
Map

Maps are a collection where the elements are indexed. Elements may be members of the collection (its
range) more than once, but key values must be unique. A Map m of type Map(K ,T) is considered to be
based on an underlying set m→asSet() of pairs Tuple(first : K , second : T) where the first element is the
key and the second the value. For convenience we write such pairs as maplets first 7→ second , and literal
maps as

Map{k1 7→ v1, ..., kn 7→ vn}

Map types occur in UML as the type of qualified associations, or as indexes of objects by a key value.
They can be used to implement symbol tables for formally-specified software tools, and to implement
operation caching.

=(c : Collection(T)) : Boolean c and self are equal when both are maps of the same key and range
types, and c→asSet() = self→asSet().

<>(c : Collection(T)) : Boolean The negation of =.

size() : Integer

post: result = self->asSet()->size()

includesValue(object : T) : Boolean True if the object is an element of the map range, false
otherwise:

post: result = self->values()->includes(object)

includesKey(object : T) : Boolean True if the object is an element of the map key set, false
otherwise:

post: result = self->keys()->includes(object)

excludesValue(object : T) : Boolean True if the object is not an element of the map range, false
otherwise:

post: result = self->values()->excludes(object)

excludesKey(object : T) : Boolean True if the object is not an element of the map domain, false
otherwise:

post: result = self->keys()->excludes(object)

count(object : T) : Integer The number of times the object occurs as an element of the map range
(a bag):

post: result = self->values()->count(object)

includesAll(c2 : Collection(T)) : Boolean True if c2 is a map, and the set of pairs of self contains
all those of c2, false otherwise:

post:

result = self->asSet()->includesAll(c2->asSet())
1

excludesAll(c2 : Collection(T)) : Boolean True if c2 is a map, and the set of pairs of self is
disjoint from those of c2, false otherwise:

post:

result = self->asSet()->excludesAll(c2->asSet())

isEmpty() : Boolean, notEmpty() : Boolean Defined as for general collections.

max () : T , min() : T , sum() : T Defined as the corresponding operations on self→values().

asSet() : Set(Tuple(first : K , second : T)) The underlying set of pairs of the map. Since duplicate keys
are not permitted, this has the same size as self→keys().

keys() : Set(K) The set of keys in the map, ie., its domain:

post:

result = self->asSet()->collect(p|p.first)->asSet()

values() : Bag(T) The bag of values in the map, ie., its range:

post:

result = self->asSet()->collect(p|p.second)

restrict(ks : Set(K)) : Map(K ,T) Domain restriction ks ▹ self . The map restricted to the keys in ks.
Its elements are the pairs of self whose key is in ks:

post:

result->asSet() =

self->asSet()->select(ks->includes(first))

−(m : Map(K ,T)) : Map(K ,T) Map subtraction: the elements of self that are not in m.

post:

result->asSet() =

self->asSet() - m->asSet()

union(m : Map(K ,T)) : Map(K ,T) Map override, self ⊕m. The pairs of self which do not conflict
with pairs of m, together with all pairs of m:

post:

result->asSet() =

m->asSet()->union(

self->asSet()->select(p |

m->keys()->excludes(p.first)))

intersection(m : Map(K ,T)) : Map(K ,T) The pairs of self which are also in m:

post:

result->asSet() =

m->asSet()->intersection(self->asSet())

2

including(k : K , v : T) : Map(K ,T) The pairs of self , with the additional or overriding mapping of k
to v :

self→including(k , v) =
self→union(Map{k 7→ v})

excluding(k : K , v : T) : Map(K ,T) The pairs of self , with any mapping of k to v removed:

self→excluding(k , v) =
self −Map{k 7→ v}

at(k : K) : T The value to which self maps k , null if k is not in self→keys():

post:

(self->keys()->excludes(k) implies result = null) and

(self->keys()->includes(k) implies

result = self->restrict(Set{k})->values()->any())

any Defined as

m→any(x | P) = m→values()→any(x | P)

Likewise for forAll , exists, one.

select The map formed from the range elements which satisfy the select condition:

m→select(x | P(x)) =
m→restrict(m→keys()→select(k | P(m→at(k))))

reject The map formed from the range elements which do not satisfy the reject condition:

m→reject(x | P(x)) =
m→restrict(m→keys()→reject(k | P(m→at(k))))

collect Map composition (chaining). The map formed by composing the map with the evaluation of the
collect condition:

m→collect(x | e(x))→asSet() =
m→keys()→collect(k |

k 7→ e(m→at(k)))→asSet()

isUnique The map range composed with the expression produces a set, ie., the composed map is injective:

m→isUnique(e) =
m→values()→isUnique(e)

1 Implementation

Implementations of map operators for Java, C#, C++, Python and C may be found in the OCL libraries
at http://www.nms.kcl.ac.uk/kevin.lano/libraries. Eg., ocl.py for Python.

3

2 Further operators

It would be useful to have map formation operators such as

s→collect(x | e(x) 7→ v(x))

to form a map from another collection s, and

m→inverse()

to produce the inverse of an injective map m.

4

