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1 Introduction

1.1 What is LNA?

LNA stands for “Lua Numerical Analysis”; it is a package of Numerical Analysis functions, to-
gether with several utility and plotting functions. All functions included in the package are meant
to be called from a program written in CPLua version 0.8 or above, which runs on a Casio Class-
Pad 300. This project is continuously developed and it is more than likely that new Numerical
Analysis functions, as well as library or plotting functions, will be added in the future. Existing
functions may also be modified in a future version, but compatibility with previous versions will
be respected, unless it is absolutely necessary to modify the way a function is called.

1.2 Disclaimer and Copyright

LNA is free software. You can redistribute it and/or modify it under the terms of the GNU
General Public License, as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. The functions included in the software have
been thoroughly tested and debugged, and the author will be surprised if there are still bugs.
However, the author is not fool to claim that this software is 100% bug-free, and there is probably
no developer who wants to claim such a thing for his/her programs. This software is distributed
in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the complete GNU General Public
License for more details (chapter 7] of this document, page 79).

LNA, together with this document, is Copyright (© 2005-2006 by PAP. The CPLua Add-In for
ClassPad 300 is written and maintained by Orwell.

1.3 Library organization

The most importrant part of this software is consisting of files organized in three directories:
The LNAutils directory, containing utility functions, the LNAplot directory, containing plotting
functions, and the LNA directory, containing all Numerical Analysis functions currently included
in the package. For each numerical method, there is a file in the directory LNA, containing all
functions needed to implement the specific numerical method. In most cases, only one function
included in this file can be called by your Lua program (this function will be hereafter referred
to as the “main function” — not to be confused with the “main” program). This file usually
contains several local (auxiliary) functions needed in the computations, but these functions are
hidden to the main program. The file is named as the main function, or an abbreviation of this
name, if its length is more than seven characters.
Furthermore, two directories containing examples are included in the package:

1. The LNAexamp directory, which contains one or more simple examples for each numerical
method. In order to be easily understandable, the example programs are as simple as
possible, and use a limited set CPLua functions. Example programs are therefore a good
starting point for the novice user. Each example is named with the letter “X” and the name
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of the corresponding function, or an abbreviation of this name, if its length is more than
seven characters.

2. The LNAdrive directory, which contains a “driver” program for each numerical method. This
driver program covers more complicated examples, and uses more advanced capabilities of
the CPLua programming language. Each driver program is named with the letter “D” and
the name of the corresponding function, or an abbreviation of this name, if its length is
more than seven characters.

For example, consider the LNA implementation of the Romberg method for numerical integration.
The main function for this method is named Romberg. This function, together with all auxiliary
functions needed, is defined in the file Romberg, which is located at the directory LNA. The file
XRomberg is a simple program, demonstrating how to use the function Romberg, and it is located
at the directory LNAexamp. The driver program for the Romberg method is implemented in the
file DRomberg, and it is located at the directory LNAdrive.

In addition, a directory named LNAtest is included in the package. This directory contains a
“test” program that uses several LNA functions to solve complex test problems. Both the results
obtained, and the computation time, are compared with the expected values. LNAtest can be
used for testing future versions of LNA or CPLua. As a normal user, you may probably never
need this directory.

Almost all Numerical Analysis functions in LNA use other functions (numerical methods and /or
utility functions), i.e., they have dependencies. For example, function “A” may use another
function, “B”, which, in turn, uses the function “C”, and so on. This means that, even if your
main program calls only one LNA function, you may also need several other functions included
in the library. Therefore, you should not delete or modify any file included in the directories
LNAutils, LNAplot and LNA, unless you know what you are doing.

1.4 How to read this manual

LNA is a package that adds many numerical capabilities in Classpad 300, and includes functions
implementing complex algorithms. As such, it is a rather large and complex software. However,
using LNA in your CPLua programs is not difficult at all, provided that you have read and under-
stand the documentation. Failure to read the documentation may cause you to use LNA in an
suboptimal way, or conclude that LNA is useless prematurely.

The best way to get started is to (a) learn how a specific LNA function must be called, and
what it returns on exit, (b) study the corresponding example(s) given in this manual. Then you
should try to solve another problem, by modifying the example program at will, or by following
guidelines included in this manual. Gain experience by solving your own problems: start by a
simple problem, write a small program that uses LNA functions to solve it, and check the results.
Then try a more difficult problem. Finally, you may want to study the driver program for each
numerical method.

Deep knowledge of Numerical Analysis is not necessary. In fact, you can use a specific LNA
function to solve practical problems without knowing how the corresponding numerical method
works (it is enough to know how it must be used). However, if you are familiar with Numerical
Analysis, you may study how each numerical method is implemented in LNA. Remarks for further
improving LNA (or this manual) are always welcome.




2 Utility constants and functions

The LNAutils directory includes several utility functions written in Lua. Most of them are called
by Numerical Analysis functions included in LNA. Note that, since CPLua is still in development,
a future version of CPLua may include built-in utility functions, similar to those presented here.
In this case, the corresponding utility function included in the LNAutils directory will be deleted
from future versions of LNA.

2.1 Utility constants

2.1.1 Epsilon

The constant Epsilon defines the smallest positive number, ¢, which satisfies the inequality
14 ¢ > 1. Due to computer arithmetics, adding a very small number to unity may result ezactly
one. This constant defines Epsilon as ¢ = 1.12 x 10716,

2.1.2 Pi

The constant Pi defines 7w with the maximum accuracy permitted in ClassPad. Since 7 is often
used in numerical computations, it is defined as a LNA constant, accurate to 16 decimal digits.
This constant defines Pi as m = 3.1415927410125732.

2.2 Utility functions

2.2.1 EpsilonC

The function EpsilonC computes Epsilon, the smallest positive number ¢, for which 1+ ¢ > 1.

Syntax

‘ e=EpsilonC(show, eps,mazit) ‘

returns € in the varable e. All arguments are optional: show is a boolean argument that controls
whether progress of the calculation will be displayed or not (default: false); eps is the required
accuracy of the result (default: 5 x 10722); maxit is the maximum number of iterations (default:
100). Usually, there is no need to pass any argument to this function; the default values are
sufficient to return an accurate value of Epsilon.

Example

EpsilonC() returns 1.11022302462516 x 10716, which is the value of Epsilon in ClassPad 300,
with a maximum error of 5 x 10~22.
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Remarks

Epsilon is often used in Numerical Analysis programs as an accuracy tolerance of a numerical
method. There is no need to use a very accurate value for this. Therefore, you will not need to
use the function EpsilonC in your Lua programs. Usually, the value 1.12 x 10716, stored in the
LNAutils constant Epsilon, is more than sufficient.

DEPENDENCIES: None.

2.2.2 LinSpace

The function LinSpace returns a vector of equidistant points.

Syntax

v=LinSpace(a,b,n)

returns a vector v of n linearly equidistant points between a and b. This vector contains n
numbers, representing equally spaced points, between v[1]=a and v[n]=b.

Examples

1. LinSpace(0,10,11) returns {0,1,2,3,4,5,6,7,8,9,10}.
2. LinSpace(-1,1,5) returns {-1,-0.5,0,0.5,1}.

3. LinSpace(-3,0,4) returns {-3,-2,-1,0}.

Remarks

DEPENDENCIES: None.

2.2.3 MatCol

The function MatCol returns a user-specified column of a matrix.

Syntax

‘ C=MatCol(A,col) ‘

returns a vector C, containing the column col of a matrix A. If the matrix A has n rows, then
C is a vector with n elements, so that C[1]=A[1] [col], C[2]=A[2] [col], and so on, until
C[nl=A[n] [col].

Examples

1. MatCol({{1,3,2},{4,7,5}},2) returns {3,7}.
2. MatCol({1,3,2},2) returns {37}.

3. MatCol({{1},{3},{2}},1) returns {1,3,2}.
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Remarks

The result of MatCol is always a single-row vector. If col is zero or negative, or if col is greater
than the total number of columns in A, the function MatCol returns an empty vector, {}. If A
is a single-row vector, MatCol(A,col) returns {A[coll}, i.e., it returns a vector containing the
element A[col].

DEPENDENCIES: None.

2.2.4 Matldent

The function MatIdent returns an identity matrix.

Syntax

I=MatIdent (n) ‘

returns the identity matrix I of rank n.

Example

I=MatIdent (3) returns {{1,0,0},{0,1,0},{0,0,1}}.

Remarks

If n is zero or negative, MatIdent returns an empty vector, {3}.
DEPENDENCIES: None.

2.2.5 MatMul

The function MatMul implements matrix multiplication.

Syntax

| c=MatMul(4,B) |

returns C=A.B, if defined. Each argument (A or B) can be a vector or a matrix.

Examples
1. MatMul ({{1,2},{3,4}},{{5,6},{7,8}}) returns {{19,22},{43,50}}.

2. MatMul ({{1,2},{3,4}},{5,6}) returns {17,39%}.

Remarks

If the argument A is a vector, it is considered as a single-row matrix. If the argument B is a
vector, it is considered as a single-column matrix. If matrix multiplication is not defined for the
current arguments, MatMul prints an error message, and returns nil.

DEPENDENCIES: MatCol, MatTrans.

2.2.6 MatPrint

The function MatPrint prints the elements of a matrix “row by row” (i.e., in a matrix form)
using a specific format.
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Syntax

MatPrint (A, fmt) |

prints iteratively the rows of the matrix A. The optional argument fmt is a format specifier that
defines how each element of the matrix will be printed; if omitted, the value fmt=""%f"’ is adopted,
which means that each element of A will be printed as a float number, rounded to 6 digits.

Examples

1. MatPrint({3.14159,1.5708,2.71828},’%,.2f"’) prints: 3.14 1.57 2.72.

2. MatPrint ({{3.14159,1.5708,0.00318},{2.71828,4,0.00821}},"").4£>’) prints:
3.1416 1.5708 0.0032
2.7183 4.0000 0.0082.

Remarks

If the argument A is a vector, it is considered as a single-row matrix. If each row of the matrix
does not fit to one line of the console window, it will be printed using more lines, so that the
matrix will not be shown in a matrix form.

The format specifier fmt follows the C syntax, e.g., ““hi’’, *%.21°, <“%hf, <% .2£, <“Y%e’’, % .2e.
See any C or Lua manual for more details on format specifiers.
DEPENDENCIES: None.

2.2.7 MatTrans

The function MatTrans transposes a matrix.

Syntax

B=MatTrans(A) ‘

returns a matrix B, which is A transposed.

Examples

1. MatTrans({1,2,3},{4,5,6}) returns {{1,4},{2,5},{3,6}},
2. MatTrans({1,2,3}) returns {{1},{2},{3}},

3. MatTrans({1},{2},{3}}) returns {1,2,3%}.

Remarks

If A is a single-row vector, MatTrans returns its elements arranged as a single-column vector. If
A is a single-column vector, MatTrans returns its elements arranged as a single-row vector.
DEPENDENCIES: MatCol.

2.2.8 MaxLoc

The function MaxLoc locates the position of the maximum element of a vector A.

10
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Syntax

maxloc,maxval=MaxLoc(A) ‘

returns the position of the minimum element, maxloc, and its value, maxval.

Example

maxloc,maxval=MaxLoc({1,-1,-5,3,4,2}) returns 5,4.

Remarks

MaxLoc is useful if you want to locate the position of the maximum element. If you just want to
compute the maximum value (not its position), you can use math.max (unpack(A)) instead.
DEPENDENCIES: None.

2.2.9 MinLoc

The function MinLoc locates the position of the minimum element of a vector A.

Syntax

minloc,minval=MinLoc(A) ‘

returns the position of the minimum element, minloc, and its value, minval.

Example

MinLoc({1,-1,-5,3,4,2}) returns 3,-5.

Remarks

MinLoc is useful if you want to locate the position of the minimum element. If you just want to
compute the minimum value (not its position), you can use math.min (unpack(A)) instead.
DEPENDENCIES: None.

2.2.10 OrderMag

The function OrderMag returns the “order of magnitude” of a number.

Syntax

order=0rderMag (x)

returns the order of magnitude, order, of the number x.

Examples

1. OrderMag(0.0025) returns le-3.

2. OrderMag(950) returns le2.

11
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Remarks

This function is especially useful in plotting functions, for setting the axis and tics scaling.
DEPENDENCIES: None.

2.2.11 Part

The function Part returns part of a vector A, containing the elements from A[imin] to A[imax].

Syntax

‘ P=Part(A,imin,imax) ‘

returns a vector P, with imax-imin+1 elements, so that P[1]1=A[imin], P[2]=A[imin+1], and so
on, until P[imax-imin+1]=A[imax].

Example

Part({1,-1,-5,3,5},2,4) returns {-1,-5,3}.

Remarks

If imin>imax the function Part returns an empty vector, {3}.
DEPENDENCIES: None.

2.2.12 Nint

The function Nint returns the nearest integer to its argument.

Syntax

returns the nearest integer to x.

Examples
1. Nint(1.86) returns 2.

2. Nint(-3.2) returns -3.

Remarks

DEPENDENCIES: None.

2.2.13 TimeDiff

The function TimeDiff returns the time passed.

Syntax

h,m,s=TimeDiff (hi,mi,si,hf,mf,sf)

returns the time passed between initial time hi:mi:si and final time hf:mi:sf. All times are
expressed in hours:minutes:seconds.

12
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Examples

1. TimeDiff(2,5,30,2,10,40) returns 0,5,40 (time from 2 :5:30 to 2 : 10 : 40 is 0 hours,
5 minutes, 10 seconds).

2. TimeDiff(21,10,15,9,5,0) returns 11,54,45 (time from 21 : 10 : 15 to 09 : 05 : 00 is
11 hours, 54 minutes, 45 seconds).

Remarks

TimeDiff is primarily used for measuring execution time. As such, it does not check its arguments
for validity, since initial and final times are usually taken by calling the built-in function gettime.
Currently, TimeDiff is restricted for measuring time intervals less than one day; the date is not
taken into account.

DEPENDENCIES: None.

2.2.14 TimeElapsed

The function TimeElapsed returns the time elapsed between a previously recorded time and
current time.

Syntax

h,m,s=TimeElapsed(hi,mi,si,print)

returns the time elapsed between initial time hi:mi:si and current time. Both times are expressed
in hours:minutes:seconds. The optional argument can be anything; if it is present, the time
elapsed will be displayed as “Time elapsed: hours:minutes:seconds”, otherwise TimeElapsed will
simply return the time elapsed without printing anything.

Examples

1. TimeDiff(2,5,30,2,10,40) returns 0,5,40 (time from 2 :5:30 to 2 : 10 : 40 is 0 hours,
5 minutes, 10 seconds).

2. TimeDiff(21,10,15,9,5,0) returns 0,5,40 (time from 21 : 10 : 15 to 09 : 05 : 00 is 11
hours, 54 minutes, 45 seconds).
Remarks

TimeElapsed is simply a convenient way for measuring how much time is needed for executing a
part of a program; to do this, you should call the functions gettime and TimeElapsed as follows:

hi,mi,si=gettime()

TimeElapsed (hi,mi,si)

FILENAME: TimeElap.
DEPENDENCIES: TimeDiff.

13
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3 Plotting functions

The LNAplot directory includes some plotting functions written in CPLua. Currently, plots of 2D
functions and/or data are supported. Plots may have tics, tic labels, and grid lines. The user
may also select the line thickness, point type, and point size. To achieve this functionality, each
plotting function in LNAplot has several optional arguments, and even the mandatory arguments
can be used in different ways. It is strongly recommended to study the syntax for each function,
and the examples given in this chapter, before using any LNAplot function.

The LNAplot directory contains five files. The file PlotUtil includes several auxiliary plotting
utilities, which are required by the user-callable plotting functions; this file should not be loaded
directly by any user program. The file DemoPlot is a demonstration program, showing current
LNAplot capabilities. The rest of the files in this directory (PlotFunc, PlotData, and Plotinf) can
be called by a user program. Their use is described in detail in sections|3.1,13.2] and [3.3!

It is worth emphasizing that LNAplot is considered as a sub-project of LNA, and, as such, it
is developed solely for visualization of the results obtained by the numerical methods included
in the package. The author has not the intention to develop a full graphics application; graph-
ical representations not useful for the numerical methods included in LNA will probably never
supported by LNAplot.

3.1 Plots of functions
3.1.1 PlotFunc

The function PlotFunc plots one ore more user-defined functions.

Syntax

axesdata=PlotFunc(f,xv,yv,wait ,lwidth, tics, grid, lpos, lsize,c,discont)

The first argument, f, is a user-defined function (or a table of functions) to be plotted. The second
argument, xv, is a vector of two elements, describing the x-axis range to be visible. Similarly,
the third argument, yv, is a vector of two elements, describing the corresponding visible range
for the y-axis. The function returns a table axesdata, containing information about the axes
scaling selected by LNAplot; this output is useful only if the user wants to issue another plotting
function to act in the same graph (see section [3.3] page 21 for details). The arguments wait,
lwidth, tics, grid, 1pos, lsize, c, and discont are optional. Their meaning is as follows.

1. wait is a boolean argument that controls whether the graph window will remain visible
after plotting or not (default: true). If enabled, the graph will remain visible until you
press any key; if disabled, the graph will be generated, but nothing will be displayed on
the screen (this is useful if you want to issue another plotting function to act in the same

graph).

2. 1width (line width) defines how each function curve will be plotted. lwidth can be an
integer, or a vector of integers: if it is an integer, all curves will be plotted with a thickness
equal to lwidth pixels; if it is a vector, each curve will be plotted using the corresponding

15
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thickness number in the vector lwidth (the first function curve will be plotted with a
thickness equal to 1width[1], the second with a thickness equal to lwidth[2], and so on).
The default value is 1width=1, which means that all function curves will be one-pixel thick.
A zero or negative line width means that the corresponding function will not be plotted.

. tics is a vector of two elements: tics[1] defines the distance between two consecutive tics

in the z-axis, and tics[2] defines the corresponding tics distance in the y-axis. Setting any
of these values to ‘“auto”” lets LNAplot decide the tics spacing for the corresponding axis.
tics can also be set to a single number, instead of a vector of two elements; in this case,
both axes will have the same tics spacing. The default value is tics="’auto’’ (equivalent
to tics={"’auto’’,”’auto’’}), which means that LNAplot will automatically select the tics
spacing for both axes.

. grid is a boolean argument that controls whether grid lines will be visible or not (default:

true). Grid lines are shown as dotted vertical and horizontal lines at each z- and y-tic,
respectively.

. 1pos (label position) defines where the tic labels will be printed. It is a vector of two ele-

ments: 1pos[1] is the x-label position, and 1pos[2] is the corresponding y-label position.
A z-label position equal to 0 means that z-tic labels will be printed at the bottom of the
screen; any other value means that x-tic labels will be printed near the corresponding tic
of the z-axis. Similarly, a y-label position equal to 0 means that y-tic labels will be printed
at the left edge of the screen; any other value means that y-tic labels will be printed near
the corresponding tic of the y-axis. 1pos can also be a number, instead of a vector of two
numbers; in this case, x- and y-tic labels will be printed using z-label and y-label position
equal to 1pos. The default value is 1pos={0,03}, which means that x- and y-tic labels will
be printed at the bottom and the left edge of the screen, respectively.

. 1size (label size) defines the size of the tic labels. It is a vector of two elements: 1size[1]

defines the az-labels size, and 1size[2] defines the corresponding y-label size (both in
pixels). A zero or negative value for 1size[1] or 1size[2] means that no labels will be
printed for the corresponding axis. lsize can also be a number, instead of a vector of
two numbers; in this case, z- and y-tic labels will be printed using a label size equal to
1lsize. The default value is 1size={9,9}, which means that both z- and y-labels will have
a height of 9 pixels.

. ¢ is a vector of two elements, defining where the center of the axes will be. If given, the

axes will be crossed at x =c[1], y = c[2]; if omitted, the default value is c=*‘auto’’, which
means that the center of the axes will be at x = 0,y = 0, as usual. If the center of the axes
is outside the visible z- or y-axis range, the corresponding axis will not be visible.

. discont defines the z-coordinates of the discontinuities. It must be a table of the form

{fildisc,f2disc, ...}, where fldisc is a vector defining the discontinuities of the first
function, f2disc is a vector defining the discontinuities of the second function, and so on.
For example, discont={{-1},{0,2}} means that the first function has a discontinuity at
x = —1, and the second function has two discontinuities at = 0, and z = 2 (the rest of
the functions, if present, have no discontinuities). If there is only one discontinuity for a
given function, the corresponding argument in discont can be a scalar, instead of a vector.
For example, discont={-1,{0,2}} is equivalent to discont={{-1},{0,2}}. The default
value is discont={}, meaning that all functions have no discontinuities.
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Examples

In all the following examples, £1, £2, £3, f4, and 5 are user-defined functions:

1. PlotFunc(f1,{-1.5,2},{-3,6}) plots the function f1 for x € [-1.5,2]. Function values
will be visible at the range y € [—3,6]. This is the most simple use of the PlotFunc
function, where all optional arguments are set to their default values.

2. PlotFunc({f1,f2,£3},{-2,2},{-2,3},true,{2,1,1}) plots three functions for z € [—2, 2].
Function values will be visible at the range y € [—2,3|. The first function curve will be
2-pixels thick, while the others will be 1-pixel thick.

3. PlotFunc({f1,f2,f3},{-2,2},{-2,3},true,1,{1,0.5},true,1) plots functions f1, £2,
and £3 for « € [—2,2]. Function values will be visible at the range y € [—2,2]. All function
curves will be plotted with a thickness equal to one pixel. Tics in the z-axis will be shown
at x = =2, —1, 0, 1, 2; tics in the y-axis will be shown at y = —2, —1.5, —1, —0.5, 0, 0.5,
1, 1.5, 2, 2.5, 3. Grid lines will be shown for each z- and y-tic. All labels will be printed
near the corresponding tic.

4. PlotFunc({f3,f4,f5},{-2,6},{-4,4},true,{1,1,2},{2,”%auto’’},true,1,9,’auto’’,

{nil,nil,2}) plots functions £3, £4, and £5 for x € [—2,6|. Function values will be visible
at the range y € [—4,4]. The last function curve will be 2-pixels thick, while the others
will be 1-pixel thick. Tics in the z-axis will be shown at x = —2, 0, 2, 4, 6; tic spacing for
the y-axis will be computed automatically. Grid lines will be plotted at each tic. All tic
labels will be printed near the corresponding tic, and they will have a height of 9 pixels.
The axes will be crossed at = 0,y = 0 (automatic selection). The last function curve has
a discontinuity at « = 2.

These examples are implemented in the example program XPlotFun. Note that PlotFunc does
not clear the graph window before plotting, so the function draw.clear() is called before each
call of PlotFunc, except the first one.

require ("draw","LNAplot/PlotFunc")

local function fi1(x) return x~3 end

local function f2(x) return x~2 end

local function f3(x) return x end

local function f4(x) return 3*math.cos(x) end
local function f5(x) return 1/(x-2) end

PlotFunc(f1,{-1.5,2},{-3,6})

draw.clear()

PlotFunc({f1,f2,f3},{-2,2},{-2,3},true,{2,1,1})

draw.clear()

PlotFunc({f1,f2,f3},{-2,2},{-2,3},true,1,{1,0.5},true,1)

draw.clear()

PlotFunc({f3,f4,f5},{-2,6},{-4,4},true,{1,1,2},{2,"auto"},true,1,9,"auto"
,{nil,nil,2})

Example program 1: XPlotFun.

Figure shows graphics obtained by running this program.
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Figure 3.1: Graphics created by the example program XPlotFun.
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Remarks

FILENAME: PlotFunc.
DEPENDENCIES: PlotUtil.

3.2 Plots of data

3.2.1 PlotData

The function PlotData plots one ore more user-defined data sets.

Syntax

axesdata=PlotData(x,y,xv,yv,wast,ptype,psize, lwidth, tics, grid, lpos, lsize,c)

The first argument, x, is a vector containing the x-coordinate for each data point. The second
argument, y, is a matrix containing the y-coordinate for each data point; each row of the matrix
y contains the y-coordinates for each data set; therefore, y[1] is a vector containing the y-
coordinates for the first data set, y[2] contains the y-coordinates for the second data set, and
so on; if only one data set is to be plotted, y can be a vector (not a matrix). The arguments
xv and yv are equivalent to the corresponding arguments in PlotFunc: xv is a vector with two
elements, describing the visible range in the z-axis; yv is a vector with two elements, describing
the corresponding visible range for the y-axis. The function returns a table axesdata, containing
information about the axes scaling selected by LNAplot; this table is useful only if the user wants
to issue another plotting function to act in the same graph (see section 3.3, page[21 for details).
The arguments wait, ptype, psize, lwidth, tics, grid, 1lpos, 1size, and c are optional. Their
meaning is as follows.

1. wait is a boolean argument that controls whether the graph window will remain visible
after plotting or not (default: true). It is equivalent to the corresponding argument of
PlotFunc.

2. ptype (point type) defines which symbol will be used to mark each data point in each
data set. Currently, there are seven point types available in LNAplot: (0) simple point,
(1) circle (non-filled), (2) crossed circle, (3) filled circle, (4) rectangular (non-filled), (5)
crossed rectangular, and (6) filled rectangular. A point type less than 0 or greater than 6
means that the data points will not be marked. ptype can be an integer, or a vector of
integers: if it is an integer, data points in all data sets will be marked by a point type equal
to ptype; if it is a vector, data points in each data set will be marked by the corresponding
point type in the vector ptype (points in the first data set will be marked by a point type
equal to ptype[1], points in the second data set will be marked by a point type equal to
ptype[2], and so on). The default value is ptype=1, which means that all data points in
all data sets will be shown as non-filled circles.

3. psize (point size) defines the size of the symbols marking the data points in each data
set. psize can an integer, or a vector of integers: if it is an integer, data points in all data
sets will be marked using a point size equal to psize; if it is a vector, data points in each
data set will be marked using the corresponding point size in the vector psize (points in
the first data set will be marked using a point size equal to psize[1], points in the second
data set will be marked using a point size equal to psize[2], and so on). The default value
is psize=3, which means that all points in all data sets will be marked with a point size

19



Programmer’s manual LNA version 1.60

equal to 3; for example, if ptype=1, and psize=3 (the default values), data points will be
marked by non-filled circles with a radius equal to 3 pixels.

4. lwidth (line width) defines how data points in each data set will be joined. lwidth can
be an integer, or a vector of integers: if it is an integer, data points in all data sets will
be joined with line segments having a thickness equal to lwidth pixels; if it is a vector,
data points in each data set will be joined with line segments having a thickness equal
to the corresponding number in the vector lwidth (points in the first data set will joined
with lines having a thickness equal to lwidth[1], points in the second data set will be
joined with lines having a thickness equal to lwidth[2], and so on). The default value is
1lwidth=0, which means that points in all data sets will not be joined by line segments.

5. tics defines the distance between two consecutive tics in the x- and y-axis. The default
value is tics="’auto’’, which means that the tics spacing for both axes will be automatically
selected by LNAplot. It is equivalent to the corresponding argument of PlotFunc.

6. grid is a boolean argument that controls whether grid lines will be visible or not (default:
true). It is equivalent to the corresponding argument of PlotFunc.

7. 1pos (label position) defines where the tic labels will be printed. The default value is
1pos={0,0}, which means that z- and y-tic labels will be printed at the bottom and the
left edge of the screen, respectively. It is equivalent to the corresponding argument of
PlotFunc.

8. 1size (label size) defines the size of the tic labels. The default value is 1size={9,9},
which means that both x- and y-labels will have a height of 9 pixels. It is equivalent to
the corresponding argument of PlotFunc.

9. ¢ is a vector of two elements, defining where the center of the axes will be. The default
value is c=*‘auto’’, which means that the center of the axes will be at x = 0,y = 0. It is
equivalent to the corresponding argument of PlotFunc.

Examples

In all the following examples, x, y1, y2, y3, and y4 are user-defined vectors:

1. PlotData(x,y1,{-4,4},{-0.5,1.5}) plots the data set (x[i],y1[i]) for =z € [—4,4].
The visible y-range will be y € [—0.5, 1.5]. Non-filled circles with a radius equal to 3 pixels
will be used to mark each data point. This is the most simple use of the PlotData function,
where all optional arguments are set to their default values.

2. PlotData(x,{yl,y2},{-4,4},{-2.5,1.5},true,{2,3},3,{1,0}) plots two data sets for

€ [—4,4]. The visible y-range will be y € [—2.5,1.5]. Data points in the first data set

will be marked as crossed circles, while data points in the second data set will be marked

as filled circles. The point size will be 3 pixels for every data set. Points belonging to the
first data set will be joined by line segments.

3. PlotData(x,{yl,y2,y3},{-4,4},{-2.5,1.5},true,{1,3,0},{3,3,0},{1,0,1}) plots three
data sets for = € [—4, 4]. The visible y-range will be y € [—2.5,1.5]. Points in the first data
set will be marked as non-filled circles with a radius of 3 pixels, and they will be joined by
1-pixel thick line segments. Points in the second data set will be marked as filled circles
with a radius of 3 pixels, but they will not be joined by line segments. Points in the third
data set will not be marked, but they will be joined by 1-pixel thick line segments.
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4. PlotData(x,{y3,y4},{-4,4},{-1.5,1.5},true,{1,4},3,1) plots two data sets for x €
[—4,4]. The visible y-range will be y € [—1.5,1.5]. Data points in the first data set,
(x[11,y3[i]), will be marked by non-filled circles, while data points in the second data
set, (x[i],y4[i]), will be marked by non-filled rectangles. Points in both data sets will
be marked using a point size equal to 3 pixels, and they will be joined by line segments.

These examples are implemented in the example program XPlotDat. Since PlotDat does not
clear the graph window before plotting, the function draw.clear () is called before each call of
PlotDat, except the first one.

require ("draw","LNAutils/LinSpace","LNAplot/PlotData")
local x,yl1,y2,y3,y4,n

x={};n=15

x=LinSpace(-3.5,3.5,n)

y1={};y2=1{};y3={};y4={}

for i=1,n do

y1[i]l=x[i]~2/10

y2[il=math.sin(x[i])-1

y3[i]=math.cos(x[i])

y4[i]l=math.sin(math.abs(x[i]))

end

PlotData(x,yl,{-4,4},{-0.5,1.5})

draw.clear()
PlotData(x,{yl,y2},{-4,4},{-2.5,1.5},true,{2,3},3,{1,0})
draw.clear()
PlotData(x,{yl,y2,y3},{-4,4},{-2.5,1.5},true,{1,3,0},{3,3,0},{1,0,1})
draw.clear()
PlotData(x,{y3,y4},{-4,4},{-1.5,1.5},true,{1,4},3,1)

Example program 2: XPlotDat.

Figure shows graphics obtained by running this program.

Remarks

FILENAME: PlotData.
DEPENDENCIES: PlotUtil.

3.3 Using multiple plotting functions in the same graph

Each plotting function can be used to act in a graph already created by another plotting function.
To do this, the first plotting function should be called as usual, but the rest plotting functions
should be called by setting the argument xv equal to {}, and the yv argument equal to the
output of the first plotting function. In other words, xv={} is used as a signal that the plotting
function should not set any scaling, and yv is used to pass the scaling that it is already selected
by another plotting function. For example, the following code will plot a function f and a set of
data points (x[i],y[i]) in the same graph:
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Figure 3.2: Graphics created by the example program XPlotDat.

22



LNA version 1.60 Programmer’s manual

axesdata=PlotFunc(f,{-2,2},{-3,3},false)
PlotData(x,y,{},axesdata,true)

Note that the first function is called as usual, except that the output is now stored in the
variable axesdata. This output contains information about the axes scaling selected. In the
second function, xv is set to {}, and yv is set to axesdata. This informs the second function
that it should not set any scaling nor draw axes, and passes the scaling that should be used.
Note also that, in the first function, the argument wait is set to false, so that the second plot
will immediately appear after the first. You can, of course, set this argument to true, so that
the second plot will appear after pressing any key.
IMPORTANT NOTE: To achieve the multiple plots functionality described in this section, all
plotting functions do not clear the graph window before plotting. This means that, if you want
to create a new graph, you should clear the graph window manually, by using draw.clear().
In the example program of section 3.2, multiple LNAplot functions in the same graph are used
to produce figures[3.2b,c,d. In chapter [4, several example programs are using this functionality
as well.

3.4 “Infinite” plots
3.4.1 PlotInf

The function PlotInf tries to show the behavior of one or more functions fi (x), fo (z),... as
x — *oo.

Syntax

‘ PlotInf (f,zr,yr,wait, lwidth, tics,grid,discont) ‘

The first argument, f, is a user-defined function (or a table of functions) to be plotted. The
rest of the arguments (xr, yr, wait, lwidth, tics, grid, and discont) are optional. xr is a
vector of two elements, describing the range of z-values. If the first element of xr is equal to
zero, the minimum z-value will be zero; if it is not, the minimum z-value will be —oco. Similarly,
if the second argument of xr is equal to zero, the maximum z-value will be zero; if it is not,
the maximum x-value will be +o00. In other words, xr can be set to (a) xr={‘‘-inf’’,”’inf’’}
ie. x € (—o0,+00), (b) xr={0,7inf’}, i.e. = € [0,400), (c) xr={**-inf’’,0}, i.e. = € (—o0,0].
Note that ““-inf’’ and ““‘inf’’ are used for clarity; any other value, except zero, has the same
meaning. The default value is xr=""auto’’, which is equivalent to xr={*“-inf’’,”’inf”’} (visible
x-range will be € (—o0,+00)). The argument yr is a vector of two elements, describing the
range of y-values (default: yr=""auto’’). Valid values for this argument are as in xr.

The meaning of the arguments wait, lwidth, tics, grid, and discont is equivalent to the
corresponding arguments of PlotFunc (see section 3.1, page 15/ for details).

Examples

In all the following examples, £1, £2, £3, f4, and £5 are user-defined functions:

1. PlotInf ({f1,£2,£3}) plots three functions for x € (—o0, +00). Function values will be
visible at the range y € (—o0, +00). This is the most simple use of the PlotInf function,
where all optional arguments are set to their default values.

2. PlotInf ({f1,f2,£3},’auto’’,{0,”’inf"’}) plots three functions for x € (—oo, +00). Func-
tion values will be visible at the range y € [0, +00).
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3. PlotInf ({f1,f2,f4},’auto’’,”’auto’’,true,1,{2,1},true,{nil,nil,{-2,23}}) plots three
functions for x € (—oo, +00). Function values will be visible at the range y € (—o0, +00).
All functions will be plotted with 1-pixel thick curves. Tics in the z-axis will be shown at
r = —2,2; tics in the y-axis will be shown at y = —1,1. Grid lines will be shown for each
x- and y-tic. Function f4 is discontinuous at © = —2 and = = 2.

4. PlotInf ({f1,f2,f3,f5},{0,’inf"’}, ’auto’’, true, 1,”’auto’’,true,{nil,nil,nil, 0}) plots

four functions for z € [0, +00). Function values will be visible at the range y € (—o0, +00).
All functions will be plotted with 1-pixel thick curves. Tics will be shown at z = —1,1 and
y = —1,1. Grid lines will be shown for each z- and y-tic. The last function in the list, £5,
has a discontinuity at z = 0.

The example program XPlotInf implements the examples above. Note that PlotInf does not
clear the graph window before plotting, so the function draw.clear() is called before each call
of PlotInf, except the first one.

require("draw","LNAplot/PlotInf")

local function f1(x) return x end

local function f2(x) return x~2 end

local function f3(x) return math.exp(x) end
local function f4(x) return 5/(x~2-4) end
local function f5(x) return math.log(x) end

PlotInf ({f1,f2,£3})

draw.clear()

PlotInf ({f1,f2,f3},"auto",{0,"inf"})

draw.clear()

PlotInf ({f1,f2,f4},"auto","auto",true,1,{2,1},true,{nil,nil,{-2,2}3})
draw.clear()

PlotInf ({f1,f2,f3,f5},{0,"inf}, "auto" ,true,1,"auto",true,{nil,nil,nil,0})

Example program 3: XPlotlnf.

Figure [3.3/ shows graphics obtained by running this program. Note that several conclusions
concerning the limits of the functions can be obtained. For example, in figure [3.3a you can

see that lim, ,_ oo = —00, limy__o 2% = 400, lim,_,_o e® = 0. In figures [3.3,b you can
see that lim, . o2 = +00, limy_yoo2? = 400, lim, 1o €® = 400, but e goes to +oo
faster than 22, while 22 goes to +oo faster than x. Figure [3.3¢c shows that lim,_ 4 xg—il =0,
lim, ,_o- ﬁ = 400, lim, , o+ ﬁ = —o0, lim, ,o- $25_4 = —o0, lim, o+ ﬁ = 4o00.

Figure [3.3d shows that lim, o+ In () = —o0, and that In (x) goes to +oo slowly, compared to
x, 2%, and €”.

Remarks

“Infinite” plots are useful to inspect the behavior of one or more functions as £ — 4o00. Scaling
in both axes is not linear; if the function to be plotted is oscillating for high |x|-values, the details
are not shown correctly. In other words, PlotInf is not suitable for plotting oscillating functions.

Note that it doesn’t make any sense to plot “infinite” plots together with normal plots in
the same graph, since scaling is linear in normal plots, while this is not true in “infinite” plots.
Therefore, you should not use PlotInf together with PlotFunc or PlotData in the same graph.
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Figure 3.3: Graphics created by the example program XPlotInf.
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FILENAME: PlotlInf.
DEPENDENCIES: Pi, PlotUtil, PlotFunc.
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4 Numerical Analysis functions

This chapter describes all Numerical Analysis functions currently included in LNA. Although
these functions may check some of their arguments for consistency, they are not 100% “idiot
proof”, since this usually costs computation time. The functions should be considered as “garbage
in - garbage out”, despite the fact that they usually print warning or error messages if you use
them improperly. Reading the documentation, and understanding the example programs before
using any LNA function is strongly recommended. The script DemoAll is a menu-driven program
that demonstrates all current capabilities of LNA.

You should realize that all functions included in LNA are implementations of numerical meth-
ods, and, as such, they may fail to converge, or they may give inaccurate results in special cases.
Although the accuracy of the results is controlled by each algorithm, there is nothing “magical”
in Numerical Analysis. In general, whenever you use a numerical method, you should accept the
fact that there is no numerical method which is able to solve any problem, and such a “perfect”
method will never be. It is always possible that a given numerical method, especially a complex
one, may fail in special cases, although this is a rather remote possibility.

Almost all functions described in this chapter have optional arguments, controlling the behavior
of the algorithm. In most cases, optional arguments are only useful in special cases. If an optional
argument is omitted, it takes a suitable preset value. When describing the syntax of a particular
function, optional arguments are written in italic characters.

Most of the functions included in LNA have an optional argument eps, which may be used to
specify the accuracy of the numerical method. Each function uses specific techniques to estimate
the absolute error in the computations, and tries to return a result with an estimated error less
than the desired accuracy eps. However, you should realize that each numerical method can
only make an estimation of the error; the actual error may differ, although this difference is
usually not important. In special cases, a function may also return a result with no error at
all. Be aware that asking for an extremely accurate result (typically, setting an accuracy, eps,
less than its preset value) may result large computation times, or may lead to an error, due to
insufficient memory. A given function may also be unable to return a result as accurate as you
asked. Nevertheless, the result may be accurate enough to be useful; in such cases, a warning
message is displayed, but the function returns the result obtained (you should, however, check
the accuracy of the result). If, on the other hand, the result cannot be useful at all, the function
prints an error message, and returns nothing (this usually means that the program execution
will be probably stopped).

The rest of this chapter describes the numerical methods currently included in LNA. For each
method, a short description and some useful details are given. Obviously, describing in detail
how each numerical method works is out of the scope of this manual (see any book on Numerical
Analysis for this). Only details concerning how each function can be used in a Lua program are
discussed.
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4.1 Root finding

4.1.1 Bisect

The function Bisect computes the root of a function within a given interval via the Bisection
method. This is the simplest (and the slowest) method for root finding. However, its convergence
is always guaranteed, and it is often used by more complex numerical methods. The algorithm
implemented in Bisect is a modification of the “classic” algorithm, sometimes called “Simplified
Bisection”, and it is slightly faster.

Syntax

root,error=Bisect (f,x1,xr, eps,mazit, show)

returns the root of the function f inside the interval {x1,xr}, together with an estimation of
the absolute error. The arguments eps , maxit and show are optional. eps defines the desired
accuracy (default: Epsilon, i.e., 1.12 x 10716); it can be set to ‘‘auto’’, which is equivalent to
the default accuracy. maxit defines the maximum number of iterations (default: 100). show is a
boolean argument that controls whether progress of the iterative process will be displayed or not
(default: false); if set to true, the function value, f(root), at each iteration will be displayed.

Example

The example program XBisect uses the function Bisect to find the root of the function z — % cos T

within the interval [—3,2]. In order to check the result, the program computes the function value
at the root obtained, and shows the results graphically.

require ("LNAplot/PlotFunc","LNAplot/PlotData","LNA/Bisect")
local function f(x) return x-math.cos(x)/2 end

local root,error,axesdata

root,error=Bisect (f,-3,2)

print ("root:",root)

print ("Estimated error:",error)

print ("f(root):",f(root))

axesdata=PlotFunc(f,{-3,2},{-2,2},false,1,"auto",true,1)
PlotData({root},{f(root)},{},axesdata,true,?2)

Example program 4: XBisect.

Figure [4.1] shows the results obtained by running this program. Note that function value,
f (root), is exactly zero in this particular example. This is rather the exception than the rule;
in most cases, you should expect that f (root) will be too close (but not equal) to zero.

Remarks

The interval {x1,xr} should contain ezactly one root; if it does not, or if you need more that
one root, you should use the function KroneRoots instead.
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[ ¥ Break | [ ¥ Break |

root: H.45813361 129427
E=timated error:
6. 938893982907 2e—017
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Figure 4.1: Results obtained by the example program XBisect.

In special cases, you may need to reduce the desired accuracy, using the optional argument
eps. Usually, the maximum number of iterations, maxit, does not need to be changed; if the
desired accuracy cannot be achieved with the default number of iterations, it is more than likely
that the desired accuracy is too high, and cannot be achieved by the Bisection method, despite
the number of iterations.

FILENAME: Bisect.
DEPENDENCIES: Epsilon.

4.1.2 NewtonR

The function NewtonR computes a root of a given function, starting from an initial guess of the
root, and using the Newton-Raphson method. This method is widely used due to its convergence
speed. However, the method requires the derivative of the function, and may fail to converge, if
the initial guess is bad.

Syntax

‘ root=NewtonR(f,guess, dfdz, eps, mazit, show)

computes a root of the function f, starting from an initial guess, root=guess. The arguments
dfdx, eps, maxit, and show are optional. dfdx is the name of the function defining the derivative
of £ ; it can be set to ‘‘auto’’ (the default), which means that no derivative is supplied (in this
case, the derivative of the function will be computed numerically). eps defines the desired
accuracy (default: Epsilon, i.e., 1.12 x 10716); it can be set to ‘‘auto’’, which is equivalent to
the default accuracy. maxit defines the maximum number of iterations (default: 100). show is a
boolean argument that controls whether progress of the iterative process will be displayed or not
(default: false); if set to true, the function value, f (root), at each iteration will be displayed.
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Example

The example program XNewtonR uses the function NewtonR to find the root of the function

3

(&

—x+ 1.5, starting from the initial guess x = 0. The derivative of the function is —3z2e7% — 1,

and is defined analytically. In order to check the result, the program computes the function value

at

the root obtained, and shows the results graphically.

require ("LNAplot/PlotFunc","LNAplot/PlotData","LNA/NewtonR")
local function f(x) return math.exp(-x~3)-x+1.5 end

local function dfdx(x) return -3*x~2*math.exp(-x~3)-1 end
local root,error,axesdata

root,error=NewtonR(f,0,dfdx)

print ("root:",root)

print ("f(zroot) :",f(root))

axesdata=PlotFunc(f,{-1,3},{-2,4},false,1,"auto",true,1)
PlotData({root},{f(root)},{},axesdata,true,2)

ex

Example program 5: XNewtonR.

Figure [4.2] shows the results obtained by running this program. Note that, in this particular
ample, function value f (root) is exactly zero.

| »r Break |

root: 1.52818378114318
forooth:
Done.

Pres= [EXE]...

FEunning. .. 1T | Done. -7

Figure 4.2: Results obtained by the example program XNewtonR.
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Remarks

NewtonR is able to find one (and only one) root of the function f. If there are more than one
roots, the root returned depends on the derivative of the function and the initial guess. In other
words, NewtonR does not necessarily return the root that is close to the initial guess.

If the argument dfdx is omitted, NewtonR will approximate the derivative numerically. Al-
though this numerical approximation is not trivial, it does not go too far, and may be inaccurate,
especially at x close to zero. In general, numerical differentiation is known to be very unsafe,
and should be avoided. Consequently, although dfdx is an optional argument, you should supply
it whenever this is possible.

The initial guess may be crucial for Newton-Raphson method. If the initial guess is bad, the
algorithm may fail to converge. As a general rule, select an initial guess for which the derivative
is not close to zero. If the method diverges, check the definition of the functions f and dfdx, or
try a different initial guess. Note that the most common error when using NewtonR is to define
dfdx incorrectly; this will cause slow convergence to wrong results.

You may need to reduce the desired accuracy only in special cases. As in Bisect, the optional
argument maxit is rarely needed; if the desired accuracy cannot be achieved with the default
number of iterations, it is more than likely that the desired accuracy is too high, or there is an
error in the definitions of f and dfdx.

FiLENAME: NewtonR.
DEPENDENCIES: Epsilon.

4.1.3 Brent

The function Brent computes the root of a function within a given interval via the Brent method.
This function combines the guaranteed convergence of the Bisection method and the speed of
the Newton-Raphson method (which, however, may diverge). The Brent method is always
converging, and it is usually much faster than the Bisection method. Due to these advantages, it
is considered as the method of choice for root finding. For convenience, the function Brent has
the same syntax as Bisect.

Syntax

root=Brent (f,x1,xr, eps,mazit, show)

returns the root of the function f inside the interval {x1,xr}. The arguments eps , maxit and
show are optional. eps defines the desired accuracy (default: Epsilon, i.e., 1.12 x 10716); it
can be set to ‘‘auto’’, which is equivalent to the default accuracy. maxit defines the maximum
number of iterations (default: 100). show is a boolean argument that controls whether progress
of the iterative process will be displayed or not (default: false); if set to true, the function
value, f (root), at each iteration will be displayed.

Example

The example program XBrent uses the function Brent to find the root of the function e!=% — 5

within the interval [—1, 3]. In order to check the result, the program computes the function value
at the root obtained, and shows the results graphically.

Figure [4.3] shows the results obtained by running this program. Note that function value
f(root) is too close to zero.
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require ("LNAplot/PlotFunc","LNAplot/PlotData","LNA/Brent")
local function f(x) return math.exp(l-x)-x/2 end

local root,error,axesdata

root,error=Brent(f,-1,3)

print("root:",root)

print ("f(root):",f(root))

axesdata=PlotFunc(f,{-1,3},{-2,4},false,1, "auto",true,1)
PlotData({root},{f(root)},{},axesdata,true,2)

Example program 6: XBrent.

| »r Break |

root: 1.37482252818365
forooth:
1.1182238246252e—016
Done.

Pres= [EXE]...

FEunning. .. 1T | Done. -7

Figure 4.3: Results obtained by the example program XBrent.
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Remarks

As in Bisect, the interval {x1,xr} should contain ezractly one root. You may need to reduce
the desired accuracy only in special cases. The optional argument maxit is rarely needed.
FILENAME: Brent.

DEPENDENCIES: Epsilon.

4.1.4 KroneRoots

The function KroneRoots computes all the roots of a function within a given interval, or, op-
tionally, a prescribed number of roots. It can be used for locating and computing all the roots of
a function within a given interval. The algorithm implemented in this function is based on the
Kronecker-Picard theory (hence its name), and uses recursive auxiliary functions. It is currently
the most complex algorithm included in LNA. Despite its complexity, however, the function can
be easily called in a user program.

Syntax

roots,Nr=KroneRoots(f,dfdx,d2fdx2,a,b,r_req,z%)

returns a vector roots, containing all the roots of the function f inside the interval {a,b};
optionally, it may return only a prescribed number of roots. This function also returns the total
number of roots, Nr. The arguments dfdx, and d2fdx2 define the first and second derivatives
of the function, respectively. The arguments r_req and xi are optional. The argument r_req
controls how many roots should be returned. If omitted, or if r_req<=0, all the roots will be
returned. The optional argument xi defines an appropriate number, such that xi*dfdx(x) is
not too small (or too large) compared to f(x), for all x inside the interval {a,b}. The default
value is xi=1.

Example

The example program XKrone uses the function KroneRoots to find all the roots of the function
sin (2x) + cos (3x) within the interval [—6,2]. In order to check the result, the program computes
the function values at the roots obtained, and shows the results graphically.

Figure [4.4 shows the results obtained by running this program. In this example, there are 8
roots, which are computed accurately.

Remarks

Setting the desired number of roots, r_req, may be useful if you only need some roots, but not
all of them; in this case the lowest roots will be returned. For example, setting r_req=1 will
return only the lowest root. If r_req is greater than the total number of roots, Nr, all the roots
will be returned, and the user will be informed by a warning message.

The number xi is of particular importance for the algorithm. Usually, the default value for
xi is a good choice. In some cases, however, you may need to change this number in order to
obtain all the roots.

The computation time is usually a few seconds, but you should realize that if the function f
has many roots (and you need all of them), the computation time may become large.
FILENAME: Krone.

DEPENDENCIES: Bisect, Romberg.
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require ("LNAplot/PlotFunc","LNAplot/PlotData","LNA/Krone")

local function f(x) return math.sin(2#*x)+math.cos(3*x) end

local function dfdx(x) return 2+*math.cos(2*x)-3*math.sin(3*x) end
local function d2fdx2(x) return -4+*math.sin(2#*x)-9+*math.cos(3*x) end

local Nr,roots,axesdata

roots,Nr=KroneRoots (f,dfdx,d2fdx2,-6,2)

print (Nr.." roots found:")
for i,v in ipairs(roots) do print(i,v) end
froots={}

for j=1,Nr do froots[j]=f(roots[j]) end
print ("\nFunction values at roots:")
for i,v in ipairs(froots) do print(i,v) end

axesdata=PlotFunc(f,{-6,2},{-2,2},false)
PlotData(roots,froots,{},axesdata,true,2)

Example program 7: XKrone.

[ ¥ Break | [ ¥ Break |

2 roots found:

1 5. 3487ATS11 1026
—4. 7123889283847
—4. 8348704496667
—Z2. 8274333882302
—-1.53TETIEIZETI49
—-A.31415926535292
H. 942477968 TE94
1.57ETIEI2ETI49

TN P LR

unction walues at roots:
-3.831784197801 3e—-A16
—1. 5992665286 326%9%=—015
—Z. 228446849250 3e-016
4. 44823920925006=—01&
63.66151588455599—616

—-1.1182238246252e—016
5. 1223832317691119=-0817
Done.

Pres= [EXE]...

=l kI=T -]

ﬁunnhg... . fj . Done. 1T

Figure 4.4: Results obtained by the example program XKrone.
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4.2 Matrix Algebra

The file LUdecom contains several functions, relative to LU (lower-upper triangular matrix)
decomposition. Contrary to most of the numerical methods included in LNA, the functions
included in this file are all available to the user.

4.2.1 LUdecompose

The function LUdecompose decomposes a matrix to its LU equivalent. LU decomposition of
a matrix A is a method aiming to find a lower-triangular matrix, L, and an upper-triangular
matrix, U, so that A=L.U. Such a decomposition is used mainly for solving a system of linear
equations, but can also be used to compute the determinant or the inverse of a matrix. The
method implemented in LUdecompose performs LU decomposition with partial pivoting.

Syntax

LU, indx,parity=LUdecompose (A)

returns a matrix LU, which contains the lower- and upper-triangular equivalents of the input
matrix A. It also returns a vector indx, which records the row permutations effected by the algo-
rithm, and a number parity, equal 1, depending on whether the number of row interchanges
was even or odd, respectively.

Remarks

The function LUdecompose is called as a first step to solve a system of linear equations, and/or
compute the determinant or the inverse of a matrix. You will never need to call this function
without calling one or more of the functions LUsubstitute, LUdeterminant, and LUinverse,
described below.

Note that, if the input matrix A is singular, the function prints a warning message, and returns
nil.
FILENAME: LUdecom.
DEPENDENCIES: None.

4.2.2 LUsubstitute

The function LUsubstitute is used after calling LUdecompose in order to solve a system of linear
equations. It performs “forward substitution” and “backward substitution”, in order to solve a
system of linear equations A.X=B, where the matrix A has been previously decomposed to its LU
equivalent.

Syntax

X=LUsubstitute (LU,indx,B) |

returns a vector X, which is the solution of the system of linear equations A.X=B. The first
argument is the LU equivalent of the matrix A, and the second is a vector indx, which records
the row permutations effected by LU decomposition (these arguments are taken from the output
of LUdecompose). The third argument, B, is a vector containing the right-hand side of the
equations to be solved.
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Remarks

The function LUdecompose must be called before calling LUsubstitute. In other words, the
commands

LU, indx,parity=LUdecompose (A)
X=LUsubstitute (LU, indx,B)

are used to solve a system of linear equations A.X=B.

Note that LUsubstitute returns nil, if there is no solution, i.e., if the matrix A is singular.
FILENAME: LUdecom.
DEPENDENCIES: None.

4.2.3 LUsolve

The function LUsolve solves a system of linear equations. It is simply a “shortcut” function. It
calls LUdecompose and LUsubstitute internally, in order to solve a system of linear equations.

Syntax

X=LUsolve(4,B) |

returns a vector X, which is the solution of the system of linear equations A.X=B.

Example

The example program XLUsolve uses the function LUsolve to find the solution of the system of
linear equations

r+2z = 9
—zrz+4y+3z2+6w = 12
—2y+52—-3w = 3
3xr+y+2z = 15.

In order to check the result, the program also computes the product A.X, by using the utility
function MatMul (see section page 9 for details).

Figure 4.5 shows the results obtained by running this program. Note that A.X is found to be
equal to the vector B, as required.

Remarks

This function is useful if you only want to solve a system of linear equations; it solves the
system using LU decomposition, hiding the details from the user. However, if you also want to
compute the determinant and/or the inverse of the matrix A, it is preferable to solve the system
by successively calling LUdecompose and LUsubstitute. If you call LUsolve, but you also want
to compute, e.g., the determinant of the matrix A, you will need to call LUdecompose again, thus
doing unnecessary computations.
Note that LUsolve returns nil, if there is no solution, i.e., if the matrix A is singular.

FILENAME: LUdecom.

DEPENDENCIES: Depends on LUdecompose and LUsubstitute, also included in the file LUdecom.
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require ("LNAutils/MatMul","LNAutils/MatPrint","LNA/LUdecom")
local A,B,X

A={{1,0,2,0},{—1,4,3,6},{0,—2,5,—3},{3,1,1,0}}
B={9,12,3,15}

print("Coefficients A:")
MatPrint (A,"%+.1f")
print ("\nConstants B:")
print (unpack(B))

X=LUsolve(A,B)

print("\nSolution X:")

print (unpack(X))

print ("\nSolution verification, A.X:")
print (unpack (MatMul (4,X)))

Example program 8: XLUsolve.

|‘¢F Break |

Coefficient=s H:

+1.8 +8.8 +2.8 +8.08
-1.8 +4.8 +3.0 +5.0
+8.8 -Z.8 +5.8 -2.A4
+3.8 +1.8 +1.8 +8.0

Constants B:
= 12 32 15

Solution #:
S.d -3 1.8 4

Solution werifications H. &:
= 12 32
Done.

Pres= [EXE]...

Done. i

Figure 4.5: Results obtained by the example program XLUsolve.
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4.2.4 LUdeterminant

The function LUdeterminant is used after calling LUdecompose, and computes the determinant
of a matrix A, which has been previously decomposed to its LU equivalent.

Syntax

detA=LUdeterminant (LU,parity)

returns the determinant, detA, of a matrix A. LU is the LU equivalent of the matrix A, and parity
is a number, equal £1, depending on whether the number of row permutations was even or odd,
respectively. Both arguments are taken from the output of LUdecompose.

Remarks
The function LUdecompose must be called before calling LUdeterminant. In other words, the

commands

LU, indx,parity=LUdecompose (A)
detA=LUdeterminant (LU, parity)

are used to compute the determinant of the matrix A.
FILENAME: LUdecom.
DEPENDENCIES: None.

4.2.5 LUinverse

The function LUinverse computes the inverse of a matrix A, which has been previously decom-
posed to its LU equivalent. It is used after calling LUdecompose in order to compute the inverse
of a matrix.

Syntax

Ainv=LUinverse (LU, indx) ‘

returns a matrix Ainv, which is the inverse of a matrix A. The first argument is the LU equivalent
of the matrix A, and the second is a vector indx, which records the row permutations effected
by LU decomposition. Both arguments are taken from the output of LUdecompose.

Example

The example program XLUdecom uses the function LUdecompose to decompose the same system
of linear equations, as in section(4.2.3] page[36. Then the functions LUsubstitute, LUdeterminant,
and LUinverse are used to compute the solution, the determinant, and the inverse of matrix A,
respectively.

Figure shows the results obtained by running this program. Note that the solution X
obtained by calling LUdecompose and LUsubstitute is equivalent to the solution obtained by
calling LUsolve directly (cf. figure (4.5, page 37).
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require ("LNAutils/MatPrint","LNA/LUdecom")
local A,B,X,LU,indx,parity,detA,Ainv

A={{1,O:2’O},{_1:4,3,6},{0:_2)5,_3},{3,1,1,0}}
B={9,12,3,15}

print("Coefficients A:")
MatPrint (A,"%+.1£")
print ("\nConstants B:")
print (unpack(B))

LU, indx,parity=LUdecompose (A)

X=LUsubstitute (LU, indx,B)
print ("\nSolution X:")
print (unpack(X))

detA=LUdeterminant (LU,parity)
print ("\nDeterminant detA="..detA)

Ainv=LUinverse (LU, indx)
print ("\nInverse matrix, Ainv:")
MatPrint (Ainv,"%+.2f")

Example program 9: XLUdecom.

|‘¢F Break |

Coefficient=s H:

+1.8 +8.8 +2.08
-1.8 +4.8 +3.0
+8.8 -Z.8 +5.8 -2.A4
+3.8 +1.8 +1.8 +8.0

Constants B:
= 12 32 15

Solution #:
S.d -3 1.8 4

Determinant detA=—-<45

Inverse matrizs Ainw:
+8.87 -@.13 -0.27 +60.60
—-Z.67 +0.33 +0.67 +1.88
+@.87 +0.87 +0.132 -0.88
+1.89 -A.11 -A.35 -A.67
Done.

Pres= [EXE]...

Done. i

Figure 4.6: Results obtained by the example program XLUdecom.
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Remarks

The function LUdecompose must be called before calling LUinverse. In other words, the com-
mands

LU, indx,parity=LUdecompose (A)
Ainv=LUinverse (LU, indx)

are used to compute the inverse of the matrix A.

Note that LUinverse returns nil, if the inverse matrix is not defined.
FILENAME: LUdecom.
DEPENDENCIES: MatCol, MatIdent, MatTrans.

4.2.6 Tridiag

The function Tridiag solves a tridiagonal system of linear equations. It implements LU decom-
position for the special case of tridiagonal systems.

Syntax

X=Tridiag(a,d,c,B)

returns a vector X, which is the solution of the system of linear equations A.X=B, where the
matrix A is tridiagonal; the sub-diagonal vector is a, the diagonal vector is d, and the above-
diagonal vector is c. For a tridiagonal system A.X=B of N equations, the arguments a and d must
have N elements, while the argument ¢ must have N — 1 elements. The first element of the sub-
diagonal vector a is ignored (can be nil) and the rest elements of a define the coefficients A[2,1],
A[3,2],A[4,3], ..., ALN,N—1]. The diagonal vector d defines the coefficients A[1,1], A[2,2],
A[3,3],..., ALN,N]1. The above-diagonal vector c defines the coefficients A[1,2], A[2,3],
A[3,4],..., A[N —1,N]. The rest of the elements of the coefficient matrix A are assumed to be
Z€T0.

Example

The example program XTridiag uses the function Tridiag to solve the system of linear equations

3r—2z = 4
r+4y+22 = —7
3y+5z—w = -—15

—2z+Tw = 18.

In this case, the coefficient matrix A is tridiagonal:

3 -1 0 O
1 4 2 0
A= 0 3 5 -1
0O 0 -2 7

Figure shows the results obtained by running this program.
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require ("LNA/Tridiag")
local a,d,c,b,x

a={nil,1,3,-2}
d={3,4,5,7}
c={-1,2,-1}
b={4,-7,-15,18}
x=Tridiag(a,d,c,b)

print ("Sub-diagonal a:")
print (unpack(a))
print("\nDiagonal d:")

print (unpack(d))

print ("\nAbove-diagonal c:")
print (unpack(c))

print ("\nConstants b:")
print (unpack(b))

print ("\nSolution x:")

print (unpack(x))

Example program 10: XTridiag.

[ ¥ Break |

Sub—diagonal a:
nil 1 3 -7

Diagonal d:
32 4 5 7

Hbﬂveidiagnnal o

Constants b:
4 = -15 12

Solution =:
1 -1 -z 2
Done.

Pres= [EXE]...

Done. 1T

Figure 4.7: Results obtained by the example program XTridiag.
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Remarks

A tridiagonal system A.X=B can, of course, be solved by LUsolve (see section [4.2.3, page 36)).
However, using Tridiag instead of LUsolve saves both memory and computation time. By using
Tridiag, only the non-zero elements of the matrix A must be defined.

FILENAME: Tridiag.

DEPENDENCIES: None.

4.2.7 Jacobian

The function Jacobian computes the Jacobian of a multivariate function numerically.

Syntax

J=Jacobian(F,x) ‘

returns a matrix J, which is the Jacobian of a multivariate function F. This function must be
defined as F(x), where x is a vector defining the independent variables zi,xo,...,zN; it must
return a vector of IV elements:

Fi (21, 29,...,2N)
F2 ($1,$2,.--,$N)
F(x) = F(x1,22,...,2N) = .
FN ($1,$2,...,$N)
The result obtained is the matrix
orm  om .. OF
ox1 Oxo ox
[5) [5] 0
J@y=| " 7o o
OFNy OFy OFn
Oz Oza ox N

at the specified values x={x[1],x[2],...,x[N]}.

Example

The example program XJacobia uses the function Jacobian to compute the Jacobian of the
function
22 — 2w9 + 13 — 2
F(z) = F(x1,22,23) = o3 —4x3 4+ 7
xr1 + xgxg -1

at the point (1,2, —1).

Figure [4.8] shows the results obtained by running this program. Note that the Jacobian can
be computed analytically:

201 —2 1
J(w1,29,23) = | 322 0 —8x3
1 x% 2%2%3

The result obtained numerically is very accurate, and almost equal to the correct value, J (1,2, —1).
In this case, the maximum absolute error is 1078.
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require ("LNAutils/MatPrint","LNA/Jacobia")

local function F(x)
return {x[1]-2-2*x[2]+x[3]-2,x[1]1"3-4*x[3]~2+7,x[1]+x[2]*x[3]~2-1}
end

local Japprox
Japprox=Jacobian(F,{1,2,-1})

print ("Aproximate Jacobian:")
MatPrint (Japprox,"/+.4f")

Example program 11: XJacobia.

| »r Break |

Aprozximate Jacobian:
+2.A8EE —2.HEEE +1 . AEEE
+3. 0888 +@.800E +5. AE8E
+1.6868688 +1.86006 —-4.0088
Done.

Pres=s [EXE]...

Done. -7

Figure 4.8: Results obtained by the example program XJacobia.
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Remarks

Although numerical approximation of the Jacobian is usually accurate enough, it is always better
(and always possible) to define the Jacobian analytically.

FILENAME: Jacobia.

DEPENDENCIES: None.

4.2.8 Broyden

The function Broyden solves a system of non-linear equations by implementing Broyden’s method.
This method is iterative, and tries to find a solution, starting by a user-supplied initial guess. It
is often considered as the method of choice for solving systems of non-linear equations.

Syntax

root=Broyden(xguess,F, J, eps, mazit, show) ‘

returns a vector root, which is the solution of a system of non-linear equations. The general
form of a system of N non-linear equations with N unknowns z1,zo,...,zy is F (z) = 0, which
is expressed analytically as

F1 ($1,$2,...,$N) =
F2 ($1,$2,...,$N) =
FN(.%'l,l'Q,...,l'N) = 0.

xguess is the initial guess of the solution, and should be a vector of N elements. F is the name of
a user-defined function F(x), which returns a vector defining the left-hand-side of the equations
to be solved, given a vector x defining the independent variables. The arguments J, eps, maxit,
and show are optional.

The argument J must be the name of a function J(x) defining the Jacobian matrix J (z). If
omitted, this argument takes the default value J="’auto’’, which means that the Jacobian will be
computed numerically.

eps defines the desired accuracy (default: Epsilon, i.e., 1.12 x 10716); maxit defines the
maximum number of iterations (default: 20); show is a boolean argument that controls whether
progress of the calculation will be displayed or not (default: false).

Example
Consider the system of non-linear equations
4 —
T1—Tog+x3—5 =

4l -3 =

xr1 + $2$§ =
In this case, the multivariate function F'(x) is defined as
4
T1— Ty +2T3—9

F(z) = F(x1,22,23) = 2+ 23 -3
.%'1+.%'2.%’§
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Its Jacobian is

1 —4a3 1
J(x) = J (x1,29,23) = | 221 323 0
1 3 2179

The example program XBroyden uses the function Broyden to find the solution of this system of
non-linear equations with initial guess x1 = 2, x9 = 0, x3 = 3. In order to check the result, the
program computes the function values at the solution obtained.

require ("LNA/Broyden")

local function F(x)
return {x[1]-x[2]~4+x[3]-5,x[1]"2+x[2]"3-3,x[1]+x[2]*x[3]~2}
end

local function J(x)
return {{1,-4*x[2]"3,1},{2*x[1],3*x[2]"2,0},{1,x[3]1"2,2*x[2]*x[3]}}
end

local root

root=Broyden({2,0,3},F,J)

print("Solution:")

for i,v in ipairs(root) do print(i,v) end
print ("\nFunction value:")

for i,v in ipairs(F(root)) do print(i,v) end

Example program 12: XBroyden.

Figure shows the results obtained by running this program. Note that, in this exam-
ple, the Jacobian is defined by the user. Alternatively, one can call the function Broyden as
root=Broyden({2,0,3},F). In this case, the Jacobian is omitted, and it is computed numeri-
cally.

The reader should modify the initial guess in the above example, to see how the solution
obtained is affected by a “bad” initial guess. For example, try the following cases:

1. xguess={3,1,6} is not a good initial guess, but the solution obtained is correct.

2. xguess={1,0,5%} is not a good initial guess, but the solution obtained is accurate, although
the maximum number of iteration is reached, and the accuracy criterion is not satisfied.

3. xguess={0,1,0%} is a very bad initial guess; the maximum number of iteration is reached,
the accuracy criterion is not satisfied, and the “solution” obtained is wrong.

Remarks

A good choice of the initial guess xguess is crucial for Broyden’s algorithm. Although you may
get correct results using an initial guess far from the correct solution, it is always better to supply
a good initial guess. Failure to do so may cause Broyden to return a totally wrong “solution”; in
this case, a warning message will be printed, and you should alter the initial guess.

Usually, there is no need to change the default value for the “accuracy” eps. The algorithm
should converge after a few iterations; if it does not, it is almost sure that it will never converge,
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[ ¥ Break |

Solution:

1 1.7332857423775

2 —-H. 16235485884328
3 3. 26T4R984569 1

Function walue:

1
% 3.44@892@985@@69—@16
Done.

Pres= [EXE]...

Done. 1T

Figure 4.9: Results obtained by the example program XBroyden.

due to wrong initial guess, or wrong input data. In other words, you will probably never need to
use the optional argument maxit. The most common error when using Broyden is to define F or
J incorrectly; in most cases, this will cause wrong results, obtained after the maximum number
of iterations is reached.

If the Jacobian J is omitted, it is computed numerically by using the function Jacobian (see
section 4.2.7, page [42). Although numerical computation of the Jacobian is usually accurate
enough, it is better to supply it by using the argument J. In most cases, computing the Jacobian
analytically is not difficult at all.

FILENAME: Broyden.
DEPENDENCIES: Epsilon, MatMul, MatTrans, Jacobian, LUdecom.

4.3 Interpolation and extrapolation

4.3.1 LinlInterp

The function LinInterp performs linear interpolation (or extrapolation).

Syntax

v=LinInterp(xpoint, dernumber,xdata,ydata,warn ser) ‘

returns the value of the linear interpolating function (or its first derivative) at a specified point
xpoint. The argument dernumber is an integer defining the order of the derivative to be com-
puted. Setting dernumber=0 means that the value of the interpolating function will be computed;
setting dernumber=1 will return the first derivative at x = xpoint. The arguments xdata and
ydata must be two vectors, containing the z- and y-coordinates for each data point, respectively.

If xpoint lies outside the data range, extrapolation will be performed, and the result may
not be accurate. The optional boolean argument warnuser controls whether the user should be
warned in this case (default: true).
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Example

In the example program XLinInt, a set of 19 data points concerning the function f (z) = sin ()
is defined, within the interval [—2,7]. Then, interpolating functions approximating f (x) and %
are defined by using LinInterp. The results are shown graphically. For simplicity, data points
are equally spaced, i.e., the vector xdata is created by using LinSpace (see section[2.2.2] page(8).

require("draw","LNAplot/PlotData","LNAplot/PlotFunc","LNAutils/LinSpace"
,"LNA/LinInt")

local xdata,ydata,axesdata

xdata=LinSpace(-2,7,19)

ydata={}

for i=1,#xdata do
ydatal[i]l=math.sin(xdatal[i])

end

local function flinear(x)

return LinInterp(x,0,xdata,ydata)
end

local function dflinear(x)

return LinInterp(x,1,xdata,ydata)
end

axesdata=PlotData(xdata,ydata,{-2,7},{-1,1},false,1,3,0,"auto",true,1)
PlotFunc(flinear,{},axesdata)

draw.clear()

PlotFunc(dflinear,{-2,7},{-1,1},true,2, "auto",true, 1)

Example program 13: XLinlInt.

Figure shows the results obtained by running this program. In figure [4.10a, the data
points are plotted, together with the interpolating function approximating f (x). Figure 4.10b
shows the interpolating function approximating %.

In this example, f (z) is well approximated by linear interpolation (the error is rather small).
The approximated derivative % is a piecewise constant function, and it is obviously not accurate.

The reader should modify the number of data points to see how the accuracy of the results
is affected. For example, changing the number of data points to 55 (instead of 19) will result a
much more accurate approximation for the first derivative.

Remarks

A sufficiently large set of data points is crucial for obtaining accurate results using linear in-
terpolation. Note that linear interpolation produces a piecewise linear function; therefore, its
derivative is by nature a piecewise constant function. Obviously, the interpolating function is
not differentiable at all data points.

The vector xdata must contain monotonically increasing or decreasing data. If this is not the
case, you must sort the elements of vector xdata (making also the appropriate changes in vector
ydata) before calling LinInterp. Note that z-coordinates stored in the vector xdata need not
to be equally spaced.

FILENAME: LinlInt.
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Figure 4.10: Results obtained by the example program XLinInt.

DEPENDENCIES: None.

4.3.2 CreateSpline

The function CreateSpline computes all data needed to define a cubic spline interpolating
function.

Syntax

scoeff=CreateSpline(xdata,ydata,stype, endder)

returns the spline coefficient data, scoeff, needed to perform cubic spline interpolation. The
arguments xdata and ydata must be two vectors, containing the z- and y-coordinates for each
data point, respectively. The arguments stype and endder are optional. The argument stype is
a string, defining the type of the spline function to be created. It must have one of the following
values:
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‘ Spline type ‘Meaning ‘

“not-a-knot’’ | The third derivative of the spline function is assumed to be
continuous at the data points adjacent to the end points.
“‘clamped”’ The first derivative at the end points is known. In this case,
the optional argument endder must be present.
“prolonged’” | The curve is “prolonged”, so that end data points are treated
as internal points.

“natural’’ The well-known “natural” cubic spline. The second derivative
at the end points is assumed to be zero.

‘‘quadratic’® | The second derivative is assumed to be constant near the end
points.

The default value is stype=‘‘not-a-knot’’, which is usually the best choice, if you don’t have
any additional information concerning the underlying function.

endder is a vector of two elements, defining the first derivative at the end points. endder[1]
must be equal to the first derivative at * = xdata[1]; similarly, endder[2] must be equal to
the first derivative at x = xdata[N], where N is the total number of data points. Note that
endder must be supplied only if stype is defined as “‘clamped’’; in all other cases, this argument
is ignored.

Remarks

From an accuracy point of view, use essentially the ‘‘clamped’’ spline type, if you know the end
point derivatives, otherwise use ‘‘not-a-knot’’. The ‘“prolonged’’ spline type is sometimes used
as an alternative to ‘‘not-a-knot’’. Despite its name, the ‘‘natural’’ spline type is not a good
choice, unless you know that the second derivative of the underlying function is equal to zero at
the end points; if you don’t have any reason to assume this, do not use ‘‘natural’’ splines. In a
similar manner, the ‘‘quadratic’’ spline type should only be used if you know that the second
derivative is almost constant near the end points.

Asin, LinInterp, the vector xdata must contain monotonically increasing or decreasing data.
However, xz-coordinates stored in this vector need not to be equally spaced.
FILENAME: CSpline.
DEPENDENCIES: Part, Tridiag.

4.3.3 CubicSpline

The function CubicSpline creates a cubic spline interpolating function using spline coefficient
data previously computed by CreateSpline.

Syntax

v=CubicSpline(xpoint, dernumber,xdata,scoeff,warn ser) ‘

returns the value of the cubic spline interpolating function (or its first or second derivative) at a
specified point xpoint. The argument dernumber is an integer defining the order of the derivative
to be computed. Setting dernumber=0 means that the value of the interpolating function will
be computed; setting dernumber=1 or dernumber=2 will return the first or the second derivative,
respectively, at x = xpoint. As in CreateSpline, the argument xdata is a vector containing
the z-coordinates for each data point. The argument scoeff is a matrix containing cubic spline
coefficient data, as computed by CreateSpline.
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The optional boolean argument warnuser has the same meaning as in LinInterp (see sec-
tion . It controls whether the user should be warned if xpoint lies outside the data range
(default: true).

Example

The example program XCSpline is similar to XLinInt. A set of 10 data points concerning the
function f (x) = sin(x) is defined, within the interval [—2,7]. The function CreateSplgLne is

' da? i
defined by using CubicSpline. The results are shown graphically. For simplicity, the vector
xdata is created by using LinSpace, so data points are equally spaced, although this is not
necessary.

used to compute spline data; then, cubic spline functions approximating f (z) 4 and ?Té are

require ("draw","LNAplot/PlotData","LNAplot/PlotFunc","LNAutils/LinSpace"
,"LNA/CSpline")

local xdata,ydata,scoeff,axesdata

xdata=LinSpace(-2,7,10)

ydata={}

for i=1,#xdata do
ydata[i]=math.sin(xdatali])

end

scoeff=CreateSpline(xdata,ydata)
local function fspline(x)

return CubicSpline(x,0,xdata,scoeff)
end

local function dfspline(x)

return CubicSpline(x,1,xdata,scoeff)
end

local function d2fspline(x)

return CubicSpline(x,2,xdata,scoeff)
end

axesdata=PlotData(xdata,ydata,{-2,7},{-1,1},false,1,3,0,"auto",true,1)
PlotFunc(fspline,{},axesdata)

draw.clear()
PlotFunc({dfspline,d2fspline},{-2,7},{-1,1},true,{2,1},"auto",true,1)

Example program 14: XCSpline.

Figure shows the results obtained by running this program. In figure 4.11a, the data
points are plotted, together with the spline function approximating f (x). Figure[4.11b shows
the spline functions approximating % (thick line) and 327]; (thin line).

In this example, f (z) is very well approximated by cubic splines (the error is very small). The
approximated derivative % has a larger error, but it is still accurate. On the other hand, the

error in approximated Zi—g is considerably larger. This is the expected behavior of cubic splines.

A simple comparison of figures [4.11 and [4.10 shows what should be expected if cubic spline
interpolation is used, instead of linear interpolation. It is obvious that the first derivative is much
more accurately approximated by cubic splines, although fewer data points were used.
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Figure 4.11: Results obtained by the example program XCSpline.

The reader should modify the number of data points to see how the accuracy of the results is
affected. For example, changing the number of data points to 30 (instead of 10) will result very
accurate approximations, even for the second derivative. Note that, in this example, the default
(“not-a-knot’’) spline type is used. The reader should try different spline types. For example,
the command

scoeff=CreateSpline (xdata,ydata,’’clamped’’,{math.cos(-2) ,math.cos(7)})

can be used instead of scoeff=CreateSpline (xdata,ydata). This way, a more accurate “clamped”
spline function will be created.

Remarks

Before calling CubicSpline, the function CreateSpline must be called. It is important to
understand that CreateSpline must be called only once to compute the necessary spline data.
Once this has been done, values of the interpolating function (or its derivatives) can be obtained
by calling CubicSpline as many times as necessary.

Cubic splines are often useful to compute the first or the second derivative numerically. Al-
though numerical differentiation is known to be very unsafe, estimating the derivatives by cubic
spline interpolation is usually accurate, provided that the underlying function is sufficiently
smooth, and a sufficient amount of data points is available.

In general, cubic spline interpolation is considered as the method of choice, especially in
situations where continuity of the first derivative is a concern.

FiLENAME: CSpline.
DEPENDENCIES: Part, Tridiag.
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4.3.4 Extrapolation

The functions LinInterp and CubicSpline can be used to extrapolate data, i.e., to compute
the value of the function (or its derivatives) outside the data interval. In this case, a warning
message will be printed, to inform the user that extrapolation has been requested. This warning
message can be switched off by setting the optional argument warnuser to false (this is useful
if you want to avoid multiple warning messages printed by LinInterp or CubicSpline). To
see how extrapolation works, modify the example programs XLinlnt and XCSpline, so that the
interpolating function will be plotted for x € [—3, 8]. Since data points in these example programs
are available in the range = € [—2, 7], extrapolation will be used for z € [-3, 2] and z € [7, §].

It is worth emphasizing that extrapolation is very unsafe, and should be avoided. In rare
cases, however, extrapolation could be useful. Even if you need to perform extrapolation, do so
for x-values near the end points. Setting xpoint outside the data interval, and too far from the
end data points, will probably return a totally erroneous result.

4.4 Curve fitting

4.4.1 LMfit

The function LMfit performs a non-linear fit of data to a theoretical function, using the Levenberg-
Marquardt algorithm. It finds a set of parameters a = aj,a9,...,a,,, such that a set of data
(zi,y;) i = 1,2,...,n is best fitted by a function f (z,a) = (z,a1,a2,...,a,). To do this, the
function implements the Levenberg-Marquardt algorithm, which is a rather complex numerical
method, aiming to find a set of parameters a, such that the well-known quantity x? (“chi-square”)
is minimized. Despite its complexity, however, LMfit can be easily used in a Lua program, in
order to find a theoretical curve that best models a set of data.

Syntax

chi2,a,Da=LMfit(f,dfda,aguess,xdata,ydata, show, sigma, eps, mazit)

finds a vector containing a set of parameters, a, so that the data set (xdata[i],ydata[i]) is
best fitted by a function f(x,a). f is a user-defined theoretical function that models the data; it
depends on x and the set of parameters, a. dfda is a function defining the partial derivatives of £
with respect to the parameters a; this function should return a vector containing the derivatives
BB—JI, %, e %. aguess is a vector containing the initial guess for all the parameters a. xdata
and ydata are two vectors of the same size, containing the z- and y-coordinates of the data
points. The arguments show, sigma, eps and maxit are optional. show is a boolean argument
that controls whether progress of the calculation will be displayed or not (default: true). sigma
defines the standard deviation of the data points; it can be a number or a vector of the same size
as xdata and ydata: if it is a number, all data points are considered to have a standard deviation
equal to sigma; if it is a vector, each data point (xdata[i],ydata[i]) has a standard deviation
equal to sigmalil; if sigma is omitted, all data points are taken with a standard deviation
equal to 1. The optional argument eps defines the desired accuracy of the algorithm (default:
eps=0.01), and the argument maxit defines the maximum number of iterations (default: 20).
The function returns the final (minimized) value for x2, chi2, and the estimated value for all
the parameters, a. If the specified standard deviation is constant to all data points, LMfit also
returns a vector Da, containing the estimated confidence interval for all the parameters (with a
risk equal to 5%). In other words, the final value for the first parameter is a[1]+Da[1], the final

value for the second parameter is a[2]+Da[2], and so on.

52



LNA version 1.60 Programmer’s manual

Example

Consider a hypothetical experiment, where a physical quantity y is measured, as a function of
another quantity x. It is expected that y relates to x according to y = sin (4z + 1) 4 2 cos (2x).
The following data set has been obtained by the experiment:

—-1.5 | -1.0
—-1.0 | —-1.0
—-0.5| +0.3
+0.0 | +2.8
+0.5 | +1.1
+1.0 | —1.8
+1.7 | -1.0

We want to find a curve of the form
fat (x) = sin (a1 + ag) + 2 cos (asz)

that best fits this data. According to theory, if the measurements are accurate enough, we must
find a1 = 4, ao = 1, ag = 2. However, actual parameters obtained may vary, due to errors in
measurements. The example program XLMfit uses the function LMfit to find the optimal values
of the parameters a1, as, as, starting from the initial guess a1 = 3, ag = 0, a3 = 1. The program
also uses LNAplot functions to plot the data set and the fitting curve. Note that, in this case,

the partial derivatives %’ 5)—6{;, and 86—;; are given by

0

8—6{1 = xzcos(a1x + ag),
d

8—(‘;; = cos(a1z + az),
of

9a; = —2z cos (asz) ,

and the user-supplied function dfda is defined accordingly.

Figure [4.12 shows the results obtained by running this program. We find a; = 4.04 + 0.11,
as = 1.07£0.07, and a3 = 2.00+0.04. Note that LMfit was able to find very accurate values for
the parameters a1, as, as, although we used a limited set of data points, and a rather bad initial
guess. However, it is always better to use large data sets of accurate measurements, and a good
initial guess.

The reader should modify the initial guess in the above example, to see how both the results
and the computation time are affected by a “bad” initial guess. For example, try the following
cases:

1. aguess={4.05,1.05,1.95} is a very good initial guess; the algorithm converges rapidly to
very accurate parameter values.

2. aguess={2,0,1} is a bad initial guess; the algorithm needs 11 iterations to converge, but
the results are still very accurate.

3. aguess={0,0,1} is a very bad initial guess; the algorithm converges to a rather large value
of x? after 6 iterations, and the results obtained are clearly wrong.
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require ("LNAplot/PlotFunc","LNAplot/PlotData","LNA/LMfit")

local function f(x,a)

return math.sin(a[1]*x+a[2])+2*math.cos(a[3]*x)

end

local function dfda(x,a)

return {x*math.cos(al[1]l*x+a[2]),math.cos(al[1]*x+a[2]),-2*x*math.sin(a[3]*x)}
end

local x,y,a,Da,chi2,axesdata

x={-1.5,-1,-0.5,0,0.5,1,1.7}
y={-1,-1,0.3,2.8,1.1,-1.8,-1}
chi2,a,Da=LMfit (f,dfda,{3,0,1},x,y)
print ("\nFinal ilio: "..chi2)

print ("\nParameters:")

for i,v in ipairs(a) do print(i,v) end
print ("\nConfidences:")

for i,v in ipairs(Da) do print(i,v) end

axesdata=PlotData(x,y,{-2,2},{-2,3},false,1,3,0,"auto",true,1)
local function ffit(x)

return f(x,a) end

PlotFunc(ffit,{},axesdata,true)

Example program 15: XLMfit.

|‘¢F Break |
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Done.
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FEunning. .. . 1T | . Done. -7

Figure 4.12: Results obtained by the example program XLMfit.
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You should also try to modify the data points to see how the results are affected. For example,
try to add an erroneous data point, or to use more accurate measurements.

It is worth emphasizing that the problem of non-linear fitting may have more than one correct
solutions. For example, an initial guess equal to aguess={3,0,-1} (instead of {3,0,1}) will give
the same results for the parameters a; and as, but as is now computed as ag = —2.00 4+ 0.04;
there is nothing wrong in this solution, since cos (agxz) = cos (—agx). In other words, if there are
more than one solutions, LMfit does not have any way to “know” which solution is preferred; the
solution that LMfit returns depends on the initial guess.

Remarks

Data stored in vector xdata need not to be sorted; unsorted z-data may be used, without
affecting algorithm’s behavior in any way. A good choice for the initial guess, aguess, is often
crucial for the Levenberg-Marquardt algorithm. If the initial guess is far from the correct values,
the algorithm may fail to converge, or it may converge to a wrong set of parameters. The most
common error when using this function is to define £ or dfda incorrectly; this will cause slow
convergence to wrong results, so pay attention when defining these functions.

The “accuracy” eps refers to the minimized value for x2, not to the values of the parameters
a; usually, there is no need to change its default value. The algorithm should converge after a
few iterations (usually, less than 10); if it does not, it is almost sure that it will never converge,
due to wrong initial guesses, or wrong input data. Therefore, you will probably never need to
use the optional argument maxit.

FILENAME: LMfit.
DEPENDENCIES: MatTrans, LUdecom.

4.5 Numerical integration

4.5.1 TrapAdapt

The function TrapAdapt computes the definite integral of a function via the adaptive trapezoidal
method. The adaptive trapezoidal method splits the integration interval into two subintervals
and calls itself recursively, until the desired accuracy for the integral in each subinterval is
satisfied.

Syntax

‘ q,err=TrapAdapt(f,a,b, eps,warn ser,minstep)

returns the definite integral, g, of the function f, integrated from a to b; it also returns the
estimated error, err. The arguments eps, warnuser, and minstep are optional: eps defines
the desired accuracy (default: 107%); warnuser is a boolean argument that controls whether the
user should be warned if the minimum step has been reached during calculations (default: true);
minstep defines the minimum integration step (default: Epsilon, i.e., 1.12 x 10716).

Example

The example program XTrapAd uses the function TrapAdapt to compute the integral

3
/ 2 4 cos (2x)
—312
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In order to check the result, the absolute and relative errors are computed, given that the correct
answer is 5.4909971377758389 (accurate to 16 decimal digits). The function to be integrated is
shown graphically.

require ("LNAplot/PlotFunc","LNA/TrapAd")
local function f(x) return math.abs(x/2+math.cos(2*x)) end

local q,qtru,err

qtru=5.4909971377758389

q=TrapAdapt (f,-3,3)

print ("Computed integral:\n",q)

err=qtru-q

print ("Absolute error:\n",err)

print("Relative error:\n",100*err/qtru.."%")
PlotFunc(f,{-3,3},{-0.5,2.5},true,1,"auto" ,true,1)

Example program 16: XTrapAd.

Figure shows the results obtained by running this program. In this example, the integral
is computed with default accuracy (10_6), and the absolute error is indeed less than 1076.

| »r Break |

Computed integral:

% 49@9968841828
Ab=olute error

2. 53593@9259?@99 HE7
Relative erro

4. 61834155498??9 5] 54
Done.

Pres= [EXE]...

Hunnlng {11 Done. (41T

Figure 4.13: Results obtained by the example program XTrapAd.

Remarks

The estimated error is calculated per each integration subinterval. In some “pathological” cases,
this error may be estimated as large, although the total error is very small (usually this happens
in discontinuous functions, such as signal functions). In such cases, you may want to disable
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the warning message by using warnuser=false. In most cases, the minimum integration step,
minstep, does not need to be changed.

The function TrapAdapt should not be used if there are singularities within the integration
interval.
FILENAME: TrapAd.
DEPENDENCIES: Epsilon.

4.5.2 Romberg

The function Romberg computes the definite integral of a function via the Romberg method.
The Romberg method is one of the most powerful integration algorithms. It is often considered
as the method of choice for numerical integration, provided that the function to be integrated
is sufficiently smooth, and there are no singularities or discontinuities within the integration
interval.

Syntax

‘ q=Romberg(f,a,b, eps, k, show) ‘

returns the definite integral, q, of the function f, integrated from a to b. The arguments eps, k,
and show are optional: eps defines the desired accuracy (default: 107%); k defines the order of
the method (default: 2); show is a boolean argument that controls whether an iteration progress
will be displayed or not (default: false).

Example

The example program XRomberg uses the function Romberg to compute the integral

1 3 =
o= e
V2m J-3
This is the integral of a normal distribution function. In order to check the result, the absolute

and relative errors are computed, given that the correct answer is 0.9973002039367398 (accurate
to 16 decimal digits). The function to be integrated is shown graphically.

require ("LNAutils/Pi","LNAplot/PlotFunc","LNA/Romberg")
local function f(x) return math.exp(-x~2/2)/math.sqrt(2+#Pi) end
local q,qtru,err

qtru=0.9973002039367398

q=Romberg(f,-3,3)

print ("Computed integral:\n",q)

err=qtru-q

print("Absolute error:\n",err)

print ("Relative error:\n",100*err/qtru.."%")
PlotFunc(f,{-3,3},{-0.1,0.5},true,1,"auto" ,true,1)

Example program 17: XRomberg.
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Figure [4.14] shows the results obtained by running this program. Note that the absolute error
of the result is about two orders of magnitude less than the desired accuracy (107%). This is
not surprising; Romberg integration often gives very accurate results, eventhough the desired
accuracy was not very high.

| % Ereak - || ¢ EBreak |

Computed integral:
H.9973801 9884352
Ab=olute error:
1.38929128593322=—002
Relative error:
1.32392385221 746 3e—006%]
Done.

Pres= [EXE]...

FEunning. .. 1T | Done. -7

Figure 4.14: Results obtained by the example program XRomberg.

The reader should modify this example program, in order to compare the results obtained by
Romberg with the corresponding results obtained by TrapAdapt.

Remarks

The order of the method, k, needs to be changed only rarely; the default value, k=2, means
that the Simpson rule will be used iteratively to compute the integral. The function Romberg
performs at most 20 iterations, and, if the accuracy eps is not reached, it returns the estimated
integral, together with a warning message. There is no option to change the maximum number
of iterations, because it is unlikely that more iterations will increase accuracy; furthermore,
performing many iterations will probably lead to insufficient memory errors.

The Romberg method with error control is a very powerful integration method. In most cases,
it gives very accurate results, and it is considerably faster than the adaptive trapezoidal method.
Therefore, you should use Romberg instead of TrapAdapt to perform numerical integration. How-
ever, Romberg method is not suitable for integrating functions that are not sufficiently smooth,
or for functions with discontinuities within the integration interval. In such cases, the function
TrapAdapt might give more accurate results faster.

The function Romberg should not be used if there are singularities within the integration
interval.

FILENAME: Romberg.
DEPENDENCIES: Part.
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4.6 Ordinary differential equations

4.6.1 RKA4Rich

The function RK4Rich solves numerically a first-order differential equation (or a system of first-
order differential equations) via the Runge-Kutta method of fourth order with adaptive stepsize
control via Richardson extrapolation. In other words, it solves an initial value problem, described
by N differential equations

dyr
-V = €, ) [N )
I J1(z,y1, 2 Yn)
dyz
- x? 7 P )
T Ja (z, 91,92 Yn)
dyN‘
dr = fN(:anlyy%'"?yN)’
and a set of N initial conditions y; (z;) = C1,y2 (x;) = Cs,...,yn (z;) = Cn, where z; is the
starting integration point, and Cy,Co,...,Cy are constants. The solution is computed at a set

of automatically selected x—points, within the user-specified interval = € [z;, z¢].

RK4Rich is designed to solve first-order differential equations. However, higher-order differ-
ential equations can also be solved by using a simple transformation to a system of first-order
differential equations. Similarly, systems of higher-order differential equations can be solved by
transforming each differential equation to a set of first-order differential equations.

Runge-Kutta methods are widely used due to their efficiency. However, simple Runge-Kutta
methods with fixed stepsize have an accuracy that depends on the integration stepsize. RK4Rich
implements a more powerful Runge-Kutta method, where Richardson extrapolation is used to
control the stepsize, so that the integration steps are selected automatically. This method is
highly accurate, and has a very good error control. It is often considered as the method of choice
for solving ordinary differential equations, provided that they are not extremely stiff.

Syntax

‘ yf,zp,yp=RK4Rich (RHS,xi,yi,xf, save, eps, mazit) ‘

integrates the differential equation(s) defined by the function RHS from x = xi to z = xf, with
initial condition(s) y=yi. It returns the value of the function(s), yf, at the end point, and,
optionally, a vector xp, containing the x—values selected by the algorithm, and a matrix yp,
containing the corresponding function value(s); the first row of yp contains the values of the first
function at the integration points xp, the second row contains the corresponding values for the
second function, and so on. The function RHS should be written by the user, and defines the
right-hand-side of the differential equation(s) to be solved. The argument yi is a vector defining
the value of the functions at x=xi. The arguments save , eps, and maxit are optional: save
is a boolean argument that controls whether the integration steps will be saved or not (default:
false); if set to true, the vector xp and the matrix yp will be returned. eps defines the desired
accuracy (default: 107%), and maxit defines the maximum number of integration points (default:
1000).

Example 1: Solving a system of first-order differential equations

Consider the initial value problem described by the system of differential equations

dy1 y2

= —3xv°
dx xy1—|—1+m3,
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dys TYo

dr Y1 — 5
and the initial conditions y; (0) = 0.5 and y2 (0) = 1.5. We want to find the solution, y; (z),
y2 (z), for = € [0,5]. The example program XRK4Ricl uses the function RK4Rich to solve the
problem. The algorithm selects a number of appropriate integration points from x = 0 to = = 5.
We set savesteps=true, so integration points are stored to the vector xp; the solution at these
points is stored in the matrix yp.

require ("LNAplot/PlotData","LNA/RK4Rich")

local function RHS(x,y)
return {-3%x*xy[1]~2+y[2]/(1+x"3),y[1]-x*y[2]/5}
end

local y,xp,yp
y,%p,yp=RK4Rich(RHS,0,{0.5,1.5},5,true)
print (#xp.." integration points selected.")
print("Solution at end point:")

for i,v in ipairs(y) do print(i,v) end

PlotData(xp,yp,{0,5},{-0.1,2.5},true,0,0,{1,2},"auto",true, 1)

Example program 18: XRK4Ricl.

Figure[4.15 shows the results obtained by running this program. In this example, the algorithm
has selected 309 integration points (#xp=309, xp[1]1=0, xp[309]1=5). The values of y; (z) at these
integration points are stored in the first row of the matrix yp, and the values of ys (z) are stored
in the second row. The LNAplot function PlotData is used to show the results graphically. Thin
line corresponds to y; (x), and thick line corresponds to ys ().

Example 2: Solving a second-order differential equation

Consider the second-order differential equation

Py _ o dy
dz? y ydm’

which must be solved with respect to the initial conditions y (—1) = 0 and g—g = 2. Setting
—

y1 =y and yg = g—g transforms this equation to

o

d.%' 2

dys

- = TY1— Yiy2-
dx

The initial conditions are now written as y; (—1) = 0, y2 (—1) = 2. Therefore, the problem
has been reduced to a system of first-order differential equations. Solving this problem using
RK4Rich is now straightforward. The example program XRK4Ric2 shows how the problem is
solved. RK4Rich selects a number of appropriate integration points from x = —1 to z = 3.
Figure[4.16 shows the results obtained by running this program. In this example, the algorithm
has selected 237 integration points (#xp=237, xp[1]1=-1, xp[237]1=3). The values of y (x) at these
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[ ¥ Break | [ ¥ Break |

289 integration points
selected.

Solution at end point:
1 H. 3745873690357 3
2 H. 2338951 32331568952
Done.

FPres= [EXE]...

] = ] T ;
Bunning. .. 1T Done. 1T

Figure 4.15: Results obtained by the example program XRK4Ricl.

require ("LNAplot/PlotData","LNA/RK4Rich")

local function RHS(x,y)
return {y[2],x*y[1]-y[1]*y[2]}
end

local y,xp,yp
y,%p,yp=RK4Rich(RHS,-1,{0,2},3,true)

print (#xp.." integration points selected.")
print("Solution at end point:")

for i,v in ipairs(y) do print(i,v) end

PlotData(xp,yp,{-1,3},{-0.25,5},true,0,0,{1,2},"auto",true, 1)

Example program 19: XRK4Ric2.
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integration points are stored in the first row of the matrix yp, and the values of the derivative Z—i’

are stored in the second row. In the graphical representation of the results, thin line corresponds

to y (x), and thick line corresponds to g—g.

| »r Break |

237 integration point=s
selected.

Solution at end point:
1 S.277ERTTSVES13
2 2. TEST262924358
Done.

Pres= [EXE]...

; 0 1 5 !
FEunning. .. 1T | Done. -7

Figure 4.16: Results obtained by the example program XRK4Ric2.

Remarks

The starting integration point x = xi needs not to be less than x = xf. You can also reverse the
direction of integration, by setting xi > xf. This is particularly useful when initial conditions
are known at the right end point of the domain.

Computation time is typically a few seconds. In most cases, RK4Rich is powerful enough to
return a result with an absolute error much less than the desired accuracy. Don’t be surprised
if you get a result with an absolute error of order ~ 10~ or less, although the preset accuracy,
107°, was used. However, the algorithm may need many integration points, especially if the
integration interval is large. In this case, you may need to reduce accuracy, eps, or increase the
maximum number of iterations, maxit. Note that, if save is set to true, you cannot set maxit
to a very large number, due to memory constraints.

It is worth emphasizing that setting save=true is useful only if you need all intermediate
results, i.e., the value(s) of the function(s) at each integration point. If you only need the solution
at the end point, x=xf, you should not save intermediate steps. This way, a large amount of
memory is saved, and you can solve problems that need a very large number of integration points.
FILENAME: RK4Rich.

DEPENDENCIES: None.

4.6.2 Shoot

The function Shoot solves a two-point boundary value problem, described by (a) a system of N
first-order differential equations,

dy1

dax = fl(wvyhy%"'?y]v)’
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dy2
dr = f2($ay1,y2""7yN)a
dyn
% - fN(x7y17y27"'7yN)7

(b) a set of N; boundary conditions at x = z;, and (c) a set of Ny boundary conditions at
x = xy, where x;, x; are the left and right end points of the integration interval, respectively.
The total number of boundary conditions must be equal to the number of differential equations,
ie, N;+Ny=N.

Alternatively, one or more differential equations of the second (or higher) order can be solved,
provided that they can be converted to a system of first-order differential equations. Shoot is
not restricted to simple Dirichlet or Neumann boundary conditions; more complicated Robin
boundary conditions are also allowed.

This function is an implementation of the well-known shooting method for solving boundary
value problems, hence its name. The shooting method is iterative, and it is widely used for its
efficiency and speed. Used properly, Shoot is able to solve difficult boundary value problems in
a rather short computation time, and with high accuracy. However, the reader should realize
that solving boundary value problems is a very complicated task, and requires a large amount
of computations. Shoot is a complicated function, and extensively uses “heavy” LNA functions,
namely RK4Rich and Broyden. As a consequence, Shoot is currently the most memory-consuming
function included in LNA.

The reader should be aware that, used improperly, Shoot may fail to solve a simple problem,
as easily as it solves difficult problems when used properly. Furtheremore, Shoot can be called
in many ways, depending on the problem at hand; this means that its syntax may confuse the
novice user. Consequently, it is absolutely necessary to study all examples presented in this
section before trying to use Shoot for the first time.

Syntax

yimissing,yi,yf,zp,yp=Shoot (RHS,xi,yiguess,Init,xf,Bound, save, eps,mazit, show)

finds a set of missing initial conditions, yimissing, so that the solution of the system of differ-
ential equations described by the function RHS satisfies a set of boundary conditions at x = xi
and x = xf. As in RK4Rich, the user-provided function RHS should define the right-hand-side of
the differential equations to be solved. yiguess is a vector, defining initial guesses for all missing
initial conditions. Init is a user-defined function returning all initial conditions; it must be called
as Init (yiunknown), where yiunknown is a scalar, if there is only one missing initial condition,
or a vector, if more than one initial conditions are missing. Bound is also a user-defined function,
returning the boundary condition(s) at the end of the domain of integration; it must be called
as Bound (y), where y is the vector of the unknown functions. The function Bound should return
a scalar, if there is only one known boundary condition at x = xf, otherwise it should return a
vector, containing all known boundary condition at x = xf.

Some general examples will help understanding how the user-provided functions Init and
Bound should be implemented. Assume that there are three differential equations, involving
three unknown functions yi, y2, and y3. Now consider the following cases:

1. There is one known boundary condition at = xi (y; = 0), and two known boundary con-
ditions, at © = xf (y2 = 5, y3 = —7). The function Init should return {0, yiunknown[1],
yiunknown[2]}, where O means that y; (xi) = 0, yiunknown[1] corresponds to the first
missing initial condition, ¥, (xi), and yiunknown[2] corresponds to second missing initial
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condition, y3 (xi). The function Bound should return {y[2]-5, y[3]+7}, meaning that
y2(xi) — 5 =0, and y3(xi) + 7 = 0. Note that all boundary conditions at z = xf are
written as f (y1,y2,...) = 0.

2. There are two known boundary condition at © = xi (y; =0, y3 = —2), and one known
boundary condition, at z = xf (y; = 8). The function Init should return {0, yiunknown,
-2}, where 0 means that y; (xi) = 0, yiunknown corresponds to the missing initial condi-
tion, ys (xi), and -2 means that y3 (xi) = —2. The function Bound should simply return
y[1]-8, meaning that y; (xf) —8 = 0. Note that, in this case, Bound returns a scalar, since
only one boundary condition is known at x = xf.

3. There are two known boundary condition at x = xi (y; = 4, 5y + y3 = 1), and one known
boundary condition, at x = xf (y3 = 0). In this case, the second boundary condition at
x = xi is a Robin boundary condition. In other words, we do not know y, (xi) or y3 (xi)
explicitly; instead, we know a relationship between them. We have two options: the un-
known initial condition can be set to y2 (xi) or y3 (xi). In the first case, the function
Init should return {4, yiunknown, 1-5*yiunknown}, where 4 means that y; (xi) = 4,
yiunknown corresponds to the missing initial condition, yo (xi), and 1-5*yiunknown means
that y3(xi) = 1 — 5y (xi). In the second case, the function Init should return {4,
(1-yiunknown)/5, yiunknown}, where yiunknown corresponds to the missing initial con-
dition, y3 (xi), and (1-yiunknown)/5 means that y, (xi) = kgjzﬂ Whatever we choose
as the missing initial condition, the function Bound should simply return y[3], meaning
that y3 (xf) = 0.

On output, Shoot returns the missing initial condition(s), yimissing, which is a scalar, if only
there is only one missing initial condition, or a vector, if there are more than one missing initial
conditions. Shoot also returns the vector yi, which is a complete set of appropriate initial
conditions, as computed by the shooting method. Asin RK4Rich, the optional boolean argument
save controls whether the integration steps will be saved or not (default: false). If set to true,
Shoot returns a vector xp, containing the x—values selected by the algorithm, and a matrix yp,
containing the corresponding function value(s); the first row of yp contains the values of the first
function at the integration points xp, the second row contains the corresponding values for the
second function, and so on.

The arguments eps, maxit, and show are optional. eps is a vector with two elements; eps[1]
is the required accuracy of the integration process, and eps[2] is the desired accuracy of the
result. The default values for both accuracies is 1076, Similarly, maxit is a vector of two elements;
maxit[1] is the maximum number of integration points (default: 1000), and maxit[2] is the
maximum number of iterations (default: 20). Both eps and maxit can be set to *’auto’, which
is equivalent to the default values. show is a boolean argument that controls whether progress
of the iterative process will be displayed or not (default: true).

Tips for selecting a good initial guess and improving performance

In general, a good choice for the initial guess, yiguess, is crucial for the shooting method. If the
initial guess is bad, you may encounter problems; either the computation time may be large, or
Shoot may not be able to return a solution, since the maximum number of integration points,
maxit[1], will be probably exceeded. In such cases, increasing maxit[1] is the last thing you
should try. Instead, try to find a better initial guess. If you don’t have any way to do that, try
one or both of the following techniques.
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1. Use a “trial” run of Shoot, with reduced accuracy for the integration process, eps[1],
and reduced accuracy for the result, eps[2]. This will give you a raw estimate of the
missing initial conditions. Then run Shoot again, this time giving as initial guess the
values obtained by the “trial” run. This technique is the first thing you should do whenever
something goes wrong; there are many cases where it gives accurate results, while a single
run of Shoot fails. Even if you are able to obtain a solution by simply calling Shoot, using a
“trial” run of Shoot may reduce the computation time considerably. Compared to a simple
call of Shoot with high accuracy, this technique will give equally accurate results, while
the computation time is usually reduced to more than 50%.

2. If the problem has only one missing initial condition, try to “bracket” that condition, by
using not just an initial guess, {guess}, but an interval {{1guess,rguess}}. In this case,
Shoot will use the function Brent, instead of NewtonR, for finding the root. This will
usually reduce the computation time. Furthermore, there are cases where providing a
single initial guess may fail, while providing an interval for the initial guess gives accurate
results. The main disadvantage of this technique is that there is no general way to find an
interval {{1guess,rguess}}, containing the missing initial condition.

In some cases, a combination of the above techniques can reduce the computation time even
further. If a particular problem has only one missing initial condition, you could use a “trial”
run of Shoot, together with a bracketing interval for the missing initial condition. However, this
combination usually affects the computation time only slightly.

Example 1: Solving a boundary value problem with two boundary conditions

Consider the boundary value problem described by the system of differential equations

dyx .

—— = Sy + Cos Y2,
dx

dy2 2

dx z+y3

and the boundary conditions y; (0) = 0.5 and y; (3) = y2(3). We want (a) to find the missing
initial condition, ys (0), and (b) to find the solution, y; (x), y2 (z), for z € [0,3]. All results
should be accurate to at least five decimal digits. The example program XShootla uses the
function Shoot to solve this problem, starting from the initial guess y2 (0) = 1. The results are
shown graphically.

Note that, since our initial guessis yo (0) = 1, the third argument of Shoot is {1}. Furthermore,
since we require a result accurate to five decimal digits, both accuracies are set to 5 x 1076,

Figure[4.17/shows the results obtained by running this program. In this example, Shoot needs
6 iterations to find the missing initial condition. In the first iteration, the user-provided initial
guess is used for the missing initial condition (in this case, y2 (0) = 1). In all other iterations,
the algorithm selects an appropriate guess for ys (0). The “discrepancy” displayed is the value
returned by Bound for each guess, i.e., it is equal to y1 (3) — y2 (3). Notice how the discrepancy is
getting smaller absolute values, as the algorithm approaches the missing initial condition. The
iteration process is terminated when yo (0) is computed with sufficient accuracy (in this case,
5 x 1079). In the graphical representation of the results, thin line corresponds to y; (x), while
thick line corresponds to y2 (z). You can see that the missing initial condition is indeed computed
accurately, since 1 (3) ~ y2 (3), and the discrepancy is |y; (3) — y2 (3)| ~ 6.86 x 10712,
Note that, in this particular example, the value obtained for the missing initial condition is
y2 (0) = 0.83449967576416. Thorough computations (using very accurate algorithms on a com-
puter) show that this value is accurate to 8 decimal digits. In other words, we get a result which
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require ("LNAplot/PlotData","LNA/Shoot")

local function RHS(x,y)

return {math.sin(y[1])+math.cos(y[2]),y[2]/(x+y[1])~2}
end

local function Init(yiunknown) return {0.5,yiunknown} end
local function Bound(y) return y[1]-y[2] end

local yimissing,yi,yf,xp,yp
yimissing,yi,yf,xp,yp=Shoot (RHS,0,{1},Init,3,Bound,true,{5E-6,5E-6})

print("\nInitial conditions:")

for i,v in ipairs(yi) do print(i,v) end
print("Solution at end point:")

for i,v in ipairs(yf) do print(i,v) end
PlotData(xp,yp,{0,3},{0,2.5},true,0,0,{1,2})

Example program 20: XShootla.

|_"¢F Break _ | | ¥ Ereak |

discrepancy
—4.8562514e+8080
-g.415366e—BA1
-1.3297802=—801
—d4. 63451 9%e—-EE3
—5. 27 T2 The—HEG
—-G.8964731e—-E12

TR LR

Ilnitiaé %n:-nditin:-niz
2 H. 2334499675764 16
Solution at end point:
1 2. 283373087 Toa4
2 2. 283373087703
Done.

Pres= [EXE]...

05 1 45 B eE
FEunning. . . 1T | Done. -7

Figure 4.17: Results obtained by the example program XShootla.
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is much more accurate than requested. This is not surprising; Shoot is often able to return a
result with an absolute error much less than the desired accuracy.

In the example program XShootla, Shoot needs 1 minute and 29 seconds to compute the
missing initial condition and return the solution. However, the computation time can be reduced
considerably by using a “trial” run of Shoot, with reduced accuracies. The example program
XShootlb is a modification of XShootla, where a “trial” call of Shoot is used to find a raw
estimation of the missing initial condition, ys (0). The raw estimation for the missing initial
condition is stored in the variable yilow. Then the function Shoot is called again, with {yilow}
as the initial guess. The reader should compare this example program with XShootla.

require ("LNAplot/PlotData","LNA/Shoot")

local function RHS(x,y)

return {math.sin(y[1])+math.cos(y[2]),y[2]/(x+y[1])~2}
end

local function Init(yiunknown) return {0.5,yiunknown} end
local function Bound(y) return y[1]-y[2] end

local yilow,yimissing,yi,yf,xp,yp

-- Trial call of Shoot:

yilow=Shoot (RHS,0,{1},Init,3,Bound,false,{5E-3,5E-3})

print ("\nRefined guess:",yilow)

waitkey();clear()

-- Final call of Shoot:

yimissing,yi,yf,xp,yp=Shoot (RHS,0,{yilow},Init,3,Bound,true,{5E-6,5E-61})

print("\nInitial conditions:")

for i,v in ipairs(yi) do print(i,v) end
print("Solution at end point:")

for i,v in ipairs(yf) do print(i,v) end
PlotData(xp,yp,{0,3},{0,2.5},true,0,0,{1,2})

Example program 21: XShootlb.

Figure [4.18|shows the results obtained by running this program. The results obtained by the
trial run are shown in figure [4.18a. Note that the trial run needs only 5 iterations, and it is
terminated quickly, because both accuracies are reduced to 5 x 1072. We get the raw estimation
Yo raw (0) = 0.83450010143322, with an error less than 5 x 1073, as required. Figure shows
the results obtained by the second call of Shoot, where the initial guess is set to y2yaw (0). This is
the most time-consuming part of the program, since both accuracies are set to 5x 1075, However,
only 2 iterations are needed, because the initial guess is good enough, so that the second run
starts with low discrepancy, |y1 (3) — y2 (3)| ~ 5.00 x 1076,

Our final result is y9 (0) = 0.83449967576410, which is almost equal to the result obtained by
the example program XShootla (and accurate to 8 decimal digits). However, the computation
time for both the trial and the final call of Shoot is only 42 seconds. In other words, using a
trial call of Shoot, we were able to obtain a very accurate result, while the computation time
has been reduced to about 53%.

In this example, there is only one missing initial condition. Therefore, we could also “bracket”
the missing initial condition, by providing an interval where the missing initial condition lies. To
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|‘¢F Break | |‘¢F Break |
i discrepancy i discrepancy
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(a) Trial call of Shoot. (b) Final call of Shoot.

Figure 4.18: Results obtained by the example program XShootlb.

see how bracketing works, try the following modifications:

1. In the example program XShootla, replace the initial guess, {1}, with {{0,1}}. This

means that 0 < y9 (0) < 1. Having this additional information, Shoot will use the function
Brent (instead of NewtonR) to find the missing initial condition. With this modification,
the computation time is reduced to 52 seconds, well less than the computation time needed
by the previous version of example program XShootla.

. In the example program XShootlb, replace the initial guess, {1} with {{0,1}}. This

brackets the raw estimation of the missing initial condition, 0 < yoraw (0) < 1. Fur-
thermore, we can also bracket the initial guess in the second call of Shoot. Since the
raw estimation s aw (0) has an error less than 5 x 1073, we can use a narrow interval
as the initial guess in the second call. To do that, replace the initial guess {yilow}
with {{yilow-5E-3,yilow+5E-3}}. This means that yoraw (0) — 5 x 1073 < 25 (0) <
Yoraw (0) +5 x 1073. With this modification, the computation time is 41 seconds, which is
almost equal to the computation time needed by the previous version of example program
XShootlb. In other words, a combination of both special techniques affects the computation
time very slightly.

Example 2: Solving a boundary value problem with three boundary conditions

Consider the boundary value problem described by the system of differential equations

dyx

e T + Y3,
X

dy2 Pyt

dx T+ y3
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dys
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and the boundary conditions y3 (0) = —2 and y; (2.5) = 3, y3(2.5) = 4y2 (2.5). We want (a) to
find the missing initial conditions, y; (0), y2 (0), and (b) to find the solution, y1 (x), y2 (x), y3 (x)
for x € [0,2.5]. As in Example 1, all results should be accurate to at least five decimal digits.
The example program XShoot2a uses the function Shoot to solve this problem, starting from the
initial guess y; (0) = 0, y2 (0) = 0. The results are shown graphically.

require ("LNAplot/PlotData","LNA/Shoot")

local function RHS(x,y)

return {y[1]-y[2]+y[3], (x~2*y[1]+y[2])/(x+y[3]~2),-y[1]~2%y[3]-x*y[2]}
end

local function Init(yiunknown) return {yiunknown[1],yiunknown[2],-2} end
local function Bound(y) return {y[1]-3,y[3]-4*y[2]} end

local yimissing,yi,yf,xp,yp
yimissing,yi,yf,xp,yp=Shoot (RHS,0,{0,0},Init,2.5,Bound,true,{5E-6,5E-6})

print ("\nInitial conditions:")

for i,v in ipairs(yi) do print(i,v) end

print("Solution at end point:")

for i,v in ipairs(yf) do print(i,v) end
PlotData(xp,yp,{0,2.5},{-2,3},true,0,0,{1,2,3},"auto" ,true,1)

Example program 22: XShoot?2a.

Figure 4.19] shows the results obtained by running this program. In this example, Shoot
needs 12 iterations to find the missing initial condition. In the first iteration, the user-provided
initial guess is used for the missing initial conditions (in this case, y; (0) = 0, y2(0)). In all
other iterations, the algorithm selects an appropriate guess for y; (0) and y2 (0). The “max
discrepancy” displayed is the maximum absolute value of the discrepancies vector, i.e., it is
equal to max (|y1 (2.5) — 3], |y3 (2.5) — 4y2 (2.5)|). The iteration process is terminated when both
missing initial conditions are computed with desired accuracy (in this case, 5 x 107%). In the
graphical representation of the results, thin line corresponds to y; (), thicker line corresponds to
y2 (x), and thickest line corresponds to y3 (x). The missing initial conditions are indeed computed
accurately, since y; (2.5) ~ 3, and y3 (2.5) ~ 4y (2.5).

The values obtained for the missing initial conditions are y; (0) = 0.46946638871335, and y (0) =
—0.87898247727826. Thorough computations show that these valuse are accurate to 6 decimal
digits. As in the previous example, the results are more accurate than required.

In this example, Shoot needs 4 minutes and 22 seconds to compute the missing initial con-
ditions. This large computation time is caused by several reasons: there are two missing initial
conditions, the initial guess for yo (0) is rather bad, and we have set the accuracy to 5 x 1076,
which is rather excessive for this particular problem. However, the computation time can be
reduced considerably by using a “trial” run of Shoot. The example program XShoot2b is a modi-
fication of XShoot2a, where a “trial” call of Shoot is used to find a raw estimation of the missing
initial conditions, y; (0) and y2 (0). This estimation is used as the initial guess in a second call
of Shoot.
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Figure 4.19: Results obtained by the example program XShoot2a.

require ("LNAplot/PlotData","LNA/Shoot")

local function RHS(x,y)

return {y[1]-y[2]+y[3], (x~2*y[1]+y[2])/(x+y[3]1~2),-y[1]~2*xy[3]-x*y[2]}
end

local function Init(yiunknown) return {yiunknown[1],yiunknown[2],-2} end
local function Bound(y) return {y[1]-3,y[3]-4*y[2]} end

local yilow,yimissing,yi,yf,xp,yp

-- Trial call of Shoot:

yilow=Shoot (RHS,0,{0,0},Init,2.5,Bound,false,{5E-3,5E-3})

print ("\nRefined guess:")

for i,v in ipairs(yilow) do print(i,v) end

waitkey () ;clear()

-- Final call of Shoot:

yimissing,yi,yf,xp,yp=Shoot (RHS,0,yilow,Init,2.5,Bound,true,{5E-6,5E-61})

print("\nInitial conditions:")

for i,v in ipairs(yi) do print(i,v) end

print("Solution at end point:")

for i,v in ipairs(yf) do print(i,v) end
PlotData(xp,yp,{0,2.5},{-2,3},true,0,0,{1,2,3},"auto" ,true,1)

Example program 23: XShoot2b.
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Figurel4.20a shows the results obtained by the trial call of Shoot, where the both accuracies are
reduced to 5 x 1073, The trial run is terminated after 9 iterations, yielding the raw estimations
Y1 raw (0) = 0.46968061295141 and y2yaw (0) = —0.8791822077858, which are stored in the vector
yilow. Figure shows the results obtained by the second call of Shoot, where the initial
guess is set to yilow, and both accuracies are set to 5 x 1075, Only 2 iterations are needed, since
the initial guess is good enough, so that the second run starts with low maximum discrepancy,
max (|y1 (2.5) — 3|, |y3 (2.5) — 4y2 (2.5)]) ~ 2.14 x 1074,

[ ¥ Break | [ ¥ Break |
i max discrepancy i max discrepancy
1 8.5363178e—B81 1 2.144954e—864
2 5.139768=—0a1 2 F.485747=—-007
3 1.517584e—0@1
4 5.5156891e-661 Initial condition=:
5 3.994557e—-0@1 1 H. 4694562385350 7T4
& 7.7E3508=—-002 2 —[.287293228917155
T . 8.138373e—-002 3 -z
2 1.1115684e—-882 Solution at end point:
9 2.933456e—003 1 3. HEBEEREEE4 S
2 H3.877494 162667846
Refined gue=s=s: 3 B, 389375048 1 260G
1 H. 46968061 295141 Done.

2 -H. 8791822877853
Pres= [EXE]...

Bunning. .. 1T Done. 1T

(a) Trial call of Shoot. (b) Final call of Shoot.

Figure 4.20: Results obtained by the example program XShoot2b.

The final values for the missing initial conditions are y; (0) = 0.46946628535074 and y3 (0) =
—0.87898230917155. These values are almost equal to those obtained by the example program
XShoot2a. In fact, they are even more accurate, since thorough computations show that missing
initial conditions are accurate to 9 decimal digits. In other words, using a trial run of Shoot
does not reduce accuracy; on the contrary, the accuracy of the results may be improved (as in
this example). The computation time for both the trial and the final call of Shoot is 1 minute,
44 seconds, which means that, compared with the example program XShoot2a, the computation
time has been reduced to about 60%.

Remarks

Shoot is powerful enough to handle Robin boundary conditions, such as ay; (xi)+bys2 (xi) = ¢. In
other words, boundary value problems where not even one function is known explicitly at = xi
can be solved. However, it is well known that Robin conditions at z = xi are more “sensitive” to
the initial guess. This means that solving a boundary value problem may be a considerably more
difficult task, if there are Robin condition(s) at the starting integration point, and the initial
guess is bad. Shoot is usually able to solve such problems without a good initial guess, but the
computation time may be large. If there are one or more Robin initial conditions at x = xi, while
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there are no Robin conditions at x = xf, you may consider to reverse the integration direction.
In some cases, reversing the integration direction may give accurate results, even if the initial
guess is bad.

It is worth emphasizing that, if you are unable to solve a given problem, you should check the
definitions of the functions Init and Bound before trying anything else; even a small error in
these functions leads to a problem which is different than what you wanted to solve. Often, this
new problem cannot be solved by Shoot, simply because there is no solution.

FILENAME: Shoot.
DEPENDENCIES: RK4Rich, Broyden, Brent, NewtonR.
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5 LNA change log

5.1 Version 1.00 (September 19, 2005)

e Initial version, including four numerical methods (Bisect, Brent, KroneRoots, and Romberg).
All functions should be used in CPLua version 0.61 or above.

e The utility library contains seven utility functions (EpsilonC, MaxLoc, MinLoc, Part,
Printf, Sign, and Nint), and one utility constant (Epsilon).

5.2 Version 1.10 (September 23, 2005)

e A method for solving ordinary differential equation(s) has been added (RK4Rich).

e The organization of the library has been changed; all numerical methods, together with
their driver programs, are now included in a single directory named LuaNumAn.

e The documentation has been reorganized and slightly changed.

5.3 Version 1.20 (September 28, 2005)

e The package now includes a plotting library, called LuaPlot. By making use of this library,
graphical representation of the results has been added to most driver programs. The
LuaPlot library is still in development, and it is more than likely that the appearance of
the graphics produced by this library will be changed in the future.

e Minor modifications in almost all numerical methods have been made, in accordance with
the new features of CPLua version 0.71. All these modifications are not apparent to the
user. This version is not compatible with previous CPLua versions.

e A utility function has been added (Column).

e The function Romberg has been modified. It is now slightly faster and more accurate.

e The function KroneRoots has been modified. It is now remarkably faster than previous
versions (about 50% faster than version 1.00).

e The function RK4Rich has been slightly modified, concerning its output. It now returns a
matrix yp, where each row (not column, as before) contains the values of each function at

the integration points xp. This is more convenient in practice.

e The utility function Sign now becomes obsolete, and has been removed. CPLua version
0.71 provides the built-in function math.sign which has exactly the same functionality.
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5.4

5.6

Version 1.30 (October 5, 2005)

Minor modifications have been made, in accordance with the new features of CPLua version
0.72. All these modifications are not apparent to the user. This version is not compatible
with previous CPLua versions.

Four utility functions, concerning matrix operations, have been added (MatIdent, MatMul,
MatPrint, and MatTrans). The utility function Column has been renamed to MatCol, so
that all matrix-related utility functions have the prefix “Mat”.

A method for LU decomposition of a matrix and its applications (solving a system of
linear equations, computing the determinant or the inverse of a matrix) has been added
(LUdecompose, LUsubstitute, LUsolve, LUdeterminant, and LUinverse).

A method for non-linear fitting of data has been added (LMfit).

Plotting functions now can use labels.

Version 1.40 (October 25, 2005)

A method for numerical integration has been added (TrapAdapt).

LU decomposition has been slightly modified, and it now handles singular matrices more
conveniently.

The function Romberg has been slightly changed. It now returns the estimated integral,
even if the desired accuracy has not been reached (in this case, a warning message is also
printed).

A menu-driven demo program (DemoAll) has been added.

Version 1.50 (March 15, 2006)

Version 1.50 has many new features and improvements:

Several functions have been rewritten to a more compact code, and modifications in almost
all numerical methods have been made, in accordance with the new features of CPLua
version 0.8. All these modifications are not apparent to the user. This version is not
compatible with previous CPLua versions.

The organization of the library has been changed. The directory LuaNumAn now contains
only functions implementing numerical methods, so that there is no need to be accessed
by the user. All driver programs have been moved to the directory LuaDrive. In addition,
simple examples, demonstrating how to use each numerical method, have been added to
the directory LuaExamp.

Two utility functions (OrderMag, LinSpace) and a utility constant (Pi) have been added.

The plotting functions PlotFunc and PlotData have been improved. They now use a much
better automatic selection of tics spacing so that, usually, there is no need to set the tics
spacing manually. Furthermore, PlotFunc can now handle user-defined discontinuities,
declared by the new optional argument discont.
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5.7

A plotting function for “infinite” plots has been added (PlotInf).
A method for solving tridiagonal systems of linear equations has been added (Tridiag).
A method for performing cubic spline interpolation has been added (CSpline).

A method for numerically computing the Jacobian of a multivariate function has been
added (Jacobian).

A method for solving systems of non-linear equations has been added (Broyden).

The documentation has been reorganized and considerably improved. Example programs
have been added for all functions, together with useful remarks and guidelines.

Version 1.60 (June 12, 2006)

The name of the project has been changed to LNA. Note that the directories LuaNumAn, LuaUtils,
LuaPlot, LuaExamp, and LuaDrive have been renamed to LNA, LNAutils, LNAplot, LNAexamp, and
LNAdrive, respectively. In version 1.60, all numerical methods initially planned for the project
have been implemented. This version includes many new features and improvements:

Minor modifications and improvements have been made in almost all programs of the
package, including the example and driver programs. Most of these modifications are not
apparent to the user. This version is not compatible with previous CPLua versions.

The utility function Printf now becomes obsolete, and has been removed. CPLua provides
the built-in function printf which has exactly the same functionality.

Two utility timing functions have been added (TimeDiff and TimeElapsed).

The optional argument warnuser has been added to the function CubicSpline, so that
warning messages in case of extrapolation can be switched off.

The optional argument show has been added to the functions Bisect, Brent, and LMfit,
so that the user can select whether intermediate computations will be displayed or not.

The function Broyden has been slightly modified: if the optional argument show is set
to true, the maximum discrepancy at each iteration is displayed, including the first (in
the previous version, the maximum discrepancy was displayed starting from the second
iteration).

An implementation of the Newton-Raphson method for computing the root of a function
has been added (NewtonR).

A method for performing linear interpolation has been added (LinInterp).
A method for solving two-point boundary value problems has been added (Shoot).

The directory LNAtest has been added in the package. It includes a “test” program, useful
for testing future versions of LNA or CPLua.
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The following list presents some books that have been widely used during the implementation of
the LNA package.
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Jersey 2006.
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tions in Physics, Chemistry, Statistics, and other sciences. The book also includes thorough
theoretical discussions.

. Jean-Pierre Nougier, Méthodes de calcul numérique vols. 1 and 2, Hermes, Paris 2001.

This book includes many numerical methods with full theoretical discussion. A pseudocode
and an example is given for each numerical method. Differences between numerical methods
are also discussed in detail.

. Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri, Méthodes numériques pour le calcul

scientifique, Springer-Verlag, Paris 2000.

This book includes a deep theoretical discussion for each numerical method presented.

. William H. Press, Saul A. Teukolsky, William T. Vellering, and Brain P. Flannery, Nu-

merical Recipes - The Art of Scientific Computing, Second Edition, Cambridge University
Press, Cambridge 1992.

A best-seller in Numerical Analysis books. It covers plenty of numerical methods, and
includes a rather short theoretical discussion. An implementation of each numerical method
is given in Fortran 90, Fortran 77, or C (depending on the version of the book).

. T. M. R. Ellis and Ivor R. Philips, Programming in F, Addison-Wesley Longman, Essex

1998.

An excellent book for learning module-oriented programming in Fortran 95. All LNA
functions are written according to the programming style suggested in this book. Although
this is not a book about Numerical Analysis, it contains several introductory numerical
methods, explained in detail.
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7 The GNU General Public License

The following text is the GNU General Public License (GPL), as published by the Free Software
Foundation. If you are planning to modify and/or distribute the source code of LuaNumAn, you
should follow its terms.

GNU GENERAL PUBLIC LICENSE Version 2, June 1991.

Copyright (©) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139,
USA Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
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GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.
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3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c¢) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Pro-
gram subject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
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entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of pro-
tecting the integrity of the free software distribution system, which is implemented by public
license practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case,
this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
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RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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