimeOut [Simple implementation of the timeout servi = Type Info:
» &% E_SELECT [selection between two events based on boolea

Current Value: | 10:58

» &% E_SPLIT [Template For an empty basic function block] Comment: Static input parameter to set the time in HH.MM
» & E_SR [Event-driven bistable] Type: STRING

» 5% E_SWITCH [Switching (demultiplexing) an event based on t

b g E_T_FF l'rngg“-. Hlp Hﬂ_n] Default Value:

b XEC TARIElr e mciba Eimebing . Tumgl

o 10

Mapping the function block application to an embedded system

Create and embedded controller to run the function block application on. To run it within Linux, drag a FORTE PC
controller to the System Configuration design surface. You can change its colour in the Properties window.

You need to add some Ethernet resources to give your embedded controller network capabilities. Drag an Ethernet
component to the System Configuration. Then connect them by clicking on the Ethernet component and dragging a
connection to the FORTE PC.

4diac - AlarmcClock/AlarmcClock.sys - 4diac IDE

File Edit Source MNavigate Search Project Run Debug Window Help

s 5. W D B vovD v # : @ v | Bp oo of | CHh oR 9 Q '\ |8
s | & SystemEx 52 3% Type Navi = B i AlarmcClock 33 @ Clock = 8
E= B % 8§ i AlarmcClock » ¥ System Configuration »

v & AlarmcClock * Palette >
~ & AlarmcClock EQRIESEC = Devices @
» B AlarmcClockApp FORTE_PC # BeagleBoneBlack
= l '"localhost:61499"sMGR ID — PrCa00
2 Ethernet & FORTE PC
~ & FORTE_PC EMB_RES * EMB_RES = FBRT WINDOW
& EMB_RES ¥ RaspberryPl
v 1% Type letary . (= Resources ©

» &% Clock [Alarm Clock Function Blg i EMB RES
¥ (= convert = Segments
» = devices >

) 2 Ethernet
b (= iec61131-3
» (=0
» & math
»Eet)
» = reconfiguration O Properties 32 [Virtual DNS: HVACsim [Deployment Console [£! Problems * &8 = 0
» = resources Background Color

Instance

» (= rtevents .
V- N Attributes

& segments Appearance Background Color...
b (= utils

o 11

Then map each function block in the AlarmClock app to the FORTE PC EMB_RES

|&E *AlarmClock 5 ‘Icl«uck

&2 alarmcClock » Ej AlarmClockApp »

Flack

..

L
E. CYCLE |

Open
Rename

Update Type

Move to Parent
New subapplication
4' Go To Parent

of Cut

Copy

[§ Paste

* Delete

Change Type
MapTo...

Unmap

Unmap All

Q, wakch

&, Remove Wakches
Online Create FB
Online Start FB

i FORTE_PC ’ i# EMB_RES

The app is now just about ready to be deployed and run:

‘ & alarmClock 22 :. Clock

‘&E AlarmClock » B AlarmClockapp »

o 12

Wire the Start function block into the Embedded Resource

%= System Explorer 52 1 Type Navigator Alarmclock 52 Cloc!
| 3 i = 0 |[&\al lock 52 Mg Clock
G & @ AlarmClock » %% System Configuration » &1 FORTE_PC » =
= & Alarmclock
« & Alarmclock o

» g alarmClockApp coLDs

~ % System Configuration WARM=

2= Ethernet STOPx

~ & FORTE_PC B E_RESTART [

&9 EMB_RES

» 1% Type Library
[#] cmake_install.cmake
2 cMakeCache.txt

b (= CMakeFiles

b (= core

Create the FORTE forte.fboot configuration file

Create FORTE Boot-files

Create FORTE Boot-files Wizard

Generate FORTE boot-files for selected resources

» v 2 alarmclock = .project

» | | First 222 AlarmcClock.sys
» | & HVACsim = CMakeCache.txt
= Tool Library =| Makefile
[cmake install.cmake
=/ file_list.txt
(4| Forte_config.h
) forteinit.cpp
[] LI |
Filter Types... Select All Deselect All
Selection MGR ID Properties

Choose Directory = /home/badger/Dev/4diac/alarmcClock/src

< Back Mext = Cancel

EMB_RES

Clock

INIT SHOW_TIME:
TICK RING_ALARM:
B clock
10:28mset time show_time:

10:36mset alarm time

Browse

o 13

{af

4diac

AlarmClock

ke @ B/ 2 % @

[

Recent
Starred
Home
Desktop
Documents
Downloads
Music

Pictures

arch

5rc

CMakeFiles core external
stdfblib Alarmclock cmake forte
FORTE install.

PC.fboot cmake

File name

forte.fboot|

Rename

modules

Makefile

o 14

Step 5 — Deploying the completed Alarm Clock function block application

When all the function blocks have been designed and wired together, the completed application can be deployed
and run. Deployment includes these tasks:

Exporting your function block types

The File | Export menu starts the 4diac Export wizard to convert the function blocks you have written into C++
classes. These will be compiled and linked into the FORTE runtime in a later step.

[
m 4dlacIE Type Export - .
4diac IDE Type Export Wizard

Select v |

E /7 El | | Exportselected IEC 61499 types
~ @ AlarmClock = -
| Select an export wizard: | » | =CMakeFiles
=)
[= convert
» (= General | = devices
- [=-4diac IDE (> events
@ I » [=iec61131-3
fmv Create FMU Filter Types... Select All Deselect All
Create FORTE bootHiles |
» EInstall | ExportDestination: | /home/badger/forte-incubation_1.14.0/ExportedFBs/Ala = ~ Browse...

‘ Options

|
‘ Exporter: FORTE1.xNG -

Overwrite without warning
| || Export CMakeLists.txt

| @ Next > Cancel)

When selecting the function blocks to export, be careful not to select all the blocks in the Type Library by
accidentally ticking the box. If you do, you will fill the export folder with many, many unnecessary blocks.

The GCC compiler and linker need to find your function blocks. It looks for custom function blocks in folders below
the FORTE source code folder /home/<your ID>/ forte-incubation_1.14.0/ExportedFBs. Create a folder for your
custom function blocks called AlarmClock to match your project name. Then select the Export Destination using the
Browse button.

Tick the Export CMakelists.txt check box before you click Finish. This creates a list of your function blocks for the
GCC compiler and linker to process. The AlarmClock folder will contain the C++ source files after the export
completes:

ExportedFBs Alarmclock

“0) Recent o h c

* Starred Saved Clock.cpp Clock.h Clock. CMakeLists
Header .kxt

{st Home

] Desktop

El Documents
{ Downloads

J1 Music

o 15

Creating the C++ Makefile using CMake-gui

CMake 3.21.0 - fhome/badger/Dev/adiacfalarmClock - 0O =
File Tools Options Help
Where is the source code: | /homef/badgerforte-incubation_1.14.0 Browse Source...
Preset:
Where to build the binanes: | fhome/badger/Dev/ddiac/AlarmClock b Browse Build...
Search: Grouped Advanced | 4 Add Entry ; Environment...
Mame Value =
CMAKE_BUILD_TYPE Debug
CMAKE INSTALL PREFIX Jusrflocal
FORTE_ARCHITECTURE Posix

FORTE_BUILD SHARED LIBRARY
FORTE_BUILD STATIC_LIBRARY

FORTE_COM_ETH
FORTE_COM_FBDK v
FORTE_COM_HTTP

FORTE_COM_LOCAL v

FORTE_COM_MODBUS

FORTE_COM_MODBUS LIB_DIR

FORTE_COM_OPC

FORTE_COM_OPC_BOOST ROOT

FORTE_COM_OPC_LIE_ROOT

FORTE_COM_OPC_ LA

FORTE_COM_PAHOMQTT

FORTE_COM_RAW v
FORTE_COM_SER

FORTE_COM_TSN

FORTE_COM_XqueryChent

FORTE_ENABLE_FML

FORTE_EXTERNAL MODULES DIRECTORY fhome/badgerfforte-incubation_1.14.0/ExportedFBs
FORTE_IC

FORTE_IO_EMBRICK

FORTE_IO_PLCO1AL

FORTE_LOGLEVEL LOGDEBLUG
FORTE_MODULE_ADS

FORTE MODULE Arrowhead

FORTE_MODULE_CONMELEON _C1

FORTE_MODULE_CONVERT
FORTE_MODULE_EXTERNAL_AlarmClock W
FORTE_MODULE_FIRST

FORTE_MODULE_I2C-Dev

FORTE_MODULE_uMIC

FORTE_SYSTEM_TESTS

FORTE_TESTS

FORTE_TESTS_INC_DIRS

FORTE_TESTS LINK_DIRS

FORTE_USE_LUATYPES None

4

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate Current Generator: Unix Makefiles
FORTE_MODULE DIR: fhome/badger/forte-incubation_l1.14.0/szrc/moduless
FORTE_MODULE DIR: fhome/badger/forte-incubation_l1.14.0/src/com/f
FORTE_MODULE DIR: /fhome/badger/forte-incubation_1.14.0/ExportedFBa/

;] executabl
L - .
Configuring done

GEnerating dons

o 16

O kM a ke

=

Il

|

Starred arch CMakeFiles com core external modules
r r
Desktop src stdfblib cmake_ forte forte.Fboot Makefile
install.
Documents cmake
Dowi gl badger@badger-VirtualBox: ~/Devfddiac/alarmClock/src O
Mus 3 S make
-- FORTE_MODULE_DIR: /fhome/badger/Dev/4diac/AlarmClock/src/modules com external/
S [9%] Bullt target forte generate modules cmake files
GenerateStringlist
Wd_Source Dir: fhome/badger/forte-incubation_1.14.0/src
Binary Dir: /home/badger/Dev/4diac/AlarmClock
B%] Buillt target forte_stringlist_generator
Tras .
0%]
0%
sf ‘]
[50%] Built target forte stringlist externals
et cenerate Initfunction

Source Dir: /home/badger/forte-incubation_1.14.8
Binary Dir: /home/badger/Dev/4diac/AlarmClock
[50%] Built target forte_init_generator

[99%] Built target FORTE_LITE

[166%] Buillt target forte

o 17

[+ badger@badger-VirtualBox: ~/Dev/ddiac/AlarmClock/src Q) =

B 5 ./forte

INFO: T#2937755966887: FORTE is up and running

INFO: T#2937756087592: Using provided bootfile location set in CMake: forte.fboot
INFO: T#2937756155986: Boot file forte.fboot opened

INFO: T#2937756285757: Bootfile correctly loaded

INFO: T#2937756331758: Closing bootfile

alg INIT() 10 : 58 : @

alg TICK() 16:58:1

alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 16:58:
alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 16:58:
alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 10:58:
alg TICK() 16:58:

p
3
4
5
6
7
8

D
= 3

o 18

o 19

	Creating IEC 61499 Function Block Applications in 4diac

