
Metamodeling with Eclipse

Luis Pedro

Centre Universitaire D’Informatique
Universite de Geneve

Matteo Risoldi

Centre Universitaire D’Informatique
Universite de Geneve

SMV technical report series, No N/A, May 2008

Centre Universitaire d’Informatique
Battelle Bat. A
Route de Drize 7

1227 Carouge
Switzerland

Abstract:
This technical report describes how to use the Eclipse Frame-
work, in particular the Eclipse Modeling Framework (EMF) and
the Graphical Modeling Framework (GMF) in order to produce
metamodels, instances of them and how to transform them.

Document Version 0-2-0 Updated to Eclipse 3.3.2

Metamodeling with Eclipse

Contents

1 Introduction 2
1.1 Requirements . 2

2 Create the Petri Nets Metamodel 4

3 Creating Models 9

4 Providing the Model with a Graphical Interface 10
4.1 Customize Graphical Elements . 15

5 Optional Informations 21
5.1 Create an Eclipse Plug-in . 21
5.2 Optional Sources of Information . 22

Software Modeling and Verification
Department of Computer Science
University of Geneva
Battelle Bat. A
Route de Drize 7
CH-1227 Carouge
Switzerland

tel: +41 22 37 90 161

fax: +41 22 37 90 250

http:/smv.unige.ch/

Corresponding author:
Luis Pedro
tel: +41 22 37 91 117
Luis.Pedro@cui.unige.ch
http://smv.unige.ch/~pedro

LIST OF FIGURES 1

List of Figures

1 Download Eclipse form http://www.eclipse.org/downloads/ 2
2 Select Eclipse Components for installation 3
3 Creating a New EMF Empty Project 4
4 Add an Ecore model to the EMF project 5
5 Renaming the default ECore package 5
6 Bidirectional association to Direct associations 7
7 Petri Nets metamodel in UML-like syntax 7
8 Petri Nets metamodel EMF Tree view 8
9 Eclipse Workspace after generating code from the PetriNets.genmodel 8
10 Initializing a new Petri Nets model 9
11 Creation of a new GMF Project . 10
12 GMF Overview . 11
13 Specifying the basic graphical definition of the domain model 12
14 Specifying the map domain model elements 13
15 Output Arc Map Configuration . 13
16 Input Arc Map Configuration . 14
17 Graphically creating Petri Nets . 15
18 Modifying .gmfmap Tool mapping 15
19 Creating Petri Nets models, graphically and tree-based editor 16
20 Adding a new Figure and Descriptors to the gmfgraph 17
21 Petri Nets model with correct concrete syntax for the Petri Net Place 18
22 Petri Nets model with Arcs and Places initial marking explicitly in

the diagram . 19
23 Petri Nets model the correct graphical syntax for Places and Arcs . 20
24 Select Available Plug-ins and Features 21

2 Luis Pedro

1 Introduction

In this report we are going to present how to metamodel with Eclipse Modeling
Framework (EMV) [1] and Graphical Modeling Framework (GMF) [2]. During this
discussion we will use the Petri Nets language as case study. At the end we will
also show how to write transformations using the automatically code automatically
generated from the metamodels. As an example of transformation we will show how
to pass from standard Petri Nets to Algebraic Petri Nets.

1.1 Requirements

Figure 1: Download Eclipse form http://www.eclipse.org/downloads/

What do you need to run this example:

• Install Eclipse(Fig. 1)

• In Eclipe go to Help → Software Updates → Find and Install, then:

– Search for new features to install

– Europa Discovery Site

If the Europa Discovery site is not in the list of sites, click ”New remote site”
and add the Europa Discovery site with the url: http://download.eclipse.
org/europa/releases/ Finally choose to install the following components

– Eclipse Modeling Framework (EMF)

– Graphical Modeling Framework (GMF)

and click the ”Select Required” button to install all dependencies. See Fig. 2
for details.

Section 1 Introduction 3

Figure 2: Select Eclipse Components for installation

4 Luis Pedro

2 Create the Petri Nets Metamodel

First of all let’s create a new EMF project. Go to File→ New → Project and choose
Empty EMF Project. See Fig. 3.

Figure 3: Creating a New EMF Empty Project

Provide your project with a name, e.g. PetriNetsMM. You’ll notice that in the
structure of the newly created project there is a model folder. Right click on it and
select New → Other. In the next panel choose Ecore Model click Next and provide
a name to your model e.g. PetriNets.ecore. Please note that all Ecore models must
finish with the .ecore extension (see Fig. 4).

Just press the Finish button and you’ll notice that you have a new file listed in
the model folder of your project.

Exploring the PetriNets.ecore tree will allow you to see that an ECore package
“null” was created by default. Click on it and change its name, NS prefix and NS
URI by using the Properties tab (Fig. 5). Set these features to StandardPetriNets.

At this point you can choose wether to create the metamodel using the tree-based
editor or the graphical editor provided by EMF. In order to edit the metamodel using
the graphical editor you must first initialize an ECore diagram. This is done by right-
clicking on the file PetriNets.ecore and chosing the option Initialize ecore diagram
diagram file. Provide the diagram with a name (PetriNets.ecore diagram in our case)
making sure that the name ends by .ecore diagram.

The Petri Nets metamodel we are going to implement is composed by:

Classes representing the Petri Nets entities

• PetriNet with attributes name:String

Section 2 Create the Petri Nets Metamodel 5

Figure 4: Add an Ecore model to the EMF project

Figure 5: Renaming the default ECore package

6 Luis Pedro

• Place with attributes name:String, capacity:Int, numberOfTokens:Int

• InputArc with attributes weight:Int

• OutputArc with attributes weight:Int

• Transition with attributes name:String

Compositions/Aggregations representing containment relations between enti-
ties

• containsPlaces between PetriNet and Places with multiplicity in the Lower
Bound equal to 0 and in the Upper Bound equal to *

• containsTransitions between PetriNet and Transition with multiplicity in
the Lower Bound equal to 0 and in the Upper Bound equal to *

• containsInputArcs between PetriNet and InputArc with multiplicity in the
Lower Bound equal to 0 and in the Upper Bound equal to *

• containsOutputArcs between PetriNet and OutputArc with multiplicity in
the Lower Bound equal to 0 and in the Upper Bound equal to *

Associations representing the relations between the entities of a Petri Net

• inputArcFromPlace between OutputArc and Place with with multiplicity
in the Lower Bound equal to 1 and in the Upper Bound equal to 1

• inputArcToTransition between InputArc and Transition with with multi-
plicity in the Lower Bound equal to 1 and in the Upper Bound equal to
1

• outputArcToPlace between OutputArc and Place with with multiplicity in
the Lower Bound equal to 1 and in the Upper Bound equal to 1

• outputArcFromTransition between outputArc and Transition with with mul-
tiplicity in the Lower Bound equal to 1 and in the Upper Bound equal to
1

Please note that: Associations are always directed associations. It means that,
if you have a UML-like association which is bidirectional like in the upper part of
Fig. 6, you must rewrite it as depicted in the lower part of Fig. 6, separating
the two directions of the association into two different associations. Also note that
cardinality * in EMF is denoted by -1 (the editor will automatically display it as *
in the diagram).

The Petri Nets metamodel should resemble the model in Fig. 7 - if you view it
by opening your PetriNets.ecore diagram file - and in Fig. 8 - providing the EMF
tree view of the metamodel that you obtain by opening the PetriNets.ecore file.

The Petri Nets metamodel has now been defined and implemented in the EMF.
The next thing is to automatically generate the Java code for accessing the meta-
model, for creating Petri Nets models and for serializing and de-serializing them.
In order to do this you need to go to File → New → Other and select EMF Model.
Provide your EMF Model with a name that must be terminated by .genmodel, like
PetriNets.genmodel, and place it under you model folder. Then select Ecore model

Section 2 Create the Petri Nets Metamodel 7

Figure 6: Bidirectional association to Direct associations

Figure 7: Petri Nets metamodel in UML-like syntax

in the Model Importer selection menu. Next choose Browse Workspace and provide
the PetriNets.ecore file as selection. Press Next and then Finish. Now you should
double click on the PetriNets.genmodel file and select the root of it. Right click on it
and select Generate All. After this process you should find four new folders in your
Eclipse workspace as presented in Fig. 9 (a src folder inside your project, and three
new projects named PetriNetsMM.edit, PetriNetsMM.editor, PetriNetsMM.tests).

8 Luis Pedro

Figure 8: Petri Nets metamodel EMF Tree view

Figure 9: Eclipse Workspace after generating code from the PetriNets.genmodel

Section 3 Creating Models 9

3 Creating Models

Once at this stage, it is possible to generate instances of the Petri Nets metamodel
by using the previously generated code. Press the button Run (or click Run → Run)
and configure it for running as an Eclipse Application. Provide it with a name and a
workspace at your wish. Click Run and a new Eclipse instance will be opened.

In the new instance of Eclipse click New → Project and select Project from the
General folder. Press Next and provide the project with a name. For this example
we are going to use PetriNetsModels.

Now, right-click on the PetriNetsModels project and click New → Other. Search
for the Example EMF Model Creation Wizards. Inside it you’ll find a project named
StandardPetriNets Model. The name might be different depending on the name of
the package that you’ve provided your metamodel in Sec. 2, Fig. 5.

Figure 10: Initializing a new Petri Nets model

Fig. 10 shows how your Eclipse instance should look like while creating a Stan-
dardPetriNets Model. Press Next and give a name to your Petri Nets model. By
convention, your model must have a name which extension ends with .nameOfPack-
age. If you followed this example until here, you should name you model ending in
.standardpetrinets. We are going to use the name MyFirstNet.standardpetrinets. Click
on Next and choose Petri Net as Model Object. Pressing Finish will open the editor
that allow to create Petri Nets.

So far so good! Please close your second Eclipse instance now and let’s define a
graphical editor for Petri Nets models.

10 Luis Pedro

4 Providing the Model with a Graphical Interface

Before we start, you should configure Eclipse to use Java 5 compiler settings for
your workspace (or at least for your GMF projects). In Window → Preferences →
Java → Compiler options, make sure you have selected a Compliance Level of 5.0.

The first thing now is to create a new GMF project File → New → Project and
choose New GMF Project under the Graphical Modeling Framework folder. Select Next
provide the project with a name e.g. PetriNetsGMF and Next again. In the next
screen, make sure you select the option Show dashboard view for the created project.
After pressing Finish you should get a window equivalent to the one on Fig. 11.
Should you close the GMF dashboard, you can reopen it via Window → Show View
→ Other... and select GMF Dashboard.

Figure 11: Creation of a new GMF Project

The dashboard will provide you with a guide line one how to create the entire
GMF project. A GMF project follows the structure and workflow defined in Fig.
12. This means that, in order to have a valid GMF project we must:

• Develop a Domain Model. The previous sections of this report showed how to
develop a domain model for Petri Nets.

• Develop a Graphical Definition. This model contains information related to the
graphical elements that will appear in a GEF-based runtime, but have no direct
connection to the domain models for which they will provide representation
and editing.

• Developing a Tooling Definition. An optional tooling definition model is used
to design the palette and other periphery (menus, toolbars, etc.).

Section 4 Providing the Model with a Graphical Interface 11

• Developing a Mapping Model. A goal of GMF is to allow the graphical defi-
nition to be reused for several domains. This is achieved by using a separate
mapping model to link the graphical and tooling definitions to the selected
domain model(s).

• Create a Generator Model. Once the appropriate mappings are defined, GMF
provides a generator model to allow implementation details to be defined for
the generation phase.

Figure 12: GMF Overview

Taking into account that we have already created a Domain Model, lets just
select it by clicking on Select in the Domain Model box of the GMF Dashboard.
Before you click on Select make sure you have selected, in the Eclipse Navigator, the
project that contains the metamodel to be used (in our case PetriNetsMM project).

While thePetriNetsMM Project is still selected in the Navigator, click on Select
in the Domain Gen Model box and choose the PetriNets.genmodel file.

Now click on the link Derive on the top of the Domain Model box (on the arrow
that goes to Graphical Def Model). Select as Parent Folder the newly created project
PetriNetsMM/model and as File name a name for your Graphical Definition Model
that must have .gmfgraph as extension, e.g. PetriNets.gmfgraph. Clicking on Next
provides you with a window for specifying the basic graphical definition of the do-
main model as shown in Fig. 13. Make sure you choose PetriNet as the Diagram
element.

At this point you should have marked 50% on your progress mark from the
dashboard.

Repeat the previous operation for the Tooling Definition Model by clicking on
Derive below the Domain Model box.

Now you should be able to successfully generate the Grahical Definition Model
and Tooling Definitions Model. For the moment we will leave them as generated but
at some point we will come back in order to perform some graphical re-definitions.

12 Luis Pedro

Figure 13: Specifying the basic graphical definition of the domain model

You should now generate the Mapping Model by clicking on Combine link that
is located between the Graphical Def Model and Tooling Def Model boxes. Provide
as parent folder PetriNetsMM/model and a filename that must end by .gmfmap. We
are using the default name PetriNets.gmfmap. Click on Next and make sure that:

• the Domain Model URI is set to platform:/resource/PetriNetsMM/model/PetriNets.ecore
and the selected class is PetriNet

• the Diagram Palette URI is platform:/resource/PetriNetsMM/model/PetriNets.gmftool

• the Diagram Canvas URI is set to platform:/resource/PetriNetsMM/model/PetriNets.gmfgraph

• In the Map domain model elements dialog you have a situation similar to Fig.
14.

Note that in Fig. 14, the Nodes list only has Place and Transition; that is becaus
eyou only want these two to appear as graphical objects in the editor. Arcs should
appear only as associations between places and transitions. On the other hand, in
the Links list you only have one link for each type of arc. That is enough to create
arcs.

Section 4 Providing the Model with a Graphical Interface 13

Figure 14: Specifying the map domain model elements

For each one of the elements presented in the Nodes and Links lists of the Map
domain model elements dialog of Fig. 14, click on Change and check if the map is
defined as expected for a Petri Nets Model. For example check that the outputAr-
cFromTransition and inputArcToTransition are configured like in Fig. 15 and Fig. 16
respectively. Click Finish.

Figure 15: Output Arc Map Configuration

The Mapping created will still be missing a few crucial elements. Open the
PetriNets.gmfmap file, and navigate the tree until the Node Mapping ¡Place/Place¿.
Click New Child → Feature Label Mapping. Click on the node that is created, and
in the Properties tab set Diagram Label to Diagram Label PlaceName and set Fea-
tures to name : EString. Do the same for the Node Mapping ¡Transition/Transition¿

14 Luis Pedro

Figure 16: Input Arc Map Configuration

(but use instead the Diagram Label TransitionName). Check also that in Node Map-
ping ¡Place/Place¿ and in Node Mapping ¡Transition/Transition¿ the Tool property
is set respectively to Creation Tool Place and Creation Tool Transition. Save your
PetriNets.gmfmap file.

Go back to your GMF Dashboard (if the models don’t show up in the dashboard,
select the PetriNetsMM project in the Navigator) and click on Transform link, pro-
viding a name for the the Diagram Generator Model.

To finish the procedure, click on Generate diagram editor link in the Diagram
Editor Gen Model box.

If you got until this step without any errors, you’re now able to graphically create
Petri Nets models. Let’s try the editor. Click the Run button on the menu bar of
Eclipse in order to launch another instance of Eclipse. You should be able to see
the project you’ve created while generating Petri Nets models using the tree base
editor (Sec. 3). Right-click on the PetriNetsModels project and New → Example.
You’ll be prompted to select a wizard. Choose PetriNetsGMF Diagram. Provide a
name to your diagram, e.g. MyFirstPetriNetsModel.standardpetrinets diagram, then
click Next. Now provide a name for the model corresponding to the diagram, e.g.
MyFirstPetriNetsModel.standardpetrinets. You should obtain an Eclipse workspace
equivalent to the one in Fig. 17.

Now try to add two Places and two Transitions using the buttons available in the
Palette. Save your diagram and double click on the file MyFirstPetriNetsModel.standardpetrinets.
If tree view shows a model that does not correspond to what you have created in
the graphical editor it means that the your mapping model generated automatically
it is not correct. Close your second Eclipse instance again and go back to your
PetriNets.gmfmap.

Browse the tree and find the Node Mapping for each one of the elements. For
each one of them, in the properties view of Eclipse verify that the Tool property
actually corresponds to the correct one. Refer to Fig. 18.

After fixing all mapping problems, you should redo the Transform and the Gener-
ate Diagram Editor processes. At the end you should be able to generate Petri Nets

Section 4 Providing the Model with a Graphical Interface 15

Figure 17: Graphically creating Petri Nets

Figure 18: Modifying .gmfmap Tool mapping

models like presented in Fig. 19.

4.1 Customize Graphical Elements

Now that you’ve successfully created a graphical editor for Petri Nets Models lets
start customization of the graphical editor.

The first thing we are going to do is to change the graphical layout of a place
providing it with the appropriate concrete graphical syntax. In order to modify the
graphical syntax of our Place entity from a UML Class-like rectangle to a circle
proceed with the following steps:

16 Luis Pedro

Figure 19: Creating Petri Nets models, graphically and tree-based editor

• Open your PetriNets.gmfgraph file:

• In the Canvas StandardPetriNets node right-click and New Child → Figure
Gallery. Name your new Figure Gallery section as, for example, Custom Im-
ages. This step will allow us to easily distinguish between the figures created
by default and the ones we are going to customize;

• right-click on the new Figure Gallery node and select New Child → Figure
Descriptor; name the Figure Descriptor PlaceCustomFigure.

• right-click on the new Figure Descriptor node and select New Child → Ellipse;

• Name the Elipse as PlaceCustomFigure and modify the property Line Width to
3;

• Right-click on the Elipse and New Child → Size Point;

• Set both X and Y to the value of 10.

• In the root of your Canvas StandardPetriNets search for Node Place and replace
the property Figure from Figure Descriptor PlaceFigure to the new one created
Figure Descriptor PlaceCustomFigure;

• Inside the Ellipse, add as many Label nodes as there are inside the Rectangle
node of the original default Figure Descriptor PlaceFigure. Name them in a

Section 4 Providing the Model with a Graphical Interface 17

similar way as the original default ones, but not with the same names, because
you want to be able to tell them apart.

• Inside the Figure Descriptor, add as many Child Access nodes as there are in
the original Figure Descriptor PlaceFigure. Also here, use similar but different
names from the original ones. Then, for each created Child Access node, set
the Figure property to the corresponding Label node of the Ellipse. This is
where having similar but different names is useful: if you used identical names
as the originals, you would not be able to distinguish default labels from the
ones you created.

• Further down in the tree, select the Diagram Label PlaceName node. Set its
Accessor property to the corresponding Child Access node you created earlier,
and set its Figure property to the Figure Descriptor PlaceCustomFigure you cre-
ated. Then do the same also for the Diagram Label PlaceCapacity and Diagram
Label PlaceNumberOfTokens nodes. See Fig. 20 for a screenshot.

Figure 20: Adding a new Figure and Descriptors to the gmfgraph

Again in the GMF Dashboard, redo the Transform operation and Generate Diagram
Editor again. Make sure that you close your second Eclipse instance (if you didn’t
already) and re-open it via the Run menu.

You should now be able to create models in which a Place in the Petri Net is
actually a circle with a labeled name inside like in Fig. 21.

In a Petri Net model we usually have the information concerning the number of
tokens in each place (marking) and the weight on arcs. This information is normally
explicit in the diagram. Until now we only have the Place Name and Transition
Name as explicit information in the graphical representation. In order to add the
arcs’ weight and places’ numberOfTokens we do the following:

• Open the PetriNets.gmfmap file

• right-click on the Link Mapping <inputArc{InputArcFromPlace:Place→ inputArc-
ToTransition:Transition/InputArc > and add a new Feature Label Mapping. Set
the Diagram Label property to Diagram Label InputArcWeight, and the Features
property to weight;

18 Luis Pedro

Figure 21: Petri Nets model with correct concrete syntax for the Petri Net Place

• Repeat the process similarly for the OutputArc;

• in the Top Node Reference<containsPlaces(Place/Place)> → Node Mapping
<Place/Place> add a new Feature Label Mapping. Set Diagram Label to Dia-
gram Label PlaceNumberOfTokens, and set Features to numberOfTokens.

• In the Feature Label Mapping that already existed in the Node Mapping <Place/Place>
add to the Edit Pattern a label that you find suitable, “Name: ” in this example.

Again perform both Transform and Generate Diagram Editor processes and launch
the second Eclipse instance. By creating a Petri Nets with some Places, Transition,
InputArc and OutputArc you should be able to get the diagram depicted in 22.

The arcs’ visual representation is still not exactly what we expect it to be in
a Petri Net. At this point we are able to create input and output arcs and link
them to a place and a transition as needed. In a more exact Petri Nets graphical
representation, an input arc should be represented by an arrow that connects Place
to Transition directly, and an output arc should be an arrow from Transition to Place.
In order to accomplish this let’s proceed as follows:

• Open the PetriNets.gmfgraph file; Right-click on one of the nodes of the tree
and select Load Resource; Enter
platform:/plugin/org.eclipse.gmf.graphdef/models/classDiagram.gmfgraph in the
dialog; This allows to load other pre-defined figures in your workspace. After
loading this resource you will get another entry in the PetriNets.gmfgraph which
you can browse to check how more elaborated figures are defined.

• Now open the default Figure Gallery, navigate to the Figure Descriptor In-
putArcFigure, and in the Target Decoration property of the Polyline Connection
InputArcFigure choose Polygon Decoration ClosedArrow;

Section 4 Providing the Model with a Graphical Interface 19

Figure 22: Petri Nets model with Arcs and Places initial marking explicitly in the
diagram

• Repeat this process for the OutputArc;

If you now perform the Transform and Generate Diagram Editor operations on
your GMF Dashboard again, and relaunch the second Eclipse instance, you can
see how arcs created from a Place to a Transition have an arrow. The same thing
happens if you create an arc from a Transition to a Place. To create arcs, leave
the mouse pointer on a Place (or Transition); wait a moment until handles appear
on the edge of the object; click the outgoing arrow and then drag the line until the
target object. You should now be able to create a Petri Net model with a layout
like the one presented in Fig. 23.

For more detailed informations and links to other related Eclipse projects please
refer to [3].

20 Luis Pedro

Figure 23: Petri Nets model the correct graphical syntax for Places and Arcs

Section 5 Optional Informations 21

5 Optional Informations

5.1 Create an Eclipse Plug-in

If you want to create a default plugin for Eclipse allowing you to create Petri Nets
models from the standard Eclipse instalation proceed with the following steps:

• On the PetriNetsMM.diagram project select Export;

• Choose Deployable plug-ins and fragments as in Fig. 24;

• Choose your own Destination Directory;

• Click Finish

Finally copy the generated .jar files to the Eclipse plugins directory and re-open
Eclipse. You can now create petri nets models by selecting File→ New→ Other and
searching for PetriNets diagram.

Figure 24: Select Available Plug-ins and Features

22 REFERENCES

5.2 Optional Sources of Information

• GMF Documentation Site [4];

• Eclipse Modeling Framework book [5];

• Eclipse Development using the Graphical Editing Framework and the Eclipse
Modeling Framework [6];

• GMF Documentation Site [7];

• Tutorial on how to create a BPMN Editor[8] ;

References

[1] Eclipse. Eclipse modeling framework, 2007. http://www.eclipse.org/
modeling/emf/?project=emf.

[2] Eclipse Project. Eclipse graphical modeling framework.

[3] Eclipse Project. Gmf tutorial.

[4] Eclipse Project. Emf online documentation.

[5] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. The Eclipse series. Addison Wesley, 2004.

[6] William Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and Philippe
Vanderheyden. Eclipse Development using the Graphical Editing Frame-
work and the Eclipse Modeling Framework. IBM RedBooks, February 2004.
http://www.redbooks.ibm.com/abstracts/sg246302.html.

[7] Eclipse Project. Gmf online documentation.

[8] Eclipse Project. Gmf bpmn diagram tutorial.

SMV Technical Reports

This report is in the series of SMV technical reports. The series editor is Didier
Buchs (Didier.Buchs@unige.ch).

Any views or opinions contained in this report are solely those of the author, and
do not necessarily represent those of SMV group, unless specifically stated and the
sender is authorized to do so.

You may order copies of the SMV technical reports from the corresponding author
or the series editor. Most of the reports can also be found on the web pages of the
SMV group (http://smv.unige.ch/).

