
XSD to Ecore Mapping 6/28/2004

Page 1

XML Schema to Ecore Mapping

June 28, 2004 (draft)

EMF support for XML Schema has been significantly enhanced in version 2.0. EMF 2.0 users should therefore refer
to this material in place of Chapter 7 of Eclipse Modeling Framework : A Developer’s Guide (Frank Budinsky et
al., Addison-Wesley, August 2003).

This document describes the mapping from XML Schema to Ecore. This mapping is used by the EMF importer when
creating an EMF model from XML Schema. For each schema component, the corresponding Ecore representation is
described along with any attributes and nested content which affect the resulting model.

Annotations on schema components can be used to customize the mapping for a particular schema. The following set
of attributes from the Ecore namespace (http://www.eclipse.org/emf/2002/Ecore), are used for this purpose:

• ecore:instanceClass on a simple type definition is used to specify the Ecore instanceClassName (that is
Java class) of the corresponding EDataType. For example, specifying ecore:instanceClass="byte[]"
produces a data type, features of which will return byte[].

• ecore:name on any named component or on a wildcard can be used to override the name of the
corresponding ENamedElement.

• ecore:documentRoot on a schema component is used to change the name of the document root EClass
from the default ("DocumentRoot").

• ecore:package on a schema component is used to specify the fully qualified Java package name.
• ecore:nsPrefix on a schema component specifies the nsPrefix attribute of the corresponding EPackage.
• ecore:reference on an attribute or element declaration of type IDREF, IDREFS, or anyURI can be used to

specify the target of the corresponding EReference. The value of "ecore:reference" must be a QName that
resolves to a complex type within the schema.

• ecore:opposite on an element or attribute declaration, that maps to an EReference, can be used to specify
the element or attribute, in the target complex type, corresponding to the reference’s eOpposite.

• ecore:mixed on a complex type definition will make it behave as if it had the mixed=”true” attribute
declared.

• ecore:featureMap on a model group or reference, an element declaration or reference, or a complex type,
can be used to produce or block the use of a feature map in the corresponding Ecore representation. By
default, a feature map is used to implement mixed complex types (section 3.4), substitution groups (section
5.9), abstract elements (section 5.10), repeating model groups (section 6.2), and wildcards (section 7).

• ecore:ignore on facets, annotations, documentation or appinfo components, instructs the importer to ignore
them during XML Schema to Ecore conversion.

These attributes are described in more detail in the sections, below, which correspond to the components to which
they apply. An overview of feature maps can be found in the paper titled: EMF FeatureMaps.

Many of the Ecore elements created from XML Schema components require extended meta data (that is, data above
and beyond what’s representable in Ecore itself) to retain all of the information provided by the schema. An
EAnnotation with a source attribute set to “http:///org/eclipse/emf/ecore/util/ExtendedMetaData” is used for this
purpose. In the following sections, the term “extended meta data EAnnotation” will be used to refer to this type of
EAnnotation.

One important use of such extended meta data EAnnotations is to record the original name of an XML Schema
component corresponding to an Ecore element whose name is adjusted while mapping to Ecore. Because XML
Schema naming conventions are less restrictive then Java’s (and consequently Ecore’s), names sometimes need to be
converted to conform to the naming conventions outlined in the Java Language Specification (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307).

XSD to Ecore Mapping 6/28/2004

Page 2

In some situations, the mapping rules, described below, might result in Ecore elements with conflicting names (for
example, two EAttributes that are in the same EClass and have the same name). In such situations, the second and
subsequent elements will be made unique by appending a number to the end of their names (for example, “foo1”).

1 Schema

A schema element maps to an EPackage. The name, nsURI, and nsPrefix of the EPackage depend on whether or
not the schema has a targetNamespace.

1.1 Schema without targetNamespace

A schema with no targetNamespace maps to an EPackage initialized as follows:

nsURI = the URI of the schema document
nsPrefix = last segment of the URI (short file name), excluding the file extension
name = same as nsPrefix
eAnnotations = an extended meta data EAnnotation

The details map of the extended meta data EAnnotation contains the following entry:

key = "qualified", value = "false"

in resource: file:/c:/myexample/library.xsd
 <xsd:schema>
 …
 </xsd:schema>

EPackage
 name="library"
 nsPrefix="library"
 nsURI="file:/c:/myexample/library.xsd"
 EAnnotation
 source="…/ExtendedMetaData"
 details="qualified->false"

1.2 Schema with targetNamespace

If a schema has a targetNamespace attribute, then it is used to both initialize the corresponding EPackage as well as
to specify the fully qualified Java package name, via the basePackage property of class GenPackage in the
generator model.

In this case, the EPackage attributes are set as follows:

nsURI = the targetNamespace value
nsPrefix = a last segment of the Java package name (derived from the targetNamespace)
name = same as nsPrefix

There is no extended meta data EAnnotation in this case.

The Java package name, and consequently the nsPrefix, is derived from the targetNamespace using the following
algorithm:

1. Strip the URI protocol and leading slash (“/”) characters (for example, http://www.example.com/library ->
www.example.com/library)

2. Remove “www” and then reverse the components of the URI authority, if present (for example,
www.example.com/library -> com.example/library)

XSD to Ecore Mapping 6/28/2004

Page 3

3. Replace slash (“/”) characters with dot (“.”) characters
4. Split mixed-case names into dot-separated lower case names

The nsPrefix is then set to the last component of the Java package name while the basePackage property in the
GenPackage is set to the rest of the name:

<xsd:schema
 targetNamespace="http://www.example.com/libary">
 …
</xsd:schema>

EPackage
 name="library"
 nsPrefix="library"
 nsURI="http://www.example.com/library"
 …
GenPackage
 basePackage="com.example"
 …

1.3 Schema with ecore:nsPrefix annotation

The ecore:nsPrefix attribute can be used to explicitly set the nsPrefix attribute of the corresponding EPackage:

<xsd:schema ecore:nsPrefix="myprefix" … >
 …
</xsd:schema>

EPackage
 nsPrefix="myprefix"
 …

1.4 Schema with ecore:package annotation

The ecore:package attribute can be used to specify the fully qualified Java package name corresponding to the
schema. It sets both the name of the corresponding EPackage as well as the basePackage of the GenPackage (in
the generator model) based on the Java package name, as described in section 1.2.

<xsd:schema
 ecore:package="org.basepackage.mypackage" … >
 …
</xsd:schema>

EPackage
 name="mypackage"
 …
GenPackage
 basePackage="org.basepackage"
 …

1.5 Schema with global element or attribute declarations

If there is one or more global element or attribute declaration in the schema, then an EClass, representing the
document root, is created in the schema's EPackage. The name of the document root class is “DocumentRoot” by
default.

<xsd:schema … >
 <xsd:element … >
 …
</xsd:schema>

EPackage
 EClass
 name="DocumentRoot"
 …

A document root class will contain one feature for every global attribute or element declaration in the schema (see
sections 4.7 and 5.8, below). A single instance of this class is used as the root object of an XML resource (that is, a
conforming XML document). This instance will have exactly one of its element features set; the one corresponding
to the global element at the root of the XML document. The features corresponding to global attribute declarations
will never be set, but are used for setting values in attribute wildcard feature maps.

XSD to Ecore Mapping 6/28/2004

Page 4

The document root EClass looks like one corresponding to a mixed complex type (see section 3.4) including a
“mixed” feature, and derived implementations for the other features in the class. This allows it to maintain comments
and white space that appears in the document, before the root element. A document root class contains two more
EMap features, both String to String, to record the namespace to prefix mappings (xMLNSPrefixMap) and
xsi:schemaLocation mappings (xSISchemaLocation) of an XML instance document.

1.6 Schema with ecore:documentRoot annotation

The name of a document root class, if there is one, can be changed from the default (“DocumentRoot”) by including
an ecore:documentRoot attribute on the schema:

<xsd:schema ecore:documentRoot="LibraryRoot" … >
 <xsd:element … >
 …
</xsd:schema>

EPackage
 EClass
 name="LibraryRoot"
 …

1.7 Schema with elementFormDefault or attributeFormDefault

Qualification of local elements and attributes can be globally specified by a pair of attributes, elementFormDefault
and attributeFormDefault, on the schema element, or can be specified separately for each local declaration using the
form attribute. Any of these attributes may be set to “qualified” or “unqualified”, to indicate whether or not locally
declared elements and attributes must be qualified or not.

Both elementFormDefault and attributeFormDefault have no effect on the corresponding EPackage or
DocumentRoot EClass (if it exists), however the Ecore model for any corresponding local declarations may include
additional information. For details see sections 4.5 (attributes) and 5.7 (elements).

<xsd:schema elementFormDefault="qualified" … >
 …
</xsd:schema>

EPackage
 …

2 Simple Type Definition

Each simple type definition of a schema maps to an EDataType in the eClassifiers list of the EPackage
corresponding to its target namespace. The name, instanceClass, and eAnnotations of the EDataType depend on
the contents of the type.

Some simple types map to Java types that cannot support nillable elements. In these cases, a second (wrapper)
EDataType will be created for the type as described in section 5.4 (Nillable element). Here we just describe the
primary EDataType that corresponds to the simple type.

2.1 Simple type with restriction

The attributes of an EDataType corresponding to a restricted simple type are set as follows:

name = the name of the simple type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
instanceClass = the instanceClass of the EDataType corresponding to the base type
eAnnotations = an extended meta data EAnnotation

XSD to Ecore Mapping 6/28/2004

Page 5

The details map of the extended meta data EAnnotation contains the following entries:

key = "name", value = the unaltered name of the simple type
key = "baseType", value = the EDataType corresponding to the restriction’s base type

Each simple type constraint in the restriction will produce an additional details entry as follows:

key = the name of constraint, value = the constraint’s value

<xsd:simpleType name="zipCodes">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

EDataType
 name="ZipCodes"
 instanceClass="int"
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->zipCodes,
 baseType->…/XMLType#integer,
 minInclusive->10000,
 maxInclusive->99999"

The ecore:ignore attribute can be specified on a constraint to suppress it in the corresponding EDataType:

<xsd:minInclusive value="10000" ecore:ignore="true"/> No minInclusive entry in details map

2.2 Simple type with enumeration facets

An enumeration restriction of a base type whose corresponding EDataType’s instanceClass is
java.lang.String (for example, xsd:string, xsd:NCName, etc.), will map to an EEnum, but only if all of the
enumeration values are valid Java identifiers. The EEnum is initialized as follows:

name = the name of the simple type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
eLiterals = one EEnumLiteral for each enumeration in the restriction
eAnnotations = an extended meta data EAnnotation

Each EEnumLiteral has the following attributes:

name = the value of the schema enumeration
value = an integer value sequentially assigned, starting at 0

The details map of the extended meta data EAnnotation contains the following entry:

key = "name", value = the unaltered name of the simple type

<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <!-- and so on ... -->
 </xsd:restriction>
 </xsd:simpleType>

EEnum
 name="USState"
 EEnumLiteral name="AK" value=0
 EEnumLiteral name="AL" value=1
 EAnnotation
 source="…/ExtendedMetaData"
 details="name-> USState"

XSD to Ecore Mapping 6/28/2004

Page 6

If the base type maps to something other than java.lang.String (e.g., xsd:int), or any of the enumeration
values are invalid Java identifiers (e.g., value="a:b:c"), then the type will instead map to an ordinary EDataType as
described in the previous section (2.1). If the Java instance class of such an EDataType is primitive (for example,
int), EAttributes of the type, will have a default value set (see section 4.4).

2.3 List simple type

The attributes of an EDataType corresponding to a list simple type are set as follows:

name = the name of the simple type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
instanceClass = "java.util.List"
eAnnotations = an extended meta data EAnnotation

The details map of the extended meta data EAnnotation contains the following entries:

key = "name", value = the unaltered name of the simple type
key = "itemType", value = the itemType of the list

<xsd:simpleType name="actorsList">
 <xsd:list itemType="xsd:NCName"/>
</xsd:simpleType>

EDataType
 name="ActorsList"
 instanceClass="java.util.List"
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->actorsList,
 itemType->…/XMLType#NCName"

2.4 Union simple type

The attributes of an EDataType corresponding to a union simple type are set as follows:

name = the name of the simple type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
instanceClass = a common instance class of the members (if there is one) or "java.lang.Object"
eAnnotations = an extended meta data EAnnotation

If the EDataTypes corresponding to the union members share a common instanceClass, then the instanceClass of
the union’s EDataType is set to this common value. If they are not all the same, then "java.lang.Object" is used
instead.

The details map of the extended meta data EAnnotation contains the following entries:

key = "name", value = the unaltered name of the simple type
key = "memberTypes", value = the space-separated list of memberTypes in the union

<xsd:simpleType name="zipUnion">
 <xsd:union memberTypes="zipCodes USState"/>
</xsd:simpleType>

EDataType
 name=" ZipUnion"
 instanceClass="java.lang.Object"
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->zipUnion,

XSD to Ecore Mapping 6/28/2004

Page 7

 memberTypes->zipCodes USState"

2.5 Anonymous simple type

If an anonymous simple type is used for an element (or attribute) declaration, then the corresponding EDataType
name will be set to the converted name of the enclosing element (or attribute) with the suffix "Type" appended. The
"name" entry in the details map of the extended meta data EAnnotation will have the following value in this case:

key = "name", value = the name of enclosing simple type appended with the suffix "_._type"

<xsd:element name="myElement">
 <xsd:simpleType>
 …
 </xsd:simpleType>
</element>

EDataType
 name="MyElementType"
 EAnnotation
 details="name->myElement_._type, …"
 …

If an anonymous simple type is used as the base type of a restriction, then the corresponding EDataType name will
be set to the enclosing type’s converted name with the suffix "Base", instead of "Type". The "name" entry in the
details map of the extended meta data EAnnotation will have the suffix "_._base" in this case:

<xsd:simpleType name= "myType">
 <xsd:restriction>
 <xsd:simpleType>
 …
 </xsd:simpleType>
 </xsd:restriction>
</xsd:simpleType>

EDataType
 name="MyTypeBase"
 EAnnotation
 details="name->myType_._base, …"
 …

Similarly, if an anonymous simple type is used as the item type of a list, then the corresponding EDataType name
will be set to the enclosing type’s converted name with the suffix "Item" and the "name" entry in the details map of
the extended meta data EAnnotation will have the suffix "_._item":

<xsd:simpleType name= "myType">
 <xsd:list>
 <xsd:simpleType>
 …
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

EDataType
 name="MyTypeItem"
 EAnnotation
 details="name->myType_._item, …"
 …

Finally, if an anonymous simple type is used as a member type of a union, then the corresponding EDataType name
will be set to the enclosing type’s converted name with the suffix "Member", but in this case it will be followed by a
number representing the position (starting from 0) of the member in the union. The "name" entry in the details map
of the extended meta data EAnnotation will have the suffix "_._member" also qualified with the position number.

<xsd:simpleType name= "myType">
 <xsd:union>
 <xsd:simpleType>
 …
 </xsd:simpleType>
 …
 </xsd:union>

EDataType
 name="MyTypeMember0"
 EAnnotation
 details="name->myType_._member0, …"
 …

XSD to Ecore Mapping 6/28/2004

Page 8

</xsd:simpleType>

2.6 Simple type with ecore:name

The ecore:name attribute can be used to set the name of the EDataType, for example, if the corresponding simple
type is anonymous or if the default name conversion is unacceptable.

<xsd:simpleType name=”stName”
 ecore:name="MyName">
 …
</xsd:simpleType>

EDataType
 name="MyName"
 …

2.7 Simple type with ecore:instanceClass

The ecore:instanceClass attribute can be used to set the instanceClass attribute of the corresponding EDataType.

<xsd:simpleType name="date"
 ecore:instanceClass="java.util.Date">
 …
</xsd:simpleType>

EDataType
 name="Date"
 instanceClass="java.util.Date"
 …

The "baseType" (see section 2.1) is not recorded in the details map of the extended meta data EAnnotation in this
case.

3 Complex Type Definition

Each complex type definition of a schema maps to an EClass in the eClassifiers list of the EPackage corresponding
to its target namespace.

The attributes of the EClass corresponding to a complex type are set as follows:

name = the name of the complex type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
eAnnotations = an extended meta data EAnnotation

The details map of the extended meta data EAnnotation contains the following entries:

key = "name", value = the unaltered name of the simple type
key = "kind", value = one of “empty”, “simple”, “elementOnly”, or “mixed”.

The value of the "kind" details entry depends on the “content type” of the complex type definition (see
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#content_type).

<xsd:complexType name="customerReviewType">
 <xsd:complexContent>
 …
 </xsd:complexContent>
</xsd:complexType>

EClass
 name="CustomerReviewType"
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->customerReviewType,
 kind->elementOnly"

XSD to Ecore Mapping 6/28/2004

Page 9

3.1 Complex type with extension or restriction

If a complex type is an extension or restriction of another complex type, then the base type’s corresponding EClass
is added to the eSuperTypes of the EClass.

<xsd:complexType name="customerReviewType">
 <xsd:complexContent>
 <xsd:extension base="criticsReviewType">
 …
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

EClass
 eSuperTypes="#//criticsReviewType"
 …

In the case of extension, attribute and element declarations within the body of the extension will also produce
features in the EClass as described in the following sections. If the type is a restriction, however, anything in the
body will be ignored and the corresponding EClass will contain no new features. The subclass is simply provided to
restrict the existing features, for example, to constrain their multiplicity or to make their types narrower.

If the base type of an extension or restriction is a simple type, instead of adding an eSuperType, a single EAttribute
with name equal to “value” will be added to the eAttributes of the EClass. The eType of this EAttribute will be
the EDataType corresponding to the base of the simpleContent extension.

<xsd:complexType … >
 <xsd:simpleContent>
 <xsd:extension base="xsd:int">
 …
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

EClass
 EAttribute
 name="value"
 eType="…/XMLType#//Int"
 …

3.2 Anonymous complex type

If an anonymous complex type is used for the type of an element declaration, then the corresponding EClass’ name
will be set to the enclosing element’s converted name with the suffix "Type" appended. The value of "name" entry in
the details map of the extended meta data EAnnotation will have the following value in this case:

key = "name", value = the name of enclosing simple type appended with the suffix "_._type"

<xsd:element name="myElement">
 <xsd:complexType>
 …
 </xsd:complexType>
</element>

EClass
 name="MyElementType"
 EAnnotation
 details="name->myElement_._type, …
 …

3.3 Abstract complex type

An abstract attribute in a complex type is used to set the abstract attribute of the corresponding EClass.

<xsd:complexType abstract="true" … >
 …
</xsd:complexType>

EClass
 abstract=true
 …

XSD to Ecore Mapping 6/28/2004

Page 10

3.4 Mixed complex type

A complex type with mixed content will produce a feature map EAttribute named “mixed” in the corresponding
EClass. This EAttribute will include the following entries in the details map of its extended meta data
EAnnotation:

key = "name", value = ":mixed"
key = "kind", value = "elementWildcard"

<xsd:complexType name="MixedType" mixed="true">
 …
</xsd:complexType>

EClass
 name="MixedType"
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->MixedType,
 kind->mixed"
 EAttribute
 name="mixed"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->:mixed,
 kind->elementWildcard"
 …

A feature EAnnotation with the special name “:mixed” identifies it as the “mixed” feature for the class, of which
there can only be one.

All other features (EReferences and EAttributes) which are mapped from element declarations in the schema will
have derived implementations which delegate to the feature map:

<xsd:complexType name="customersType"
 mixed="true">
 <xsd:sequence>
 <xsd:element name="customer" … />
 </xsd:sequence>
</xsd:complexType>

EClass name="CustomersType" …
 EAttribute
 name="customer"
 volatile=true
 transient=true
 derived=true (derived from "mixed")
 …

3.5 Complex type with ecore:name

The ecore:name attribute can be used to set the name of the EClass, for example, if the corresponding complex type
is anonymous or if the default name conversion is unacceptable.

<xsd:complexType ecore:name="MyName"
 …
</xsd:complexType>

EClass
 name="MyName"
 …

3.6 Complex type with ecore:featureMap

The ecore:featureMap attribute can be specified on a complex type that has complex content and is not an extension
or restriction of another complex type. In this case, it will produce a feature map EAttribute in the corresponding

XSD to Ecore Mapping 6/28/2004

Page 11

EClass. This feature map is similar to one used when handling a repeating model group (see section 6.2); the
implementations of all other features in the class will derive from it. The name of the EAttribute is set to the value
of the ecore:featureMap attribute.

The extended meta data EAnnotation includes the following entries in its details map

key = "name", value = the name of the EAttribute followed by the string “:group”
key = "kind", value = "group"

<xsd:complexType ecore:featureMap="myMap" … >
 <xsd:sequence>
 …
 </xsd:sequence>
</xsd:complexType>

EClass
 …
 EAttribute
 name="myMap"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->myMap:group,
 kind->group"
 …

If the complex type is mixed (section 3.4) or one that is being treated as if it is (section 3.7), it will already have a
feature map based implementation. In this case, the only effect of the ecore:featureMap attribute is to override the
name of the “mixed” EAttribute.

<xsd:complexType ecore:featureMap="myMap"
 mixed="true" … >
 …
</xsd:complexType>

EClass
 …
 EAttribute
 name="myMap"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->:mixed,
 kind->elementWildcard"
 …

3.7 Complex type with ecore:mixed

The ecore:mixed attribute can be used to produce a feature map based implementation as described in section 3.4,
for a complex type that is not actually mixed. The complex type must have complex content and cannot be an
extension or restriction of another complex type. This feature is typically used to provide support for adding and
accessing comments in an XML document, as opposed to real “mixed text”. Adding “mixed text”, other than white
space, to such instances would produce an invalid document, since the type is not really mixed.

<xsd:complexType ecore:mixed="true" … >
 …
</xsd:complexType>

EClass
 …
 EAttribute
 name="mixed"
 eType="…/Ecore#//EFeatureMapEntry"
 …

4 Attribute Declaration

XSD to Ecore Mapping 6/28/2004

Page 12

Each schema attribute declaration maps to an EAttribute or EReference in the EClass corresponding to the
complex type definition containing the attribute if locally defined, or in the DocumentRoot EClass if the attribute is
global.

An attribute declaration maps to an EReference in only a few special cases (see section 4.3). Otherwise it maps to an
EAttribute which is initialized as follows:

name = the name of the attribute converted, if necessary, to a proper Java field name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
eType = an EDataType corresponding to the attribute’s simple type
lowerBound = 0 if use="optional" (default) or 1 if use="required" (see section 4.3)
upperBound = 1
eAnnotations = an extended meta data EAnnotation

If the type of the attribute is one of the predefined schema types, then the eType of the corresponding EAttribute
will be one of the EDataTypes from the XMLTypePackage as described in section 9. Otherwise, it will be a user
defined EDataType created from a simple type as described in section 2.

The details map of the extended meta data EAnnotation contains the following entries:

key = "name", value = the unaltered name of the attribute
key = "kind", value = "attribute"

<xsd:attribute name="title" type="xsd:string"/> EAttribute
 name="title"
 eType="…/XMLType#//String"
 lowerBound=0
 upperBound=1
 EAnnotation
 details="name->title, kind->attribute"

4.1 Attribute of type xsd:ID

An attribute of, or derived from, type xsd:ID maps to an EAttribute of the “ID” EDataType from the
XMLTypePackage (see section 9) as expected, but has the added affect of setting the iD attribute of the EAttribute
to true:

<xsd:attribute name="ID" type="xsd:ID"/> EAttribute

 eType="…/XMLType#//ID"
 iD=true
 …

4.2 Attribute of type xsd:IDREF, xsd:IDREFS, or xsd:anyURI

Ordinarily, attributes of, or derived from, type IDREF, IDREFS, and anyURI, are handled no differently than those
of other predefined schema simple types. They simply map to EAttributes with eType set to the corresponding
EDataType in the XMLTypePackage (see section 9).

<xsd:attribute name="author" type="xsd:IDREF"/> EAttribute

 name="author"
 eType="…/XMLType#//IDREF"

XSD to Ecore Mapping 6/28/2004

Page 13

 …

If, however, an attribute of one of these three types also includes the ecore:reference attribute, an EReference is
created instead. The reference is non-containment (containment equals false) and its eType is set to the EClass
corresponding to the complex type specified by the ecore:reference. The upperBound is set to -1 (unbounded) for
IDREFS, 1 otherwise. Since IDREF and IDREFS cannot span documents, the resolveProxies property is set to
false for them. For anyURI, which can span documents, the resolveProxies property will be set to true:

<xsd:attribute name="author" type="xsd:IDREF"
 ecore:reference="Writer"/>

EReference
 name="author"
 eType="//Writer"
 upperBound=1
 containment=false
 resolveProxies=false
 …

<xsd:attribute name="authors" type="xsd:IDREFS"
 ecore:reference="Writer"/>

EReference
 name="authors"
 eType="//Writer"
 upperBound=-1 (unbounded)
 containment=false
 resolveProxies=false
 …

<xsd:attribute name="author" type="xsd:anyURI"
 ecore:reference="Writer"/>

EReference
 name="author"
 eType="//Writer"
 upperBound=1
 containment=false
 resolveProxies=true
 …

If the relationship is bidirectional, ecore:opposite can be used to specify the attribute or element declaration, of the
target complex type, that corresponds to the reverse (eOpposite) EReference:

<xsd:attribute name="author" type="xsd:anyURI"
 ecore:reference="Writer"
 ecore:opposite="books"/>

EReference
 name="author"
 eType="//Writer"
 upperBound=1
 containment=false
 resolveProxies=true
 …

The ecore:opposite attribute can be specified on either (or both) sides of the relationship.

4.3 Required attribute

The lowerBound of an EAttribute or EReference corresponding to a required schema attribute is set to 1, instead
of the usual 0:

<xsd:attribute use="required" … /> EAttribute

 lowerBound=1
 …

XSD to Ecore Mapping 6/28/2004

Page 14

4.4 Attribute with default

An attribute with a default value will set the defaultValueLiteral attribute of the corresponding EAttribute. The
EAttribute will also be unsettable in this case:

<xsd:attribute name="message" type="xsd:string"
 default="hello world" … />

EAttribute
 eType="…/XMLType#//String"
 defaultValueLiteral="hello world"
 unsettable=true
 …

An attribute declaration without an explicit default value may also map to an unsettable EAttribute if the type has
an intrinsic default value that is not equal to null (that is, the corresponding eType is an EEnum or an EDataType
representing a primitive Java type):

<xsd:attribute name="pages" type="xsd:int"/> EAttribute

 eType="…/XMLType#//Int"
 unsettable=true
 …

An attribute declaration whose type is an enumeration restriction of a simple type that maps to a primitive Java type
(for example, int) will have its default value set, even if no explicit default value is specified for the attribute. In this
case, the defaultValueLiteral of the corresponding EAttribute will be set to the value corresponding to the first
enumeration value of the type:

<xsd:attribute name="oneThreeFive">
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:enumeration value="1"/>
 <xsd:enumeration value="3"/>
 <xsd:enumeration value="5"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:attribute>

EAttribute
 eType="…/XMLType#//Int"
 defaultValueLiteral="1"
 unsettable=true
 …

4.5 Qualified attribute

If a local attribute declaration has qualified form, either explicitly declared with the form attribute set to “qualified”
or inherited from a schema element with attributeFormDefault set to “qualified” (see section 1.7), then the details
map of the extended meta data EAnnotation for the corresponding feature will contain an additional entry:

key = "namespace", value = "##targetNamespace"

<xsd:attribute form="qualified" … /> EAttribute
 EAnnotation
 details="namespace->##targetNamespace, …"
 …

4.6 Attribute reference

An attribute reference (that is one with a ref attribute) will produce a “namespace” entry in the details map of the
extended meta data EAnnotation of the corresponding feature, exactly as described for qualified attributes (see

XSD to Ecore Mapping 6/28/2004

Page 15

section 4.6). If, however, the reference is to a global attribute in a different schema, then the value of the
“namespace” entry will be set to the targetNamespace of the global attribute, instead of ##targetNamespace:

<xsd:schema xmlns:some="http://someSchema" … >
 <xsd:attribute ref="some:globalAttribute"/>
</xsd:schema>

EAttribute
 EAnnotation
 details="namespace->http://someSchema", …"
 …

4.7 Global attribute

The EAttribute or EReference corresponding to a global attribute declaration is added to the package’s
DocumentRoot class as described in section 1.5. The extended meta data EAnnotation corresponding to a global
attribute declaration will also include exactly the same “namespace” details entry (with value “##targetNamespace”)
as a qualified attribute described in section 4.5.

<xsd:schema ... >
 <xsd:attribute name="globalAttribute"
 type="xsd:string"/>
 ...
</xsd:schema>

DocumentRoot EClass
 EAttribute
 name="globalAttribute"
 eType="…/XMLType#//String"
 …
 EAnnotation
 details="namespace->##targetNamespace, …"
 …

4.8 Attribute with ecore:name

The ecore:name attribute can be used to explicitly set (override) the name of the EAttribute, if the default name
conversion is unacceptable.

<xsd:attribute name="…" ecore:name="MyName" … />

EAttribute
 name="MyName"
 …

In the case of an attribute reference, a local ecore:name attribute takes precedence over an ecore:name setting on the
referenced global attribute, if there is one.

5 Element Declaration

Each schema element declaration maps to an EAttribute or EReference in the EClass corresponding to the
complex type definition containing the element, or in the DocumentRoot EClass if the element is global.

An element declaration maps to an EAttribute if its type is simple (with the exception of the special cases described
in section 5.3). Otherwise, if the type is complex, it maps to an EReference. In either case, the attributes of the
feature are initialized as follows:

name = the name of the element converted, if necessary, to a proper Java field name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307)
eType = an EDataType or EClass corresponding to the element’s type
lowerBound = the minOccurs value of the element declaration multiplied by the minOccurs of any
containing model groups, or 0 if the element is nested in a choice or is not in a content model
upperBound = the maxOccurs value of the element declaration multiplied by the maxOccurs of any
containing model groups, or -2 if the element declaration is not in a content model (see section 5.8)

XSD to Ecore Mapping 6/28/2004

Page 16

eAnnotations = an extended meta data EAnnotation

If the type of the element is one of the predefined schema types, then the eType of the corresponding EAttribute
will be one of the EDataTypes from the XMLTypePackage as described in section 9. Otherwise, it will be a user
defined EDataType created from a simple type as described in section 2, or if the element declaration maps to an
EReference, then the eType will be the EClass corresponding to the element’s type. If an EReference, the
containment property will be true, except for the cases described in section 5.3.

The details map of the extended meta data EAnnotation will contain the following entries:

key = "name", value = the unaltered name of the element
key = "kind", value = "element"

<xsd:element name="mySimple" type="xsd:string"
 maxOccurs="unbounded" />

EAttribute
 name="mySimple"
 eType="…/XMLType#//String"
 lowerBound=1
 upperBound=-1 (unbounded)
 EAnnotation
 details="name->mySimple, kind->element"

<xsd:element name="myComplex">
 <xsd:complexType … >
 …
 </xsd:complexType>
</xsd:element>

EReference
 name="myComplex"
 eType="//MyComplexType"
 lowerBound=1
 upperBound=1
 containment=true
 EAnnotation
 details="name->myComplex, kind->element"

5.1 Element of type xsd:anyType

In addition to the EDataTypes for all the XML Schema predefined simple types (see section 9), the
XMLTypePackage also includes an EClass, “AnyType”, corresponding to the xsd:anyType complex type. However,
an element of type xsd:anyType does not map to an EReference of this type as you might expect. Instead, the eType
of the corresponding EReference will be EObject, the base class of all EMF Objects:

<xsd:element name="…" type="xsd:anyType"/> EReference

 eType="…/Ecore#//EObject"
 …

Using EObject for the reference type allows an instance of any EMF object to be the value of the feature, which is
the intended behavior. The purpose of the “AnyType” EClass is to handle situations where an instance contains
arbitrary XML content. For example, when processing wildcard content in “lax mode” with no meta data available,
an instance of the “AnyType” EClass, which like every other EClass is a subtype of EObject, will be used as the
value of the feature. An instance of class “AnyType” can represent any arbitrary XML element content including any
attributes and mixed text that it may have.

5.2 Element of type xsd:ID

Note: the XML Schema specification recommends avoiding the use of xsd:ID for the type of an element declaration.

XSD to Ecore Mapping 6/28/2004

Page 17

An element of, or derived from, type xsd:ID maps to an EAttribute of the “ID” EDataType from the
XMLTypePackage (see section 9) as expected, but has the added affect of setting the iD attribute of the EAttribute
to true:

<xsd:element name="…" type="xsd:ID"/> EAttribute

 eType="…/XMLType#//ID"
 iD=true
 …

5.3 Element of type xsd:IDREF, xsd:IDREFS, or xsd:anyURI

Note: the XML Schema specification recommends avoiding the use of xsd:IDREF or xsd:IDREFS for the type of an
element declaration.

Elements of, or derived from, type IDREF or anyURI are given the same special treatment as described for attributes
of these types (see section 4.3); when an ecore:reference is specified, they map to EReferences instead of being
treated as ordinary elements of simple type (which always map to EAttributes). Unlike attributes, however, elements
can be repeated, so the upperBound of the EReference is not always 1 (as described in section 4.3), but is instead
set according to the maxOccurs attribute of the element declaration, in the usual way:

<xsd:element name="author" type="xsd:anyURI"
 maxOccurs=="10"
 ecore:reference="Writer"/>

EReference
 name="author"
 eType="//Writer"
 upperBound=10
 containment=false
 resolveProxies=true
 …

The IDREFS element case is a little more complicated because the set of references represented by an IDREFS
element can themselves be repeated (that is, maxOccurs might be greater than 1). So, in this case the EReference’s
containment property is made true and the eType of the EReference is set to a special “Holder” EClass, instead
of to the type specified by the ecore:reference attribute:

<xsd:element name="authors" type="xsd:IDREFS"
 ecore:reference="Writer"/>

EReference
 name="authors"
 eType="//AuthorsHolder"
 containment=true
 …

Such a “Holder” EClass is automatically created for every element declaration of type IDREFS with an
ecore:reference attribute specified. This EClass is initialized as follows:

name = the name of the complex type converted, if necessary, to a proper Java class name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307), and with the string
“Holder” appended
eReferences = a single multiplicity-many EReference
eAnnotations = an extended meta data EAnnotation

The details map of the extended meta data EAnnotation for the EClass will have the following entries:

key = "name", value = the name of the attribute with the string “:holder” appended
key = "kind", value = “simple”

XSD to Ecore Mapping 6/28/2004

Page 18

The EReference in the “Holder” EClass will have the following values:

name = “value”
eType = the value of the ecore:reference attribute
upperBound = -1 (unbounded)
containment = false
resolveProxies = false

The details map of the extended meta data EAnnotation for the “value” ERererence will contain the following:

key = "name", value = “:0”
key = "kind", value = “simple”

<xsd:element name="authors" type="xsd:IDREFS"
 ecore:reference="Writer"/>

EClass
 name="AuthorsHolder"
 EAnnotation
 details="name->authors:holder, kind->simple"
 …
 EReference
 name="value"
 eType="//Writer"
 upperBound=-1 (unbounded)
 containment=false
 resolveProxies=false
 EAnnotation
 details="name->:0, kind->simple"
 …

5.4 Nillable element

A nillable element with maxOccurs equal to 1 will produce an EAttribute with unsettable set to true.

If the EDataType corresponding to a nillable element’s type has a Java primitive type as its instanceClass (for
example, int), then an EDataType for a Java wrapper type (for example, java.lang.Integer) will be used as the eType
instead of the usual one (see table in section 9).

<xsd:element nillable="true" type="xsd:int" … /> EAttribute

 unsettable=true
 eType="…/XMLType#//IntObject"
 …

If the type of the element is an enumeration (see section 2.3) then the eType will be set to a wrapper EDataType for
“org.eclipse.emf.common.util.AbstractEnumerator”, instead of the corresponding EEnum itself.

<xsd:element nillable="true" type="USState" … />

EClass
 EAttribute
 unsettable=true
 eType="//USStateObject"
 …

Such “Object” EDataType’s are automatically created for every user defined enumeration or primitive type in a
schema. The attributes of a wrapper EDataType are initialized as follows:

XSD to Ecore Mapping 6/28/2004

Page 19

name = the name of the original EDataType with the string “Object” appended
instanceClassName = a Java wrapper class or “org.eclipse.emf.common.util.AbstractEnumerator”

The details map of the extended meta data EAnnotation will have the following entries:

key = "name", value = the name of the enumeration type with the suffix ":Object" appended
key = "baseType", value = the enumeration type

<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <!-- and so on ... -->
 </xsd:restriction>
</xsd:simpleType>

EEnum name="USState" …
EDataType
 name="USStateObject"
 instanceClassName="…util.AbstractEnumerator"
 EAnnotation
 details="name->USState:Object,
 baseType->USState"
 …

5.5 Element with default

An element declaration with a default value will set the defaultValueLiteral attribute of the corresponding
EAttribute. The EAttribute will also be unsettable in this case:

<xsd:element name="message" type="xsd:string"
 default="hello world" … />

EAttribute
 eType="…/XMLType#//String"
 defaultValueLiteral="hello world"
 unsettable=true
 …

An element declaration without an explicit default value may also map to an unsettable EAttribute if the type has
an intrinsic default value that is not equal to null (that is, the corresponding eType is an EEnum or an EDataType
representing a primitive Java type):

<xsd:element name="pages" type="xsd:int"/> EAttribute

 eType="…/XMLType#//Int"
 unsettable=true
 …

An element declaration whose type is an enumeration restriction of a simple type that maps to a primitive Java type
(for example, int) will have its default value set, even if no explicit default value is specified for the element. In this
case, the defaultValueLiteral of the corresponding EAttribute will be set to the value corresponding to the first
enumeration value of the type:

<xsd:element name="oneThreeFive">
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:enumeration value="1"/>
 <xsd:enumeration value="3"/>
 <xsd:enumeration value="5"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:attribute>

EAttribute
 eType="…/XMLType#//Int"
 defaultValueLiteral="1"
 unsettable=true
 …

5.6 Qualified element

XSD to Ecore Mapping 6/28/2004

Page 20

A local element declaration with qualified form, either explicitly declared with the form attribute set to “qualified” or
inherited from a schema with elementFormDefault set to “qualified” (see section 1.7), then the details map of the
extended meta data EAnnotation for the corresponding feature will contain an additional entry:

key = "namespace", value = "##targetNamespace"

<xsd:complexType..>
 <xsd:sequence>
 <xsd:element form="qualified" … />
 </xsd:sequence>
</xsd:complexType>

EAttribute
 EAnnotation
 details="namespace->##targetNamespace, …"
 …

5.7 Element reference

An element reference (that is one with a ref attribute) will produce a “namespace” entry in the details map of the
extended meta data EAnnotation of the corresponding feature, exactly as described for qualified elements (see
section 5.6). If, however, the reference is to a global element in a different schema, then the value of the namespace
entry will be set to the targetNamespace of the global element, instead of ##targetNamespace:

<xsd:schema xmlns:some="http://someSchema" … >
 <xsd:complexType..>
 <xsd:sequence>
 <xsd:element ref="some:globalElement"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

EAttribute
 EAnnotation
 details="namespace->http://someSchema", …"
 …

5.8 Global element

The EAttribute or EReference corresponding to a global element declaration is added to the package’s
DocumentRoot class as described in section 1.5. The upperBound of the feature is set to -2 (unspecified). The
extended meta data EAnnotation corresponding to a global element declaration will also include exactly the same
“namespace” details entry (with value “##targetNamespace”) as a qualified element described in section 5.6.

:

<xsd:schema ... >
 <xsd:element name="zip"
 type="zipCode"/>
 ...
</xsd:schema>

DocumentRoot EClass
 EAttribute
 name="zip"
 eType="//ZipCode"
 upperBound=-2 (unspecified)
 …
 EAnnotation
 details="namespace->##targetNamespace, …"
 …

5.9 Element with substitution group

An element declaration which includes a substitutionGroup attribute will produce an additional entry in the details
map of the extended meta data EAnnotation of the corresponding EReference or EAttribute (for simple type):

XSD to Ecore Mapping 6/28/2004

Page 21

key = "affiliation", value = the value of the substitutionGroup attribute

<xsd:element name="customerReview"
 substitutionGroup="criticsReview"
 type="customerReviewType"/>

EReference
 name="customerReivew"
 …
 EAnnotation
 details="affiliation->criticsReview, …"
 …

Any element declaration that is the head of a substitution group (from which other elements derive), like
“criticsReview” in this example, will produce a feature map based implementation in the EClasses corresponding to
any referencing elements. In addition to the normal EReference in the corresponding EClass, a feature map
EAttribute will also be created. The name of the FeatureMap EAttribute will be the same as the name of the
element’s corresponding EReference but with the string “Group” appended. The element’s corresponding
EReference will be derived from the FeatureMap:

<xsd:element name="criticsReview"
 type="criticsReviewType"/>
…
<xsd:complexType name="reviewType">
 <xsd:sequence>
 …
 <xsd:element ref="criticsReview"/>
 …
 </xsd:sequence>
</xsd:complexType>

EClass
 name=”CriticsReviewType"
 …
 EAttribute
 name="criticsReviewGroup"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->criticsReview:group,
 kind->group"
 …
 EReference
 name="criticsReview"
 eType="//CriticsReviewType"
 upperBound=1
 volatile=true
 transient=true
 derived=true (derived from "myElementGroup")
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->criticsReview,
 kind->element,
 group->criticsReview:group"
 …

This feature map based implementation is required to allow instances of the substitution elements to be serialized in
an XML document without using an xsi:type attribute. If this isn’t needed for the model in question, the feature map
implementation can be suppressed using an ecore:featureMap as described in section 5.13:

If the referencing element is nested within a schema component for which a feature map already exists (if the
containing complex type is “mixed”, for example), the feature map EAttribute (criticsReviewGroup in this example)
will itself be derived from the containing feature map.

5.10 Abstract element

XSD to Ecore Mapping 6/28/2004

Page 22

If an element declaration is abstract, then the same kind of feature map based implementation as described for the
head of a substitution group element in the previous section (see section 5.9) will result. In this case, however, the
corresponding feature will also be non changeable.

<xsd:element name="address" abstract="true"
 type=”addressType” />

EAttribute
 name="addressGroup"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 …
EReference
 name="address"
 eType="//AddressType"
 volatile=true
 transient=true
 derived=true (derived from "addressGroup")
 changeable=false
 …

5.11 Element with ecore:name

The ecore:name attribute can be used to explicitly set (override) the name of the corresponding EAttribute or
EReference, if the default name conversion is unacceptable.

<xsd:element name="…” ecore:name="MyName" … />

EAttribute
 name="MyName"
 …

In the case of an element reference, a local ecore:name attribute takes precedence over an ecore:name setting on the
referenced global element, if there is one.

5.12 Element with ecore:opposite

Any element declaration that maps to an EReference can use the ecore:opposite attribute to specify the reverse
(eOpposite) EReference, if the relationship is bidirectional. If the relationship is non-containment (see section 5.3),
then the ecore:opposite specifies an attribute or element declaration in the target complex type, as described in
section 4.2. Otherwise, it simply specifies the name of a type-safe container (eContainer) reference in the target
EClass.

<xsd:element name="books" type="Book"
 maxOccurs="unbounded"
 ecore:opposite="library"/>

EReference
 name="books"
 eType="//Book"
 upperBound=-1 (unbounded)
 containment=true
 eOpposite="//Book/library"
 …

5.13 Element with ecore:featureMap

The ecore:featureMap attribute can be used to introduce the same kind of feature map based implementation as
described for the head of a substitution group element in section 5.9, or to rename a feature map feature that already
exists:

XSD to Ecore Mapping 6/28/2004

Page 23

<xsd:element name="myElement" type="addressType"
 ecore:featureMap="MyMap" … />

EAttribute
 name="myMap"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 …
EReference
 name="myElement"
 eType="//AddressType"
 volatile=true
 transient=true
 derived=true (derived from "myMap")
 …

Alternatively, an unwanted feature map implementation can be suppressed by setting an ecore:featureMap attribute
to "" (empty string), which will revert to the ordinary (non derived) implementation pattern for the element.

<xsd:element name="myElement" type="addressType"
 ecore:featureMap=""/>

EReference
 name="myElement"
 eType="//AddressType"
 …

6 Model group

XML Schema model groups (xsd:sequence, xsd:choice, and xsd:all), with maxOccurs equal to 1 (the default)
produce no corresponding elements in the Ecore model. These constructs simply serve to aggregate the elements
under them. In Ecore, the EClass corresponding to the containing complex type already provides this aggregation
function for the corresponding features. The only case requiring special treatment is a xsd:choice, which imposes
certain exclusivity restrictions on the setting of the features corresponding to the elements within it, as described in
the following section.

6.1 Non repeating xsd:choice

Note: implementation of this is TBD

A non repeating xsd:choice (that is, with maxOccurs = 1) has no representation in the corresponding Ecore model,
but it does have an effect on the extended meta data EAnnotation of the features corresponding to its nested
elements. Each such feature will include the following additional entry in the details map:

key = "exclusion", value = a space separated list of features that can’t be set at the same time as this one

<xsd:choice>
 <xsd:element name="element1" type="xsd:string" />
 <xsd:element name="element2" … />
 <xsd:element name="element3" … />
</xsd:choice>

EAttribute
 name="element1"
 eType="…/XMLType#//String"
 lowerBound=0
 upperBound=1
 EAnnotation
 details="exclusion->element2 element3, …"
 …

6.2 Repeating model group

XSD to Ecore Mapping 6/28/2004

Page 24

A model group (xsd:sequence, xsd:choice, or xsd:all) with maxOccurs > 1 produces a feature map EAttribute in the
EClass corresponding to the complex type definition containing the group. The EAttribute is initialized as follows:

name = “group”
eType = EFeatureMapEntry
lowerBound = the minOccurs value of the model group multiplied by the minOccurs of any containing
model groups, or 0 if the group is nested in a choice
upperBound = the maxOccurs value of the model group multiplied by the maxOccurs of any containing
model groups
eAnnotations = an extended meta data EAnnotation

The details map of the extended meta data EAnnotation for the Eattribute will have the following entries:

key = "name", value = the name of the EAttribute followed by “:” and the feature ID of the EAttribute
key = "kind", value = "group"

<xsd:choice maxOccurs="unbounded">
 …
</xsd:choice>

EAttribute
 name="group"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->group:0,
 kind->group"

All other EReferences and EAttributes which are mapped from element declarations in the schema will have
derived implementations which delegate to the feature map:

<xsd:choice>
 <xsd:element name="element1" type="xsd:float"/>
 …
</xsd:sequence>

EAttribute
 name="element1"
 volatile=true
 transient=true
 derived=true (derived from "group")
 …
 EAnnotation
 source="…/ExtendedMetaData"
 details="group->#group:0, …"

If the model group is nested within a schema component for which a feature map already exists (if the containing
complex type is “mixed”, for example), the feature map EAttribute (group:0 in this example) will itself be derived
from the containing feature map.

6.3 Repeating model group reference

The feature map EAttribute corresponding to a repeating reference to a model group definition (xsd:group) will
have its name set to that of the model group definition, instead of “group” as described in section 6.2. The name will
be converted to a proper Java field name (see
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#73307), if necessary.
.

<xsd:group name="aGroup">
 <xsd:choice>
 …

EClass
 name="…"
 EAttribute

XSD to Ecore Mapping 6/28/2004

Page 25

 </xsd:choice>
</xsd:group>
…
<xsd:complexType name="…">
 <xsd:group ref="aGroup" maxOccurs="unbounded"/>
</xsd:complexType>

 name="aGroup"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 …

6.4 Model group with ecore:featureMap attribute

The ecore:featureMap attribute can be used to override the name of the feature map EAttribute corresponding to a
repeating model group:

<xsd:choice maxOccurs="unbounded"
 ecore:featureMap="choices">
 …
</xsd:choice>

EAttribute
 name="choices"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->choices:0,
 kind->group"

Alternatively, if order preservation among the elements in the group is not desired, the feature map implementation
can be suppressed by setting an ecore:featureMap attribute to "" (empty string), which will revert to the ordinary
(non derived) implementation pattern for the elements in the group:

<xsd:choice maxOccurs="unbounded"
 ecore:featureMap="">
 …
</xsd:choice>

No feature map attribute produced

Finally, the ecore:featureMap attribute can be used on a non repeating model group to produce a feature map
implementation, just like the one produced for a group that is repeating. One common use of this is to provide order
preservation to an xsd:all group. By definition, an xsd:all is one where the group’s elements can appear in any order.
By default EMF interprets this as meaning serialization order is irrelevant, so no feature map is provided. The other
interpretation of an xsd:all is that the elements can be any order, but the order they’re in is important and cannot
change. If this is the desired behavior, an ecore:featureMap attribute can be used to override the simpler default
mapping to produce a feature map for the group:

<xsd:all ecore:featureMap="allMap">
 …
</xsd:all>

EAttribute
 name="allMap"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->allMap:0,
 kind->group"

6.5 Model group definition with ecore:name attribute

The ecore:name attribute can be used to override the name of a feature map EAttribute for a model group
reference.

XSD to Ecore Mapping 6/28/2004

Page 26

<xsd:group name="aGroup" ecore:name="myName">
 <xsd:choice>
 …
 </xsd:choice>
</xsd:group>
…
<xsd:complexType name="…">
 <xsd:group ref="aGroup" maxOccurs="unbounded"/>
</xsd:complexType>

EClass
 name="…"
 EAttribute
 name="myName"
 eType="…/Ecore#//EFeatureMapEntry"
 upperBound=-1 (unbounded)
 …

Note that the same effect could be achieved using the ecore:featureMap attribute on the xsd:choice itself. If both
attributes are provided, the ecore:featureMap attribute would take precedence.

7 Wildcards

Element wildcards (xsd:any) and attribute wildcards (xsd:anyAttribute) both map to a feature map EAttribute in the
EClass corresponding to the complex type definition containing the wildcard. The EAttribute is initialized as
follows:

name = “any” for xsd:any or “anyAttribute” for xsd:anyAttribute
eType = EFeatureMapEntry
lowerBound = 0 for xsd:anyAttribute or an xsd:any that is nested in a choice, otherwise the minOccurs
value of the xsd:any multiplied by the minOccurs of any containing model groups
upperBound = -1 (unbounded) for xsd:anyAttribute or the maxOccurs value of the xsd:any multiplied by
the maxOccurs of any containing model groups
eAnnotations = an extended meta data EAnnotation

The case where upperBound is 1, is somewhat special; it is still implemented using a feature map, as opposed to just
a feature map entry. In this case, the feature map will be restricted to contain only a single entry.

The details map of the extended meta data EAnnotation for the Eattribute will have the following entries:

key = "name", value = “:” followed by the feature ID of the EAttribute
key = "kind", value = "elementWildcard" (for xsd:any) or “attributeWildcard” (for xsd:anyAttribute)
key = "wildcards", value = the value of the namespace attribute of the wildcard
key = "processing", value = the value of the processContents attribute of the wildcard

<xsd:any namespace="##any"
 maxOccurs="unbounded"/>

EAttribute
 name="any"
 eType="…/Ecore#//EFeatureMapEntry"
 lowerBound=1
 upperBound=-1 (unbounded)
 EAnnotation
 source="…/ExtendedMetaData"
 details="name->:0,
 kind->elementWildcard,
 wildcards->##any,
 processing->strict"

<xsd:anyAttribute namespace="##other"/> EAttribute
 name="anyAttribute"
 eType="…/Ecore#//EFeatureMapEntry"
 lowerBound=0
 upperBound=-1 (unbounded)

XSD to Ecore Mapping 6/28/2004

Page 27

 EAnnotation
 source="…/ExtendedMetaData"
 details="name->:1,
 kind->attributeWildcard,
 wildcards->##other,
 processing->strict"

If the wildcard is nested within a schema component for which a feature map already exists (if the containing
complex type is “mixed”, for example), the wildcard EAttribute (feature map) will be derived from the containing
feature map.

7.1 Wildcard with ecore:name

The ecore:name attribute can be used to set the name of a wildcard EAttribute to something other than the default
values of “any” or “anyAttribute”.

<xsd:any namespace="##any"
 ecore:name="myExtension"/>

EAttribute
 name="extension"
 eType="…/Ecore#//EFeatureMapEntry"
 …

7.2 Wildcard with processContents="lax"

A wildcard with processContents set to “lax”, has no special effect on the model, other than to set the value of the
“processing” entry in the EAnnotation’s detail map:

<xsd:any namespace="##any"
 processContents="lax"/>

EAttribute
 name="any"
 …
 EAnnotation
 source="…/ExtendedMetaData"
 details="processing->lax, …"

This can, however, have a significant effect on an instance. In this situation, instances of the “AnyType” EClass,
from the XMLTypePackage (described in section 5.1), will be used as the values in the feature map to represent any
arbitrary (unresolvable) XML element content within the wildcard.

8 Annotations

Documentation and appinfo elements of an annotation component both map to an EAnnotation in the eAnnotations
list of the corresponding Ecore element.

8.1 Documentation annotation

The source attribute of an EAnnotation corresponding to a schema documentation element will be set to the value
"http://www.eclipse.org/emf/2002/GenModel". This special URI is used by the EMF generator to identify
EAnnotations containing documentation to be generated into the JavaDoc comments of the corresponding Java
code.

The details map of the documentation EAnnotation will contain a single entry:

XSD to Ecore Mapping 6/28/2004

Page 28

key = "documentation", value = the contents of the documentation element

<xsd:annotation>
 <xsd:documentation xml:lang="en">
 some information
 </xsd:documentation>
</xsd:annotation>

EAnnotation
 source="…/emf/2002/GenModel"
 details="documentation-> some information "

A single EAnnotation instance is used to represent all the documentation elements of a given schema construct,
should there be more than one. In this case, the value of the “documentataion” entry in the details map will simply
contain the concatenation of the individual documentation elements:

<xsd:annotation>
 <xsd:documentation xml:lang="en">
 some information
 </xsd:documentation>
 <xsd:documentation xml:lang="en">
 more information
 </xsd:documentation>
</xsd:annotation>

EAnnotation
 source="…/emf/2002/GenModel"
 details="documentation-> some information
 more information "

8.2 AppInfo annotation

The source attribute of an EAnnotation corresponding to schema appinfo will be set to the value of a source
attribute, if provided or null otherwise. The handling of appinfo contents is essentially the same as for documentation
as described in the previous section (section 8.1), only using “appinfo” for the details entry instead of
“documentation”.

<xsd:annotation>
 <xsd:appinfo source="http://myURI">
 <junk>hello</junk>
 </xsd:appinfo>
<xsd:appinfo>

EAnnotation
 source="http://myURI"
 details="appinfo-><junk>hello</junk>"

8.3 Annotation with ecore:ignore

The ecore:ignore attribute can be specified on an xsd:annotation to suppress the mapping of all its documentation
and appinfo children:

<xsd:annotation ecore:ignore="true">
 …
</xsd:annotation>

No documentation or appinfo entries in details map

Alternatively, the ecore:ignore attribute can be specified on individual documentation or appinfo elements to
suppress only those entries:

<xsd:annotation>
 <documentation ecore:ignore="true" …>
 doc1
 </documentation>
 …

No documentation entry for “doc1” in details map

XSD to Ecore Mapping 6/28/2004

Page 29

</xsd:annotation>

9 Predefined Schema Simple Types

Each predefined XML Schema simple type maps to a corresponding built-in EDataType in an EMF package named
XMLTypePackage and with namespace URI "http://www.eclipse.org/emf/2003/XMLType". The following table
lists the complete set of Schema simple types along with the values of the name and instanceClass attributes of their
corresponding EDataType.

EDataType (in XMLTypePackage) XML Schema Simple Type
 name instanceClass
anySimpleType AnySimpleType java.lang.Object
anyURI AnyURI java.lang.String
base64Binary Base64Binary byte[]
boolean Boolean java.lang.boolean
boolean (nillable="true") BooleanObject java.lang.Boolean
byte Byte byte
byte (nillable="true") ByteObject java.lang.Byte
date Date java.lang.Object
dateTime DateTime java.lang.Object
decimal Decimal java.math.BigDecimal
double Double double
double (nillable="true") DoubleObject java.lang.Double
duration Duration java.lang.Object
ENTITIES ENTITIES java.util.List
ENTITY ENTITY java.lang.String
float Float float
float (nillable="true") FloatObject java.lang.Float
gDay GDay java.lang.Object
gMonth GMonth java.lang.Object
gMonthDay GMonthDay java.lang.Object
gYear GYear java.lang.Object
gYearMonth GYearMonth java.lang.Object
hexBinary HexBinary byte[]
ID ID java.lang.String
IDREF IDREF java.lang.String
IDREFS IDREFS java.util.List
int Int int
int (nillable="true") IntObject java.lang.Integer
integer Integer java.math.BigInteger
language Language java.lang.String
long Long long
long (nillable="true") LongObject java.lang.Long
Name Name java.lang.String
NCName NCName java.lang.String
negativeInteger NegativeInteger java.math.BigInteger
NMTOKEN NMToken java.lang.String
NMTOKENS NMTOKENS java.util.List
nonNegativeInteger NonNegativeInteger java.math.BigInteger
nonPositiveInteger NonPositiveInteger java.math.BigInteger

XSD to Ecore Mapping 6/28/2004

Page 30

normalizedString NormalizedString java.lang.String
NOTATION NOTATION java.lang.Object
positiveInteger PositiveInteger java.math.BigInteger
QName QName java.lang.Object
short Short short
short (nillable="true") ShortObject java.lang.Short
string String java.lang.String
time Time java.lang.Object
token Token java.lang.String
unsignedByte UnsignedByte short
unsignedByte (nillable="true") UnsignedByteObject java.lang.Short
unsignedInt UnsignedInt long
unsignedInt (nillable="true") UnsignedIntObject java.lang.Long
unsignedLong UnsignedLong java.math.BigInteger
unsignedShort UnsignedShort int
unsignedShort (nillable="true") UnsignedShortObject java.lang.Integer

