

 Ericssonwide Internal

FUNCTION SPECIFICATION 1 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

Abstract Socket Test Port for TTCN-3 Toolset with
TITAN, Function Specification

Contents
1 Introduction ..2

1.1 Revision history..2
1.2 How to Read this Document ..2
1.3 Scope...2
1.4 References...2
1.5 Abbreviations ...3
1.6 Terminology ...3

2 General..4
3 Function Specification ..4

3.1 Implementation...4
3.1.1 Environment ...4
3.1.2 Module structure ..4
3.2 Configuration..5
3.3 Start Procedure ..5
3.3.1 Connection ASPs ...5
3.3.2 Server mode...5
3.3.3 Client mode ..5
3.4 Sending/receiving messages ...5
3.5 Logging ..5
3.6 Error Handling ..6
3.7 Closing Down...6
3.8 IPv6 Support ..6
3.9 SSL functionality ..6
3.9.1 Compilation ..6
3.9.2 Authentication ..6
3.9.3 Other features ..7
3.9.4 Limitations ..7

 Ericssonwide Internal

FUNCTION SPECIFICATION 2 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

1 Introduction

1.1 Revision history

Date Rev Characteristics Prepared

2005-01-19 PA1 First draft version EANTWUH
2005-04-22 A Accepted after review EANTWUH
2005-08-23 PB1 Connection ASPs added ETHECS
2006-10-16 B Release ETHECS
2006-11-22 PC1 New feature: use with non-blocking

TCP socket
EGERGFT

2006-12-12 PC2 Reviewed EGERGFT
2008-09-25 PD1 IPv6 support added ETHJGI
2008-10-03 PD2 Updated after review ETHJGI
2009-04-01 PE1 Updated according to the Test Port

API introduced in TITAN R7E
ECSAFEH

1.2 How to Read this Document

This is the Function Specification for the Abstract Socket test port. The
Abstract Socket test port is developed for the TTCN-3 Toolset. This document
should be read together with Product Revision Information [2].

1.3 Scope

The purpose of this document is to specify the functionality of the Abstract
Socket test port. The document is primarily addressed to the end users of the
product. Basic knowledge of TTCN-3 and TITAN TTCN-3 Test Executor and
the SSL protocol is valuable when reading this document (see [1] and [3]).

1.4 References

[1] ETSI ES 201 873-1 v.3.1.1 (2005-06)
The Testing and Test Control Notation version 3. Part 1: Core
Language

[2] 109 21-CNL 113 384-5 Uen
Abstract Socket Test Port for TTCN-3 Toolset with TITAN, Product
Revision Information

[3] 2/198 17-CRL 113 200 Uen
Programmer’s Technical Reference for the TITAN TTCN-3 Test
Executor

[4] OpenSSL toolkit
http://www.openssl.org

[5] Hickmann, Kipp, “The SSL Protocol”, Netscape Communications
Corp., Feb 9, 1995.

http://www.openssl.org/

 Ericssonwide Internal

FUNCTION SPECIFICATION 3 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

[6] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol”, Netscape
Communications Corp., Nov 18, 1996.

[7] RFC 2246 (1999), T. Dierks, C. Allen: “The TLS Protocol Version 1.0”

[8] 198 17-CNL 113 384 Uen
Abstract Socket Test Port for TTCN-3 Toolset with TITAN, User Guide

1.5 Abbreviations

API Application Program Interface

ASP Abstract Service Primitive

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

PEM Privacy Enhanced Mail

RTE Run-Time Environment

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TTCN-3 Testing and Test Control Notation version 3

1.6 Terminology

Sockets – The socket is a method for communication between a client
program and a server program in a network. A socket is defined as "the
endpoint in a connection." Sockets are created and used with a set of
programming requests or "function calls" sometimes called the sockets
application programming interface (API). The most common socket API is the
Berkeley UNIX C language interface for sockets. Sockets can also be used
for communication between processes within the same computer.

Blocking and non-blocking sockets – using a blocking socket, some socket
operations (send, receive, connect, accept) will block until the operation is
finished or an error occurs. Using a non-blocking socket, these operations will
never block but return with an error and set errno to the appropriate value.

OpenSSL - The OpenSSL Project is a collaborative effort to develop a robust,
commercial-grade, full-featured, and open source toolkit implementing the
Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
protocols as well as a full-strength general purpose cryptography library. For
more information on the OpenSSL project see [4].

 Ericssonwide Internal

FUNCTION SPECIFICATION 4 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

2 General

The Abstract Socket is a common component that can serve as a basis for
test ports that need TCP connections with or without SSL on the top of it. The
socket can be used either with blocking or non-blocking mode. Using a non-
blocking socket an algorithm is also implemented in the Abstract Socket to
avoid TCP deadlock. The Abstract Socket implements basic sending,
receiving and socket handling routines. By extending it with additional
functionality the desired test port can be built.

SUT

TITAN RTE

Application specific part (extension)

Abstract_Socket (base)

TTCN-3 Test Suite

 Test Port

3 Function Specification

3.1 Implementation

3.1.1 Environment

The Abstract Socket makes use of the services provided by the UNIX socket
interface. When connecting to an SSL enabled IUT, the connection is secured
with the OpenSSL toolkit based on configuration data. The Abstract Socket
provides the basis to build test ports that can work as a client or as a server.
The Test Port can be used with or without connection ASPs (see section
3.3.1. of this document).

The Abstract Socket supports TCP over IPv4 and IPv6.

3.1.2 Module structure

The Abstract Socket common component is implemented in the following
files:

• Abstract_Socket.hh

• Abstract_Socket.cc

 Ericssonwide Internal

FUNCTION SPECIFICATION 5 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

3.2 Configuration

The configuration of the test port is done by the TITAN RTE configuration file.
The description of the specific parameters can be found in the Abstract
Socket User’s Guide [8].

3.3 Start Procedure

3.3.1 Connection ASPs

When choosing to use connection ASPs, the Abstract Socket is able to open
a server listening port (acting like a server) or client connections at the same
time.

3.3.2 Server mode

When the test port is mapped by TITAN RTE, the server creates a TCP
socket and starts listening on it. Depending on the transport channel specified
in the runtime configuration file, it will accept either TCP or SSL connections.

3.3.3 Client mode

When the test port is mapped by TITAN RTE, the client creates a TCP socket
and tries to connect to the server. If the transport channel is SSL, the client
starts an SSL handshake after the TCP connection is established. If the SSL
handshake is successful, the SSL connection is established and the map()
operation is finished.

The SSL handshake may fail due to several reasons (e.g. no shared ciphers,
verification failure, etc.). For possible causes study [4].

3.4 Sending/receiving messages

Only basic octetstring sending and receiving is handled by the Abstract
Socket. This functionality probably must be extended in order to build a test
port for the desired protocol. First the TTCN-3 mapping of the target protocol
messages must be elaborated and then the message processing functions
(outgoing and incoming operations, see [3]) can be developed.

3.5 Logging

The type of information that will be logged can be categorized into two
groups. The first one consists of information that shows the flow of the internal
execution of the test port, e.g. important events, which function that is
currently executing etc. The second group deals with presenting valuable
data, e.g. presenting the content of a PDU. The logging printouts will be
directed to the RTE log file. The user is able to decide whether logging is to
take place or not by setting appropriate configuration data, see [3].

 Ericssonwide Internal

FUNCTION SPECIFICATION 6 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

3.6 Error Handling

Erroneous behaviour detected during runtime is directed into the RTE log file.
The following two types of messages are taken care of:

• Errors: information about errors detected is provided. If an error occurs
the execution of the test case will stop immediately. The test ports will
be unmapped.

• Warnings: information about warnings detected is provided. The
execution continues after the warning is shown.

3.7 Closing Down

The connection can be shut down either performing the unmap() operation on
the port or if connection ASPs are used with the appropriate ASP.

3.8 IPv6 Support

It is possible to select the address family used for server socket and client
connections in the configuration file or during runtime. The following address
families are supported: IPv4, IPv6 and UNSPEC.

3.9 SSL functionality

The Abstract Socket can use SSL or TCP as the transport channel. The same
version of OpenSSL library must be used as in TITAN.

The protocols SSLv2, SSLv3 and TLSv1 are supported.

3.9.1 Compilation

The usage of SSL and even the compilation of the SSL related code parts are
optional. This is because SSL related code parts cannot be compiled without
the OpenSSL installed.

The compilation of SSL related code parts can be disabled by not defining the
AS_USE_SSL macro in the Makefile during the compilation. If the macro is
defined in the Makefile, the SSL code parts are compiled to the executable
test code. The usage of the SSL then can be enabled/disabled in the runtime
configuration file, see [8]. Naturally, the test port parameter will be ignored if
the AS_USE_SSL macro is not defined during compilation.

3.9.2 Authentication

The Abstract Socket provides both server side and client side authentication.
When authenticating the other side, a certificate is requested and the own
trusted certificate authorities’ list is sent. The received certificate is verified
whether it is a valid certificate or not (the public and private keys are
matching). No further authentication is performed (e.g. whether hostname is
present in the certificate). The verification can be enabled/disabled in the
runtime configuration file, see [8].

 Ericssonwide Internal

FUNCTION SPECIFICATION 7 (7)
Prepared (also subject responsible if other) No.

ETH/RZX Csaba Fehér +36 1 439 5641 155 17-CNL 113 384 Uen
Approved Checked Date Rev Reference

ETH/RZXC (Elemér Lelik) 2009-04-01 E GASK2

In server mode the test port will always send its certificate and trusted
certificate authorities’ list to its clients. If verification is enabled in the runtime
configuration file, the server will request for a client’s certificate. In this case, if
the client does not send a valid certificate or does not send a certificate at all,
the connection will be refused. If the verification is disabled, the connection
will never be refused due to verification failure.

In client mode the test port will send its certificate to the server on the server’s
request. If verification is enabled in the runtime configuration file, the client will
send its own trusted certificate authorities’ list to the server and will verify the
server’s certificate as well. If the server’s certificate is not valid, the SSL
connection will not be established. If verification is disabled, the connection
will never be refused due to verification failure.

The own certificate(s), the own private key file, the optional password
protecting the own private key file and the trusted certificate authorities’ list file
can be specified in the runtime configuration file, see [8].

The test port will check the consistency between its own private key and the
public key (based on the own certificate) automatically. If the check fails, a
warning is issued and execution continues.

3.9.3 Other features

Both client and server support SSLv2, SSLv3 and TLSv1, however no
restriction is possible to use only a subset of these. The used protocol will be
selected during the SSL handshake automatically.

The usage of SSL session resumption can be enabled/disabled in the runtime
configuration file, see [8].

The allowed ciphering suites can be restricted in the runtime configuration file,
see [8].

The SSL re-handshaking requests are accepted and processed, however re-
handshaking cannot be initiated from the test port.

3.9.4 Limitations

• No restriction is possible on the used protocols (e.g. use only SSLv2),
it is determined during SSL handshake between the peers.

• SSL re-handshaking cannot be initiated from the test port.

• The own certificate file(s), the own private key file and the trusted
certificate authorities’ list file must be in PEM format. Other formats
are not supported.

	Introduction
	Revision history
	How to Read this Document
	Scope
	References
	Abbreviations
	Terminology

	General
	Function Specification
	Implementation
	Environment
	Module structure

	Configuration
	Start Procedure
	Connection ASPs
	Server mode
	Client mode

	Sending/receiving messages
	Logging
	Error Handling
	Closing Down
	IPv6 Support
	SSL functionality
	Compilation
	Authentication
	Other features
	Limitations

