
April, 2015
Operational QVT Incremental Update

Execution mode details
- 1 -

Operational QVT Incremental Update

MOF 2.0 Query/View Transformation Specification:

Incremental Update

 Once a relationship (a set of trace instances) has been
established between models by executing a transformation,
small changes to a source model may be propagated to a
target model by re-executing the transformation in the
context of the trace, causing only the relevant target model
elements to be changed, without modifying the rest of the
model.

• Trace contains information about mapped objects
• Trace consists of trace records
• A trace record is created when a mapping is executed
• Trace records keep reference to the executed mapping and the

mapping parameter values
• A trace record is created after the implicit instantiation section of

the mapping is finished
• Trace prohibit duplicate execution with the same parameters
• Trace may be serialized after the transformation execution

mapping EPackage::myMapping() : Package {

 init {
 }

 population {
 }
 end {
 }
}

April, 2015
Operational QVT Incremental Update

Execution mode details
- 2 -

Normal execution flow

implicit instantiation section

New trace record is
created here!

mapping param1 param2 ...

mapping param1 param2 ...

mapping param1 param2 ...

mapping param1 param2 ...

Execution Traces

Trace is checked here
to prohibit duplicate

execution

April, 2015
Operational QVT Incremental Update

Execution mode details
- 3 -

Incremental Update execution

implicit instantiation section

New trace record is
created here!

mapping p1 p2 ...

Execution Traces

Trace is checked here
to prohibit duplicate

execution

mapping p1 p2 ...

mapping p1 p2 ...

mapping p1 p2 ...

Incremental Traces

mapping p1 p2 ...

mapping p1 p2 ...

Incremental trace is
checked here to obtain

mapped objects

• First execution of transformation creates traces
• Subsequent executions use traces from

previous execution as a context for incremental
update

mapping EPackage::myMapping() : Package {

 init {
 }

 population {
 }
 end {
 }
}

April, 2015
Operational QVT Incremental Update

Execution mode details
- 4 -

Transformation execution flow
• The whole transformation is executed (both in normal and in

incremental execution modes)
– it is because of imperative nature of QVTo transformations (in contrast

to declarative transformations)

• EMF change notifications are generated only for actual
changes in the output models
– for single valued features this is optimized by EMF setters

– for multi valued features this is optimized by means of
ECollections.setEList(..)

• incremental update execution mode allows to stabilize 'xmi:id'
for UML XMI format

April, 2015
Operational QVT Incremental Update

Execution mode details
- 5 -

Transformation design for executing in
incremental mode

• always use reset-assignment for multi valued features
initialization (':=' operator)

• don't use conditional assignment for features
Instead of

 if (true) {
 name := 'foo’
 }

One should use

 name := if true then 'foo' else 'bar' endif;

• carefully use the assignment to 'result' variable in init{}
sections
consider using reuse facilities for mappings (inheritance,
merge and disjunctions)

	Folie 1: Operational QVT Incremental Update
	Folie 2: Normal execution flow
	Folie 3: Incremental Update execution
	Folie 4: Transformation execution flow
	Folie 5: Transformation design for executing in incremental mode

