
© 2011 Google, Inc. 1

WindowBuilder 101
GUI Development for
Swing, SWT, RCP, XWT, GWT & Android

© 2011 Google, Inc. 2

Intro
Agenda & Overview

© 2011 Google, Inc.

Agenda

• History

• Overview

• Key Features

• User Interface

• Customization

3

© 2011 Google, Inc.

History

WindowBuilder has a very long history spanning multiple
technologies and companies
• 1991 Original release for Smalltalk/V by Cooper & Peters

• 1993 VisualSmalltalk release by ObjectShare

• 1994 VisualAge Smalltalk release by ObjectShare
 1996 Briefly owned by ParcPlace-Digitalk

• 1997 VisualAge Smalltalk release by Instantiations

• 2003 New Eclipse/Java version for SWT/RCP (SWT Designer)

• 2004 Swing support added (Swing Designer)

• 2006 Google Web Toolkit (GWT) support added (GWT Designer)

• 2009 Eclipse community award for Best Commercial Add-on

• 2010 Acquired by Google and released free to the world

• 2011+ Contributed to Eclipse.org as new open-source project;
 Part of Indigo & Juno release trains (Eclipse 3.7, 3.8 & 4.2)

4

Same
Team

Sm
al

lta
lk

Ec

lip
se

/J
av

a

http://www.instantiations.com/mktg/eclipse_community_award.html

© 2011 Google, Inc.

Overview

• Available now from http://www.eclipse.org/windowbuilder
• Composed of WindowBuilder Engine, SWT, eRCP, XWT & Swing Designer
• WindowBuilder Engine provides a rich API for creating UI designers

 Very modular with dozens of extension points
 Pluggable support for different languages and parsers
 Java-based UI frameworks

(e.g., Swing, SWT/RCP, eRCP, GWT)
 XML-based UI frameworks

(e.g., XWT, GWT UiBinder, Android)

• Exemplary tool examples:
 SWT Designer
 Swing Designer
 eRCP Designer
 XWT Designer

• 3rd Party Tools
 JBuilder Swing Designer
 GWT Designer
 Android Designer

5

RCP

Swing

XWT

GWT

Future?

eRCP

Android

SWT

Core

© 2011 Google, Inc. 6

WindowBuilder Quotes

“WindowBuilder delivers the kind of
GUI building productivity that we
used to have before we converted
to Java. WindowBuilder not only
dramatically improves productivity
for design and maintenance, but it
also enables us to significantly
improve the look-and-feel of our
GUIs without costing days of
coding. Until discovering
WindowBuilder, I had forgotten
just how much fun and easy it can
be building Java GUIs.”

“In 25 years of software development I
have used a plethora of development
tools. I can honestly say that
WindowBuilder is head and shoulders
above anything I have used for serious
development. The features I particularly
like include the bi-directional edit process,
the native look and feel of cross platform
GUIs and the manner in which component
management is greatly simplified. It all
adds up to allowing the developer to get
on with the process of creating an
application rather than worrying about the
technology beneath it.”

 Sally Rich,
Senior Software Engineer at RSS
Solutions Inc

 John Bond,
Developer

© 2011 Google, Inc. 7

Key Features
State-of-the-art GUI tool features

© 2011 Google, Inc.

Key WindowBuilder Features

WindowBuilder supports many state-of-the-art features
• WYSIWYG & Bi-directional Code Generation

• Powerful & Flexible Code Parser

• Single Representation

• Read & Write Any Style

• Micro Edits

• Internationalization

• Visual Inheritance

• UI Factories

• Morphing

• Widgets & Layout Managers

• Graphical Menu Editing

8

© 2011 Google, Inc.

WYSIWYG & Bi-directional Code Generation

Provides a WYSIWYG visual designer coupled
with bi-directional code generation

9

© 2011 Google, Inc.

Powerful & Flexible Code Parser

Contains a powerful & flexible code parser
• Can parse its own code

• Can parse code from any GUI tool

• Can parse code written by hand

• No protected code blocks

• Understands data flow

• Ignores and preserves non-UI code

• Refactoring friendly

• Resilient to hand-made changes

10

© 2011 Google, Inc.

Single Representation

Maintains only one representation of the GUI code
• One-to-one relationship between UI and Java/XML code

• No intermediate metadata file to get lost or out of sync

11

© 2011 Google, Inc.

Read & Write Any Style

Reads and writes code in any format or style
• Local variables vs. Fields

• Initialized fields

• Lazy declaration

• Flat vs. Block

12

© 2011 Google, Inc.

Micro Edits

Makes micro edits to the source GUI code
• Smallest possible edit to make a code change

• Respects user formatting and refactoring

13

© 2011 Google, Inc.

Internationalization

Offers easy-to-use Internationalization and Localization tools

14

© 2011 Google, Inc.

Visual Inheritance

Provides visual inheritance so that code features can be easily
inherited from a parent – child hierarchy
• Change properties of inherited fields

• Add components & event handlers to inherited fields

• Change public properties of added components

• Easily expose fields
and properties

15

© 2011 Google, Inc.

UI Factories

Contains support for UI Factories and
reusable customized GUI elements

16

© 2011 Google, Inc.

Morphing

Provides a Morphing tool to easily change one widget type into another

17

© 2011 Google, Inc.

Widgets & Layout Managers

Fully supports all standard widgets
and layout managers as well
as select third-party widgets
and layout managers

18

© 2011 Google, Inc.

Graphical Menu Editing

Supports WYSIWYG Graphical Menu Editing
• Graphical edit menubars and popup menus

• Use drag/drop to rearrange menus

• Direct edit menu labels

19

© 2011 Google, Inc. 20

User Interface
Major UI elements

© 2011 Google, Inc.

WindowBuilder User Interface

WindowBuilder is composed of the following major components
• Source View

• Design View

• Structure View
 Component Tree
 Property Pane

• Palette

• Wizards

• Toolbars & Context Menus

• Event Handlers

• Data Binding

21

© 2011 Google, Inc.

Source View

Source View
• Separate tabs or top/bottom/left/right

with splitbar

• Bi-direction code generation

22

© 2011 Google, Inc.

Design View

Design View
• Each layout has its own UI model

• Move & resize components visually

• Direct edit component labels

• Select attachments using
popup context menu

23

© 2011 Google, Inc.

Component Tree

Component Tree
• Hierarchical view of all components

• Displays inst var name of component

• Shows text of component

• Right-click to cut/copy/paste multiple widgets

• Use drag/drop to reorder and nest

• Dock to editor or open as standalone view

24

© 2011 Google, Inc.

Properties View

Properties View
• Supports all common properties

• Hide & Show selected properties

• Highlight important properties

• Convert local/field

• Open definition

• Show events

• Mark hidden & important properties

• Hover help for all properties

25

© 2011 Google, Inc.

Palette

• Single select or marquee select

• Choose component to select arbitrary components

• Palette adapts to window type

• Special palettes for Eclipse Forms,
PreferencePage Field Editors

• Palette can dock to editor or open as standalone view

• Fully customizable by user

26

© 2011 Google, Inc.

Wizards

WindowBuilder contains dozens of new UI wizards
• Select File > New > Other > WindowBuilder
• Or use drop down tool button menu

• Dozens of templates for creating
RCP, JFace, SWT, XWT, Swing and
GWT components
 RCP – Views, Editors, Perspectives,

Preference & Property pages
 JFace – App Windows, Wizards Pages, etc.
 SWT – Composites, Shells & Dialogs
 Swing – Frames, Panels, Dialogs, etc.
 GWT – EntryPoints, Composites, etc.

• Edit an existing class using
Open With >
WindowBuilder Editor

27

© 2011 Google, Inc.

Toolbars & Context Menus

Toolbars & Context Menus
• Set Swing LookAndFeel using drop down look menu

• Change SWT styles using the context menu

• Rename components

• Delete components

• Floating Layout Assistant

• Align & Distribute components

28

© 2011 Google, Inc.

Event Handling

Event Handling
• Add events using Events panel of the

Property pane or context menu

• Create event handler
 as anonymous inner classes
 as named inner classes
 add listener interface to the class itself

• Handle event inline within the inner class
or add a stub method handler called from
the inner class

• Delete a handler by
hitting Delete in
Property pane

29

© 2011 Google, Inc.

Data Binding

Data Binding
• Create and edit SWT, JFace & Swing data bindings

• Automatic Data Binding wizard

30

© 2011 Google, Inc. 31

Customization
Developer API

© 2011 Google, Inc.

Adding New Components & UI Toolkits

There are three layers to adding new components
• Just add component to palette

 Palette contribution in project
 Palette contribution in jar
 Palette contribution from plugin.xml
 Palette commands in project

• Describe component using *.wbp-component.xml
 Component constructors
 Component properties

• Write Java code for special model/layout features

• UI toolkit auto-discovery mechanism

32

© 2011 Google, Inc.

• Place a «toolkitID».wbp-palette.xml file into your project’s «wbp-meta» folder with the
desired «category» and «component» entries

<?xml version="1.0" encoding="UTF-8"?>
<palette>
 <category id="someUniqueId" name="Custom category" description="Custom category" open="true">
 <component class="javax.swing.JButton"/>
 <component class="javax.swing.JRadioButton"
 name="Your name“ description=“Any description here."/>
 </category>
</palette>

• You can use a wizard to generate the file for you

• Here’s how it looks

Palette Contribution in Project – New Category

33

© 2011 Google, Inc.

• You can define a component in an existing category

<component
 category="org.eclipse.wb.rcp.composites"
 class="javax.swing.JRadioButton"
 name="Your name"/>

• Here’s how it looks

• For a custom icon, place a png/gif icon with same name in the same package
or the same package within the «wbp-meta» folder

Palette Contribution in Project – Existing Category

34

© 2011 Google, Inc.

Palette Contribution in Jar

• The «toolkitID».wbp-palette.xml file can be placed in any project required
by your project

• The «toolkitID».wbp-palette.xml file can be placed in the same jar file as
the contributed components

• Simply adding my-components.jar to classpath will also automatically add
them to the palette

35

© 2011 Google, Inc.

Palette Contribution from plugin.xml

• If you want more control over the palette, create a plugin and contribute to the
palette via the plugin.xml file

<extension point="org.eclipse.wb.core.toolkits">
 <toolkit id="org.eclipse.wb.rcp">
 <classLoader-library bundle="org.eclipse.wb.rcp.nebula.lib" jar="cdatetime-0.9.0.jar"/>
 <palette>
 <category id="org.eclipse.wb.rcp.nebula"
 name="Nebula" description="Nebula custom widgets”
 next="org.eclipse.wb.rcp.FormsAPI">
 <!-- CDateTime -->
 <component class="org.eclipse.swt.nebula.widgets.cdatetime.CButton">
 <library type="org.eclipse.swt.nebula.widgets.cdatetime.CButton"
 bundle="org.eclipse.wb.rcp.nebula.lib" jar="cdatetime-0.9.0.jar"/>
 </component>

• The «classLoader-library» tag tells WindowBuilder that this jar should always
be added into the ClassLoader (even if it is not in classpath)

• Specify the «library» element for a component to tell WindowBuilder that the
library should be added to the classpath the first time you try to use the
component

• For a full description of palette related attributes, see toolkits.exsd schema

36

© 2011 Google, Inc.

Palette Commands in Project

If you wish to use different palettes in different projects or share a
palette between developers, you should:
• Place an empty «toolkitID».wbp-palette-commands.xml file into

your project’s «wbp-meta» folder

• WindowBuilder will save all palette modification operations (move, add or
delete components) to this file and read from it later

• For example, after moving the «Layouts» category before «Containers»,
the file will have the following content:

<?xml version="1.0" encoding="UTF-8"?>
<commands>
 <moveCategory
 id=“org.eclipse.wb.swing.layouts"
 nextCategory=”org.eclipse.wb.swing.containers"/>
</commands>

 37

© 2011 Google, Inc.

Describe Component Using *.wbp-component.xml

• Use a *.wbp-component.xml file to describe the component

• Place a *.wbp-component.xml file with same name in the same package or the
same package within the «wbp-meta» folder

 <?xml version="1.0" encoding="UTF-8"?>
<component xmlns="http://www.eclipse.org/wb/WBPComponent">
 <model class=“org.eclipse.wb.swt.model.widgets.LabelInfo"/>
 <description>Instances of this class represent a non-selectable user interface object that displays a string or image.
 When SEPARATOR is specified, displays a single vertical or horizontal line.</description>
 <!-- CREATION -->
 <creation>
 <source><![CDATA[new org.eclipse.swt.widgets.Label(%parent%, org.eclipse.swt.SWT.NONE)]]></source>
 <invocation signature="setText(java.lang.String)"><![CDATA["New Label"]]></invocation>
 </creation>
 <creation id="separatorHorizontal" name="Horizontal Separator">
 <source><![CDATA[new org.eclipse.swt.widgets.Label(%parent%, SWT.SEPARATOR | SWT.HORIZONTAL)]]></source>
 <description>Horizontal separator.</description>
 </creation>
</component>

• For a full description of component related attributes, see
schema/wbp-component.xsd schema in the org.eclipse.wb.core plugin

38

© 2011 Google, Inc.

Component Constructors

• Components may have multiple constructors with values bounds to different
method-based properties

• Use the «property» attribute to map a constructor argument to a method
signature or field name

 <!-- CONSTRUCTORS -->
<constructors>
 <constructor>
 <parameter type="java.lang.String" property="setText(java.lang.String)"/>
 </constructor>
 <constructor>
 <parameter type="java.lang.String" property="setText(java.lang.String)"/>
 <parameter type="int" property="setHorizontalAlignment(int)"/>
 </constructor>
 <constructor>
 <parameter type="javax.swing.Icon" property="setIcon(javax.swing.Icon)"/>
 </constructor>
 <constructor>
 <parameter type="javax.swing.Icon" property="setIcon(javax.swing.Icon)"/>
 <parameter type="int" property="setHorizontalAlignment(int)"/>
 </constructor>
 <constructor>
 <parameter type="java.lang.String" property="setText(java.lang.String)"/>
 <parameter type="javax.swing.Icon" property="setIcon(javax.swing.Icon)"/>
 <parameter type="int" property="setHorizontalAlignment(int)"/>
 </constructor>
</constructors>

39

© 2011 Google, Inc.

Component Properties

• Mark properties as rarely used (advanced), sometimes used (normal),
frequently used (preferred) or hidden
<!-- PROPERTIES
<properties-preferred names="text icon labelFor"/>
<properties-advanced names="border disabledIcon displayedMnemonicIndex iconTextGap"/>
<properties-hidden names="UI"/>
…or…
<property id="setDisplayedMnemonic(char)">
 <category value="preferred"/>
</property>

• Special tags are supported for some properties such as the «isText» tag to
mark which property to support with direct edit
<property-tag name="text" tag="isText" value="true"/>

• For property types, WindowBuilder includes a standard editor. For
enumerations, special configuration options are available
<property id="setVerticalAlignment(int)">
 <editor id="staticField">
 <parameter name="class">javax.swing.SwingConstants</parameter>
 <parameter name="fields">TOP CENTER BOTTOM</parameter>
 </editor>
</property>
<property id="setHorizontalAlignment(int)">
 <editor id="staticField">
 <parameter name="class">javax.swing.SwingConstants</parameter>
 <parameter name="fields">LEFT CENTER RIGHT LEADING TRAILING</parameter>
 </editor>
</property>

40

© 2011 Google, Inc.

Write Java code for special model/layout features

Sometimes descriptions are not enough and you need special editing
behavior (for example, layout edit policies for various layout managers).
• Custom code need to live in a plug-in

• Specify the «model» to use for a component in its description

<model class=“org.eclpse.wb.swing.model.component.ComponentInfo"/>

• Class ComponentInfo is an indirect subclass of JavaInfo that provides basic
support for all Java models.

• All of your models will be subclasses of ComponentInfo/ContainerInfo (for
Swing) or ControlInfo/CompositeInfo (for SWT).

• WindowBuilder provides various broadcast notifications that can be used to
be informed about an event or participate in them
 Add properties to any component:

org.eclipse.wb.core.model.broadcast.JavaEventListener.addProperties(JavaInfo, List<Property>)

 Delete components and associated resources:
org.eclipse.wb.core.model.broadcast.JavaEventListener.deleteAfter(JavaInfo, JavaInfo)

41

© 2011 Google, Inc.

UI Toolkit Auto-Discovery Mechanism

UI toolkit auto-discovery available in WindowBuilder Engine (WBE)
• Concept pioneered by Mylyn
• "Vendor-neutral" but pre-populated with

eRCP, SWT, Swing and XWT
• Use Eclipse p2 mechanism to

download and install code
• One-click install of any UI toolkit within

any Eclipse client containing the WBE

Available at multiple user access points
• WBE preferences - show an explicit list of

all known UI libraries supported by WBE
and allow user to load any of them

• New Wizard - show a tree of all known UI
types and offer to auto-load if user selects
one not currently installed

• Open WBE editor on existing UI file - if user tries to edit a UI file for which no
editing support is currently loaded, offer to auto-load it

42

© 2011 Google, Inc.

Thank You!
Q&A

43

	WindowBuilder 101
	Intro
	Agenda
	History
	Overview
	WindowBuilder Quotes
	Key Features
	Key WindowBuilder Features
	WYSIWYG & Bi-directional Code Generation
	Powerful & Flexible Code Parser
	Single Representation
	Read & Write Any Style
	Micro Edits
	Internationalization
	Visual Inheritance
	UI Factories
	Morphing
	Widgets & Layout Managers
	Graphical Menu Editing
	User Interface
	WindowBuilder User Interface
	Source View
	Design View
	Component Tree
	Properties View
	Palette
	Wizards
	Toolbars & Context Menus
	Event Handling
	Data Binding
	Customization
	Adding New Components & UI Toolkits
	Palette Contribution in Project – New Category
	Palette Contribution in Project – Existing Category
	Palette Contribution in Jar
	Palette Contribution from plugin.xml
	Palette Commands in Project
	Describe Component Using *.wbp-component.xml
	Component Constructors
	Component Properties
	Write Java code for special model/layout features
	UI Toolkit Auto-Discovery Mechanism
	Thank You!

